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Basic Definitions

Parameterized Problems

Decision problems with two components (x , k), where k is the
parameter.

Examples

Vertex Cover: given (G , k), does G have a vertex cover of size
at most k?

Dominating Set: given (G , k), does G have a dominating set
of size at most k?

Longest Common Subsequence: given a sequences S1, . . . ,Sr

from some fixed alphabet and integer k, does the longest
common subsequence have length at least k?
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Fixed-Parameter Tractability

Running times are measured wrt both x and k.

Definition

A parameterized problem is fixed-parameter tractable if there is
an algorithm with running time O(f (k) · |x |c ), where f is a
function of k alone and c is a constant.

A closely related concept: kernelization algorithm.
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Kernelization and Fixed-Parameter Tractability

Definition

A kernelization algorithm for a parameterized problem is
polynomial-time many-one reduction mapping an instance
(x , k) to (x ′, k ′) s.t.

(x , k) is a yes-instance iff (x ′, k ′) is a yes-instance;

|x ′|, k ′ ≤ f (k), for some function f .

The function f is called the size of the kernel.

Folklore

A problem is fixed-parameter tractable (FPT) iff it has a
kernelization algorithm.
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Kernel Sizes

The kernel size obtained from a fixed-parameter algorithm is
usually exponential or worse.

Goal

To obtain polynomial (or even better, linear) kernels.

Basic Technique

devise reduction rules that preserve equivalence of
instances;

when reduction rules cannot be applied anymore, show that
the resulting instance has small size.
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Hereditary Properties . . .

. . . are a class of graphs closed under vertex deletion.

e.g. acyclic, bipartite, chordal, planar, bounded-degree,
degenerate, interval, proper interval.

Observation

A class is hereditary iff it has a forbidden set characterization.

Examples

Acyclic: all cycles.

Bipartite: all odd cycles.

Chordal: all holes (chordless cycles of length at least four).

Not always easy to obtain the forbidden set (try Interval, Planar).
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Decision Problems Associated with Hereditary Properties

Given a hereditary property Π,

Definition (Π(i , j , k)-Graph Modification)

Given a graph G and integers i , j , k, can one delete at most i
vertices, at most j edges and add at most k edges s.t. the
resulting graph satisfies Π?

Definition (Π-Induced Subgraph)

Given a graph G and an integer k, does G have a vertex-induced
subgraph with at least k vertices that satisfies Π?

NP-complete [Papadimitriou and Yannakakis, 1978].

Parameterized Complexity?
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Π-Induced Subgraph

A complete characterization wrt inclusion in FPT is known.

Theorem (Khot and Raman, 2001)

If Π contains all independent sets and all cliques, then the
Π-Induced Subgraph problem is in FPT. Else it is W [1]-complete.

For hereditary properties Π on directed graphs . . .

Theorem (Raman and S., 2006)

The Π-Induced Subgraph problem is in FPT if Π contains all
independent sets, all acyclic tournaments and all complete
symmetric digraphs. Else it is W [1]-complete.

Open. A complete characterization as to when these problems
have a polynomial kernel.
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Π-Graph Modification

For properties with a finite forbidden set

Theorem (Cai, 1996)

If Π is hereditary and a has a finite forbidden set then the
Π(i , j , k)-Graph Modification problem is in FPT.

Polynomial Kernel: Reduce to d-Hitting Set.

Properties with an infinite forbidden set:

Feedback Vertex Set: in FPT; quadratic kernel.

Odd Cycle Transversal: in FPT; randomized poly kernel.

Chordal Vertex Deletion: in FPT; poly kernel?

Chordal Completion: in FPT; O(k2)-vertex kernel.

Proper Interval Completion: in FPT; O(k5)-vertex kernel.
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The Π-Vertex Deletion Problem

A restriction of the Π-Graph Modification problem.

Definition

Is there a vertex-set S of size at most k whose deletion results in a
graph with property Π?

Special cases

Feedback Vertex Set: in FPT; quadratic kernel.

Odd Cycle Transversal: in FPT; randomized poly kernel.

Chordal Vertex Deletion: in FPT; poly kernel?

Wheel-Free Deletion: W[2]-complete.

Directed Feedback Vertex Set: in FPT; poly kernel?
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Π-Vertex Deletion: Main Results

We only consider hereditary properties whose forbidden sets have
connected graphs.

Theorem

Let Π be a hereditary property. If (G , k) is a yes-instance of
Π-Vertex Deletion,

then there exists S ⊆ V (G ) of size at most k s.t. tw (G \ S)
is bounded.

Then the Π-Vertex Deletion problem on H-topological-minor-free
graphs admits a linear kernel.
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Π-Vertex Deletion: Main Results . . .

Special Case

For hereditary properties that contain all holes, the condition

tw (G \ S) < some constant

holds if G is H-topological-minor-free.

Chordal Vertex Deletion.

Interval Vertex Deletion.

Corollary

Fix a graph H. If Π is a hereditary property whose forbidden set
contains all holes, then the Π-Vertex Deletion problem admits a
linear kernel in H-topological-minor-free graphs.
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Holes and Chordal Graphs

Definition

A hole is an induced cycle of length at least four. A graph is
chordal if it does not contain any holes.
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Some Properties of Chordal Graphs

A vertex is simplicial if its neighbourhood induces a clique.

