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Abstract. We show, by a non-trivial application of the color-coding method of
Alon et al. [2], that BUDGETED UNIQUE COVERAGE (a variant of SET COVER)
is fixed-parameter tractable, answering an open problem posed in [13]. We also
give improved fixed-parameter tractable algorithms for two special cases of BUD-
GETED UNIQUE COVERAGE: UNIQUE COVERAGE (the unweighted version) and
BUDGETED MAX CUT.
To derandomize our algorithms we use an interesting variation of k-perfect hash
families known as (k, s)-hash families which were studied by Alon et al. [1] in
the context of a class of codes called parent identifying codes [3]. In this setting,
for every s-element subset S of the universe, and every k-element subset X of S,
there exists a function that maps X injectively and maps the remaining elements
of S into a different range.
We give several bounds on the size of (k, s)-hash families. We believe that our
application of color-coding may be used for other problems and that this is the
first application of (k, s)-hash families to a problem outside the domain of coding
theory.

1 Introduction

The UNIQUE COVERAGE problem is a variant of SET COVER where, given a family of
subsets of a finite universe, one is interested in finding a subfamily that maximizes the
number of elements uniquely covered. This problem is motivated by a real-world appli-
cation arising in wireless networks and has connections to several problems including
MAX CUT and MAXIMUM COVERAGE [10].

Demaine et al. [5] introduced this problem and gave efficient approximation al-
gorithms and inapproximability results. Moser et al. [13] studied the parameterized
complexity of UNIQUE COVERAGE. They show that the problem is fixed-parameter
tractable when parameterized by the number of elements to be uniquely covered. In
particular, they left open the parameterized complexity of the more general version
where elements have integral profits and sets have integral costs and one is interested
in maximizing the total profit of elements uniquely covered by a minimum cost sub-
family. In this paper, we show that (the standard parameterized version of) BUDGETED
UNIQUE COVERAGE is fixed-parameter tractable. We also give improved algorithms
for two special cases of BUDGETED UNIQUE COVERAGE: UNIQUE COVERAGE, the



unweighted version of the problem and BUDGETED MAX CUT, a weighted variant
of the well-known MAX CUT problem. See [7] and [9] for other related work on the
UNIQUE COVERAGE problem.

In the BUDGETED UNIQUE COVERAGE problem, we are given a universe, where
each element has a positive integral profit and a family of subsets of the universe, where
each set has a positive integral cost. The question is whether there is a subfamily with
total cost at most B that uniquely covers elements with total profit at least k. We show
that this problem is fixed-parameter tractable with parameters k and B using the color-
coding technique introduced by Alon et al. [2]. It is possible to derandomize the al-
gorithm using standard s-perfect hash families where s is the maximum number of
elements in a solution subfamily. However, we can use a variation of s-perfect fami-
lies called (k, s)-hash families which were introduced in the context of a class of codes
called parent identifying codes [3, 1]. To the best of our knowledge, we provide the first
application of this class of hash families outside the domain of coding theory.

The rest of this paper is organized as follows. In Section 2, we apply color-coding
to BUDGETED UNIQUE COVERAGE and show that it is fixed-parameter tractable. This
section also contains the description of the hash families we use for derandomization. In
Section 3 we consider two special cases of BUDGETED UNIQUE COVERAGE: UNIQUE
COVERAGE and BUDGETED MAX CUT, and give better deterministic algorithms for
these problems than the ones presented in [13]. We conclude with some open problems
in Section 4. Complete proofs appear in a full version of this paper [12].

A parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm
that takes as input an instance (x, k) of the problem and correctly decides whether it is a
YES or NO-instance in time O(f(k) · |x|O(1)), where f is some arbitrary function of the
parameter k. When there is more than one parameter, k would represent an appropriate
function (the sum or the maximum of them, for example) of the parameters. For further
details and an introduction to parameterized complexity, we refer to [6, 8, 14]. For an
integer n, by [n] we denote the set {1, 2, . . . n}. We let e denote the base of the natural
logarithm (denoted by ln) and log denote logarithms to base 2. We let Q denote the
set of rationals, Z the set of integers, and for a number a, we use Q≥a to denote the
set {x ∈ Q : x ≥ a}.