Property

A chordal graph is either a clique or has at least two non-adjacent
simplicial vertices.

Perfect Elimination Order

An ordering of vertices s.t. for each vertex v , v and all neighbors

occurring after it induce a clique.

Property

A graph is chordal iff it has a perfect elimination order.
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Tree-Decompositions of Chordal Graphs

Lemma

An optimal tree-decomposition of a chordal graph can be obtained
in poly time.

Proof Idea.

Identify a simplicial vertex u; create a bag containing N[u];
delete u.

Repeat until there are no vertices are left.

The bags can be strung together to a valid tree-decomposition.

Each bag is a maximal clique.

Bounded clique-size implies bounded treewidth.

Chordal graphs consist of “overlapping maximal cliques in a

tree-like structure”.
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Minors and Topological Minors

Definition

A graph H is a minor of G , if it can be obtained from a subgraph
of G by a sequence of edge contractions.
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Minors and Topological Minors . . .

Definition

A graph H is a topological minor of G , if it can be obtained from
a subgraph of G by contracting edges e = {x , y} s.t. deg(x) ≤ 2.
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Implications of H-(Topological)-Minor-Freeness

Fix H and let r := |V (H)|.
Bounded Average Degree

cr
√

log r : minor-free [Kostochka, 1984].

c ′r2: topological-minor-free [Komlós and Szemerédi, 1996].

Bounded Clique Size

no cliques with ≥ r vertices.

Bounded Number of Cliques

d-degenerate implies at most 2d · n cliques [Wood, 2007].

minor-free: 2cr log r · n.

topological-minor-free: 2c′r2 · n.
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The Protrusion Machinery

Definition

A protrusion is a subgraph of bounded treewidth that is connected
to the rest of the graph by a small separator.



Parameterized Complexity Motivation Main Results Proof Idea Further Directions

Reductions based on Protrusions

Reduction Rule

If X is a protrusion whose size is larger than some constant (that
depends only on the problem), replace it with a smaller protrusion
X ′ s.t. the solution remains the “same”.
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Kernels based on Protrusion Reductions

Either by some combinatorial result or simply due to the problem
specification:

If (G , k) is a yes-instance and G is large, then G has a
large protrusion.

Hence

If (G , k) is a yes-instance and G has no large protrusions,
then G must be small.
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Main Result

Theorem

Fix H. If Π is a hereditary property whose forbidden set contains
all holes, then the Π-Vertex Deletion problem admits a linear
kernel in H-topological-minor-free graphs.

Reduction Rule

Let r := |V (H)|. Replace all 3r -protrusions by equivalent ones of
size at most ̟(3r).

How do we find such protrusions? Use brute-force to find
separators of size at most 3r . Not practical!

This is the only reduction rule we use.
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Stage I: Partitioning into Components

(G , k): a yes-instance (G is H-topological-minor-free).

If S ⊆ V (G ) is a solution then tw (G \ S) ≤ r := |V (H)|.
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Stage I: Partitioning into Components

(G , k): a yes-instance (G is H-topological-minor-free).

If S ⊆ V (G ) is a solution then tw (G \ S) ≤ r := |V (H)|.

Connected components in G \ S

C1: adjacent to at most r − 1 vertices of S ;

C2: adjacent to ≥ r vertices of S .
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Stage II: Bounding the Size C1

(r − 1)-Protrusions and the Effect of Reductions

Components in C1 connected exclusively to some X ⊆ S .

#vertices in all components connected to X ≤ ̟(r − 1).

Constructing a Topological Minor S

Delete C2; “contract” C ∈ C1 to edges in S without creating
multiple edges; delete remaining components in C1.

S �top G and hence is H-topological-minor-free.

Bounding the Size

S contains at most O(k) edges and O(k) cliques.

For each clique in S , #adjacent vertices in C1 is

≤ ̟(r − 1).

Hence total number of vertices in C1 is O(k).
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Stage III: Bounding the Size of C2

Recall: Components in C2 see at least r vertices in S .

Bounding the Number of Components in C2

Lemma

Let V1, . . . ,Vp are vertex-disjoint sets in G \ S s.t. for 1 ≤ i ≤ p,

G [Vi ] is connected;

G [Vi ] “sees” at least r vertices in S.

Then p = O(k).
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Stage III: Bounding the Size of C2 . . .

Task

Decompose the components in C2 into connected pieces s.t.

each piece has size roughly ̟(3r);

each piece “sees” at least r vertices in S .

By the previous lemma,

there can be O(k) such pieces;

#vertices in C2 is at most O(k · ̟(3r)) = O(k).

This is technical and we won’t present it here!
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Extensions

Theorem

Let Π be a hereditary property. If (G , k) is a yes-instance of
Π-Vertex Deletion,

then there exists S ⊆ V (G ) of size at most k s.t. tw (G \ S)
is bounded.

Then the Π-Vertex Deletion problem on H-topological-minor-free
graphs admits a linear kernel.

Chordal Vertex Deletion, Interval Vertex Deletion, Proper
Interval Vertex Deletion.

Feedback Vertex Set.
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Other Issues

The protrusion reduction takes polynomial time, but can
hardly be called efficient.

Is there a simpler algorithm based on less “powerful”
reduction rules?

A characterization of hereditary properties with infinite
forbidden sets into FPT/W-hard.
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Thank You!
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