2 Budgeted Unique Coverage

An instance of UNIQUE COVERAGE consists of a family F of m subsets of a finite
universe U of size n and a nonnegative integer k. The question is whether there exists
a subfamily F ′ ⊆ F that covers k elements uniquely. An element is said to be cov-
ered uniquely by F ′ if it appears in exactly one set of F ′. An instance of BUDGETED
UNIQUE COVERAGE contains, in addition to U and F , a cost function c : F → Z+,
a profit function p : U → Z+ and nonnegative integers k and B. The question, in this
case, is whether there exists a subfamily F ′ ⊆ F of total cost at most B such that the
total profit of elements uniquely covered by F ′ is at least k.

In [13] it was shown that BUDGETED UNIQUE COVERAGE with arbitrarily small
positive (rational) costs and profits is not fixed-parameter tractable with parameters B
and k, unless P = NP. Further, BUDGETED UNIQUE COVERAGE is W [1]-hard when



parameterized by the budget B alone, even when cost and profit functions are integral.
In this paper, we assume that both costs and profits assume positive integral values and
that both B and k are parameters. Let (U ,F , c, p, B, k) be an instance of BUDGETED
UNIQUE COVERAGE. We may assume that for all Si, Sj ∈ F , i 6= j, we have

– Si 6= Sj ;
– c(Si) ≤ B;
– |Si| ≤ k − 1.

For if c(Si) > B then Si cannot be part of any solution and may be discarded; if |Si| ≥
k then the given instance is trivially a YES-instance. We make these assumptions im-
plicitly in the rest of the paper.

Demaine et al. [5] show that there exists an Ω(1/ log n)-approximation algorithm
for BUDGETED UNIQUE COVERAGE (Theorem 4.1). We use the same proof technique
to show the following.

Lemma 1. Let (U ,F , c, p, B, k) be an instance of BUDGETED UNIQUE COVERAGE
and let c : F → Q≥1 and p : U → Q≥1. Then either

1. we can find in polynomial time a subfamily F ′ ⊆ F with total cost at most B such
that the total profit of elements uniquely covered by F ′ is at least k; or

2. for every subfamily H with total cost at most B, we have |
⋃

S∈H S| ≤ 18k log B.

Proof. Appears in the full version [12]. ut

The first step of our algorithm is to apply Step 1 of Lemma 1. From now on we assume
that every subfamily of total cost at most B covers at most 18k log B elements of the
universe.

We now proceed to show that BUDGETED UNIQUE COVERAGE is FPT. We first
show this for the case when the costs and profits are all one and then handle the more
general case of integral costs and profits. Therefore let (U ,F , B, k) be an instance of
BUDGETED UNIQUE COVERAGE with unit costs and profits. For this version of the
problem, we have to decide whether there exists a subfamily F ′ ⊆ F of size at most B
that uniquely covers at least k elements. A subfamily F ′ of size at most B that uniquely
covers at least k elements is called a solution subfamily.

To develop our color-coding algorithm, we use two sets of colors Cg and Cb with the
understanding that the (good) colors from Cg are used for the elements that are uniquely
covered and the (bad) colors from Cb are used for the remaining elements. In the present
setting, Cg = {1, . . . , k} and Cb = {k + 1}.

Remark. For our algorithms, any subset of k colors can play the role of good colors.
For ease of presentation, we fix a set of good and bad colors while describing our
randomized algorithms. Our derandomized algorithms assume that any set of k colors
may be good colors.

We now describe the notion of a good configuration. Given h : U → Cg ] Cb and
F ′ ⊆ F , define h(F ′) :=

⋃
{i∈S,S∈F ′}{h(i)} and U(F ′) :=

⋃
S∈F ′ S.

Definition 1. Given h : U → Cg ] Cb and C′g ⊆ Cg , we say that



a. F ′ ⊆ F has a good configuration with respect to (wrt) h and C′g if
1. h(F ′) ∩ Cg = C′g , and
2. the elements of U(F ′) that are assigned colors from C′g have distinct colors

and are uniquely covered by F ′.
b. F has a good configuration wrt h and C′g if there exists a subfamily F ′ with a good

configuration wrt h and C′g . Call F ′ a witness subfamily.

A solution subfamily (for the unit costs and profits version) is a subfamily F ′ ⊆ F with
at most B sets and which uniquely covers at least k elements.

The next lemma shows that if h is chosen uniformly at random from the space of all
functions f : U → [k + 1] and (U ,F , B, k) is a YES-instance of BUDGETED UNIQUE
COVERAGE with unit costs and profits, then with high probability a solution subfam-
ily F ′ has a good configuration wrt h and Cg . Note that such a uniformly chosen h maps
every element from U uniformly at random to an element in [k + 1].

Lemma 2. Let (U ,F , B, k) be a YES-instance of BUDGETED UNIQUE COVERAGE
with unit costs and profits and let h : U → [k + 1] be a function chosen uniformly
at random. Then a solution subfamily F ′ has a good configuration wrt h and Cg with
probability at least 2−k(18 log B log(k+1)−log k+log e).

Proof. Let F ′ be a solution subfamily with at most B sets that covers the elements Q =
{i1, . . . , ik} uniquely. Then p := |U(F ′)| ≤ 18k log B, by Lemma 1. To complete the
proof, we show that F ′ has a good configuration with respect to h and Cg with proba-
bility at least 2−k(18 log B log(k+1)−log k+log e). For F ′ to have a good configuration, we
must have h(i) = k + 1 for all i ∈ U(F ′) \ Q and h(i1), . . . , h(ik) a permutation
of 1, . . . , k. The probability Pr that this happens is:

Pr = 1
(k+1)|U(F′)\Q| × k!

(k+1)k ≥
(

k
e

)k 1
(k+1)p = ek ln(k/e)−p ln(k+1)

≥ ek ln(k/e)−18k log B ln(k+1) ≥ 2−k(18 log B log(k+1)−log k+log e)

ut

Given a coloring h, how do we find out whether F has a good configuration wrt h
and Cg? We answer this next.

Finding a good configuration. Observe that if F has a good configuration wrt h and Cg ,
then any witness subfamily F ′ covers at least k elements uniquely. To locate such a
family of size at most B we use dynamic programming over subsets of Cg . To this end,
let W be a 2k × B array where we identify the rows of W with subsets of Cg and the
columns with the size of a subfamily. For a fixed coloring function h, a subset C′g ⊆ Cg

and 1 ≤ i ≤ B, define W [C′g][i] as follows:

W [C′g][i] =


1, if there exists F ′ ⊆ F , with |F ′| ≤ i, with a good con-

figuration wrt C′g and h.
0, otherwise.

The entry corresponding to W [∅][i] is set to 1 for all 1 ≤ i ≤ B, as a convention. We
fill this array in increasing order of the sizes of subsets of Cg . Let T be the family of all



sets S ∈ F such that h(S)∩Cg ⊆ C′g . Let g(S) denote the set of good colors used in S.
Then W [C′g][i] =

∨
S∈T W [C′g \ g(S)][i− 1].

The correctness of the algorithm is immediate. Clearly if W [Cg][B] = 1, then a
subfamily with at most B sets that uniquely covers at least k elements exists, and can
be found out by simply storing the witness families F ′ for every entry in the table and
backtracking. The time taken by the algorithm is O(2kBmk), since the size of the array
is 2kB and each entry of the array can be filled in time O(mk), where m = |F|.

Lemma 3. Let (U ,F , B, k) be an instance of BUDGETED UNIQUE COVERAGE with
unit costs and profits and h : U → C a coloring function. Then we can find a subfam-
ily F ′ of size at most B which has a good configuration wrt h and Cg , if there exists
one, in time O(2kBmk).

A randomized algorithm for BUDGETED UNIQUE COVERAGE with unit costs and
profits is as follows.

1. Randomly choose a coloring function h : U → {1, . . . , k + 1}.
2. Apply Lemma 3 and check whether there exists a family F ′ of size at most B that

is witness to a good configuration wrt h and Cg . If such a family exists, return YES,
else go to Step 1.

By Lemma 2, if the given instance is a YES-instance, the probability that a solution
subfamily F ′ has a good configuration wrt a randomly chosen function h : U → C
and Cg is at least 2−k(18 log B log(k+1)−log k+log e). By Lemma 3, we can find such a
subfamily in time O(2kBmk).

Theorem 1. Let (U ,F , B, k) be an instance of BUDGETED UNIQUE COVERAGE with
unit costs and profits. There exists a randomized algorithm that finds a subfamily F ′

of size at most B covering at least k elements uniquely, if there exists one, in ex-
pected O(218k log B log(k+1) ·Bmk) time.

2.1 Improving the Run-time

It is clear that if a solution subfamily F ′ is to have a good configuration wrt a randomly
chosen coloring function h and Cg , then h must assign all the non-uniquely covered
elements of F ′ the color in Cb. Intuitively, if we increase the number of colors in Cb,
we increase the probability that a specific target subfamily has a good configuration wrt
a randomly chosen coloring function. We formalize this intuition below. We need the
following inequality whose proof we omit.

Lemma 4. For all t ≥ 2k,
(

t−k
t

)t ≥ (2e)−k.

Lemma 5. Let (U ,F , B, k) be a YES-instance of BUDGETED UNIQUE COVERAGE
with unit costs and profits; let Cg = [k], Cb = {k+1, . . . , q} and C = [q] so that q ≥ 2k.
If h : U → C is chosen uniformly at random then every solution subfamily F ′ with p
elements of the universe has a good configuration wrt h and Cg with probability at

least e−k
(

k
q−k

)k

(2e)−
kp
q .



Proof. Let the set of elements uniquely covered by F ′ be Q = {i1, . . . , ik}. For F ′

to have a good configuration, the function h must map every element of U(F ′) \ Q
to Cb and map Q to Cg injectively. Therefore the probability Pr that F ′ has a good
configuration wrt Cg and a randomly chosen h is:

Pr = (q−k)p−k

qp−k × k!
qk ≥

(
q−k

q

)p (
1

q−k

)k

kke−k

≥ e−k
(

k
q−k

)k(
1− k

q

)p

≥ e−k
(

k
q−k

)k

(2e)−
kp
q (by Lemma 4).

ut

If (U ,F , B, k) is a YES-instance of BUDGETED UNIQUE COVERAGE with unit
costs and profits then p ≤ 18k log B. Also observe that B ≥ 2, for otherwise the given
instance is a NO-instance. Setting p = 18k log B and q = k + p in Lemma 5 we can
show that a solution subfamily F ′ has a good configuration wrt a randomly chosen
coloring function h and Cg with probability at least 2−8.2k−k log log B . Combining this
with Lemma 3, we obtain:

Theorem 2. Let (U ,F , B, k) be an instance of BUDGETED UNIQUE COVERAGE with
unit costs and profits. Then we can find a subfamily F ′ of size at most B covering at
least k elements uniquely, if there exists one, in O(29.2k+k log log B · Bmk) expected
time.

2.2 Derandomization

We now discuss how to derandomize the algorithms described in the last subsection. In
general, randomized algorithms based on the color-coding method are derandomized
using a suitable family of hash functions or “universal sets”. We need a family of func-
tions from U to [t], where t ≥ k+1, such that for all S ⊆ U of size s = d18k log Be and
all X ⊆ S of size k, there exists a function h in the family which maps X injectively
and the colors it assigns to the elements in S \X are different from the ones it assigns
to those in X .

Such hash families are called (k, s)-hash families (with domain [n] and range [t])
and they were introduced by Barg et al. [3] in the context of particular class of codes
called parent identifying codes. At this point, we recall the definition of an (n, t, s)-
perfect hash family. A family H of functions from [n] to [t] is called an (n, t, s)-perfect
hash family if for every subset X ⊆ [n] of size s, there is a function h ∈ H that
maps X injectively. Note that an (n, t, s)-perfect hash family is a (k, s)-hash family
with domain [n] and range [t], and a (k, s)-hash family with domain [n] and range [t]
is an (n, t, k)-perfect hash family. Therefore (k, s)-hash families may be thought of as
standing in between k-perfect and s-perfect hash families.

Our deterministic algorithm simply uses functions from these families H for col-
oring and is described below. Given an instance (U ,F , B, k) of BUDGETED UNIQUE
COVERAGE with unit costs and profits, we let n = |U|, C = [t], and s to be the closest
integer to our estimate in Lemma 1, which is O(k log B).



Deterministic Algorithm
for each h ∈ H do

for each subset X ⊆ C of size k do

1. Define Cg = X and Cb = C \X;
2. Apply Lemma 3 and check whether there exists a subfamily F ′ of

size at most B which has a good configuration wrt Cg and h;
3. if yes, then return the corresponding F ′;

return NO;

The correctness of the algorithm follows from the description—if a witness subfamily
for the givenF exists, at least one h ∈ Hwill color all the uniquely covered elements of
the witness subfamily distinctly, thereby resulting in a good configuration. The running
time of the algorithm is O

(
|H| ·

(
t
k

)
· 2kBmk

)
.

Alon et al. [1] provide explicit constructions of (k, s)-hash families when the range
is k + 1 and ks, respectively.

Theorem 3 (Alon et al. [1]). There exists an absolute constant c > 0 such that for
all 2 ≤ k < s there is an explicit construction of a (k, s)-hash familyH with domain [n]
and range [k +1] of size at most 2ck log s · logk+1 n. When the range is [ks], there exists
an explicit construction of a (k, s)-hash family of size O(k2s2 log n).

If t = k+1, then by the above theorem, the running time of our deterministic algorithm
is O(2O(k log k+k log log B) · Bmk · log n); when t = ks, the running time works out to
be O(2O(k log k+k log log B) ·mk5 ·B log2 B · log n).

Theorem 4. Let (U ,F , B, k) be an instance of BUDGETED UNIQUE COVERAGE with
unit costs and profits. Then we can find a subfamily F ′ of size at most B covering at
least k elements uniquely, if there exists one, in time O(2O(k log k+k log log B) · Bmk ·
log n).

We next give alternate running time bounds using standard s-perfect hash families
for derandomizing our algorithm.

Theorem 5 ([2, 15, 4]). There exist explicit constructions of (n, t, s)-perfect hash fam-
ilies of size 2O(s) log n when t = s, and of size sO(1) log n when t = s2. In fact, for the
case t = s, an explicit construction of an s-perfect hash family of size 6.4s log2 n in
time 6.4sn log2 n is known.

For t = s, using the construction of s-perfect hash families by Chen et al. [4], we
obtain a running time of O(6.4s log2 n ·

(
s
k

)
· 2k · Bkm). Since s = O(k log B), this

expression simplifies to of O(2O(k log B) · log2 n ·Bmk). For t = s2, we can use a hash
family of size sO(1) log n [2], and the expression for the running time then works out to
be O(2O(k log k+k log log B) · log n ·Bmk). We thus have

Theorem 6. Let (U ,F , B, k) be an instance of BUDGETED UNIQUE COVERAGE with
unit costs and profits. Then we can find a subfamily F ′ of size at most B covering
at least k elements uniquely, if there exists one, in time O(f(k, B) · log2 n · Bmk),
where f(k, B) = min{2O(k log B), 2O(k log k+k log log B)}.



If we ignore constants, Theorem 6 gives a run-time which is at least as good as that in
Theorem 4.

We now consider existential results concerning hash families. The following is
known about (n, t, s)-hash families.

Theorem 7 ([11]). For all positive integers n ≥ t ≥ s ≥ 2, there exists an (n, t, s)-
perfect hash family ∆(n, t, s) of size es2/ts lnn.

Alon et al. [1] provided existential bounds for (k, s)-hash functions for the case
when t = k + 1. If we assume that s ≥ 2k, then their existential bound works out
to (2e)s · ek ln s · s lnn. In the lemmas that follow, we provide existential bounds for an
arbitrary range.

Lemma 6. Let k ≤ s ≤ n be positive integers and let t ≥ 2k be an integer. There
exists a (k, s)-hash family H with domain [n] and range [t] of size (2e)sk/t · s log n.

Proof. Let A = {h : [n] → [t]} be the set of all functions from [n] to [t]. For h ∈ A,
S ⊆ [n] of size s and X ⊆ S of size k, define h to be (X, S)-hashing if h maps X
injectively such that h(X) ∩ h(S \X) = ∅ and not (X, S)-hashing otherwise.

Fix S ⊆ [n] of size s and X ⊆ S of size k. The probability Pr that a function h
picked uniformly at random from A is (X, S)-hashing, is given by:

Pr =

(
t
k

)
k!(t− k)s−k

ts
>

(
t

k

)k

·
(

k

e

)k

· 1
tk
·
(

t− k

t

)s−k

=
1
ek

(
t− k

t

)s−k

≥ 1
ek

·
(

1
2e

)k(s−k)/t

(By Lemma 4.)

≥
(

1
2e

)ks/t

.

The probability that the function h is not (X, S)-hashing is less than 1 − (2e)−ks/t.
If we pick N functions uniformly at random from A then the probability that none
of these functions is (X, S)-hashing is less than (1 − (2e)−ks/t))N . The probability
that none of these N functions is (X, S)-hashing for some (S, X) pair is less than(
n
s

)(
s
k

)
(1−(2e)−ks/t)N , which in turn is less than ns(1−(2e)−ks/t)N . For this family

of N functions to be (X, S)-hashing for every (S, X) pair, we would want ns(1 −
(2e)−ks/t)N to be at most one. A simple calculation yields that this will hold when
N ≥ (2e)ks/ts log n. ut

Lemma 7. Let k ≤ s ≤ n be positive integers and let t ≥ k + 1. There exists a
(k, s)-hash family H with domain [n] and range [t] of size 2O(k log(s/k)) · s log n .

Proof. Let F = ∆(n, m, s), the (n, m, s)-perfect hash family obtained from Theo-
rem 7, where we set m = ds2/(k log(s/k))e. Let G be a family of functions gX

from [m] to [t], indexed by k-element subsets X of [m] as follows. The function gX

maps X in an one-one, onto fashion to {1, . . . , k} and maps an element of [m] − X
to an arbitrary element in {k + 1, . . . , t}. Our required family T of functions from [n]
to [t] is obtained by composing the families F and G. It is easy to see that T is an s-
discriminating (n, t, k)-perfect hash family and has the claimed bound for its size. ut



Note that Lemma 6 requires that t ≥ 2k and that for Lemma 7 we have no restriction
on t. Also observe that had we an explicit construction of a (k, s)-hash family satisfying
the bound in Lemma 6, then by setting s = t = O(k log B), we would have obtained a
running time of O(2O(k log log B) · s log n) which is significantly better than that given
in Theorem 6. We believe that this is motivation for studying explicit constructions of
(k, s)-hash families for an arbitrary range.

2.3 Generalized Costs and Profits

The dynamic programming procedure described for the case of unit profits and costs can
be scaled to handle the more general case when costs are positive integers and profits
rational numbers ≥ 1 and vice versa. The modifications required are omitted from this
extended abstract. We obtain the following result analogous to Theorem 6:

Theorem 8. Let (U ,F , B, k) be an instance of BUDGETED UNIQUE COVERAGE with
either integral costs and rational profits ≥ 1 or with rational costs ≥ 1 and integral
profits. Then one can find a subfamily F ′ of total cost at most B that uniquely covers
elements with total profit at least k, if there exists one, in time O(f(k, B)·Bmk log2 n),
where f(k, B) = min{2O(k log B), 2O(k log k+k log log B)}.

3 Faster Deterministic Algorithms for Special Cases

We now present faster deterministic algorithms than the ones presented in [13] for two
special cases of BUDGETED UNIQUE COVERAGE: UNIQUE COVERAGE (the unbud-
geted version) and BUDGETED MAX CUT.

3.1 Unique Coverage

An instance (U ,F , k) of UNIQUE COVERAGE can be viewed as an instance of BUD-
GETED UNIQUE COVERAGE where the costs and profits are all one and the budget B =
k as we do not need more than k sets to cover k elements uniquely. Using Theorem 6,
we immediately obtain an algorithm with run-time O(2O(k log k) · |F| · k2 log n). In this
subsection we present an algorithm for UNIQUE COVERAGE that runs in determinis-
tic O(2O(k log log k) · |F| · k + |F|2) time beating the O(4k2 · |F|) algorithm in [13]. We
first need some lower bounds on the number of elements that can be uniquely covered
in any instance of UNIQUE COVERAGE.

Define the frequency fu of an element u ∈ U to be the number of sets in the fam-
ily F that contain u. Let γ denote the maximum frequency, that is, γ = maxu∈U{fu}.

Lemma 8. There exists a subfamily F ′ ⊆ F such that F ′ covers at least n/(4e log γ)
elements uniquely. Furthermore, such a subfamily can be found in polynomial time.

Proof. Similar to the proof of Lemma 1 and appears in the full version [12]. ut

Lemma 9. Let M = maxS∈F{|S|}. Then there exists a subfamily F ′ that covers at
least n/(8e log M) elements uniquely. Furthermore, such a subfamily can be found in
polynomial time.



Proof. We begin by constructing a subfamily F ′ from F that is minimal in the sense
that every set in F ′ covers at least one element in U uniquely. Such a subfamily is easily
obtained, by going over every set in the family and checking if it has at least one element
which is not contained in any other set. Let m′ denote the size of the subfamily F ′. For
the proof of the lemma we distinguish two cases based on m′:

Case 1: m′ ≥ n/2. As the subfamily is minimal, by construction, we are immediately
able to cover at least n/2 elements uniquely. Thus F ′ itself satisfies the claim of the
lemma.

Case 2: m′ < n/2. In this case, we first claim that |{u ∈ F ′ : f(u) < M}| ≥ n/2.
If not, then there would be more than n/2 elements whose frequency is at least M ,
which implies that

∑
S∈F ′ |S| > Mn/2. On the other hand,

∑
S∈F ′ |S| is clearly at

most M(n/2 − 1) (because there are strictly less than n/2 sets in the family and the
size of any set in the family is bounded by M ). The claim implies that there exists a set
of at least n/2 elements whose frequency is less than M . Denote this set of elements
by V . Consider the family F ′′ obtained from F ′ as follows: F ′′ = {S ∩ V | S ∈
F ′}. Applying Lemma 8 to the instance (V,F ′′), we obtain a subfamily T of F ′′ that
covers at least n/(8e log M) elements uniquely. The corresponding subfamily of F ′

will clearly cover the same set of elements uniquely in U . This completes the proof of
the lemma. ut

Using these lower bounds on the number of elements that are uniquely covered,
we can upper bound the size of a YES-instance of the UNIQUE COVERAGE problem
as a function of the parameter k. Let (U ,F , k) be an instance of UNIQUE COVERAGE.
If k ≤ n/8e log(k − 1), then there exists a subfamily that covers k elements uniquely.
If not, we have k > n/8e log k, which implies that n < 8ek log k.

Lemma 10. Let (U ,F , k) be an instance of UNIQUE COVERAGE. Then, in polyno-
mial time, we can either find a subfamily covering at least k elements uniquely, or an
equivalent instance where the size of the universe is O(k log k).

An improved algorithm for UNIQUE COVERAGE first applies Lemma 10 and ob-
tains an instance of UNIQUE COVERAGE, (U ,F , k), where n = |U| ≤ O(k log k).
Now we examine all k-sized subsets X of the universe U and check whether there
exists a subfamily that covers it uniquely. Let X = {ui1 , ui2 , . . . , uik

}, and let h be
a function that maps X injectively to {1, . . . , k} and each element in U \ X to the
color k+1. Applying Lemma 3 to the instance (U ,F , B = k, k), with the coloring func-
tion h described above gives us an algorithm to find the desired F ′ in time O(2kk2m).
Note that a factor of k can be avoided by directly applying dynamic programming over
subsets of X . The size of U is upper bounded by 8ek log k and hence the total num-
ber of subsets that need to be examined is at most

(
8ek log k

k

)
, which is bounded above

by (8e log k)k ≤ 24.5k+k log log k. Combining this with the above discussion results in:

Theorem 9. Given an instance (U ,F , k) of UNIQUE COVERAGE, one can find a sub-
family that uniquely covers at least k elements, if there exists one, in time O(f(k)·mk+
m2), where f(k) = 25.5k+k log log k.



3.2 Budgeted Max Cut

An instance of BUDGETED MAX CUT consists of an undirected graph G = (V,E) on
n vertices and m edges; a cost function c : V → Z+; a profit function p : E → Z+;
and positive integers k and B. The question is whether there exists a cut (T, V − T ),
∅ 6= T 6= V , such that the total cost of the vertices in T is at most B and the total profit
of the edges crossing the cut is at least k. This problem can be modelled as an instance
BUDGETED UNIQUE COVERAGE by taking U = E and F = {Sv : v ∈ V }, where
Sv = {e ∈ E : e is incident on v}.

In [13], an algorithm with run-time O((B2 · k · 2k)min{B,k} ·mO(1)) was described
for BUDGETED MAX CUT. Here we develop an algorithm with run-time O(2O(k) ·
Bmk · log2 n). Given S ⊆ V , we let c(S) denote the total cost of the elements of S.
If (S, V − S) is a cut in a graph G, then p(S, V − S) is the total profit of edges across
the cut. Define the profit p̂(v) of a vertex v to be the sum of the profits of all the edges
incident on it.

Lemma 11. If (G, B, k, c, p) is a YES-instance of BUDGETED MAX CUT then there
exists a cut (S, S − V ) such that c(S) ≤ B, p(S, V − S) ≥ k, and |

⋃
v∈S Sv| ≤ 4k.

Proof. Since we are given a YES-instance of the problem, there exists a cut (T, T ′)
such that c(T ) ≤ B and p(T, T ′) ≥ k. Call a vertex v of T redundant if p(T − v, T ′ ∪
v) ≥ k. From (T, T ′), obtain a cut (S, S′) such that S ⊂ T and S does not contain
any redundant vertices. Observe that c(S) ≤ B and p(S, S′) ≥ k. For any v ∈ S,
p̂(v) ≤ k − 1 and p(S − v, S′ ∪ v) ≤ k − 1. Therefore p(S, S′) ≤ 2k. For v ∈ S,
partition Sv as Iv ] Cv , where Iv is the set of edges incident on v that lie entirely
in S and Cv are the edges that lie across the cut (S, S′). Clearly p(Iv) ≤ p(Cv), for
otherwise, p(S−v, S′∪v) > p(S, S′), a contradiction to the fact that S has no redundant
vertices. Therefore

∑
v∈S p(Iv) ≤

∑
v∈S p(Cv) ≤ 2k. This yields

∑
v∈S p̂(v) ≤ 4k.

Since the profits are at least one, we have |
⋃

v∈S Sv| ≤ 4k. ut

We use the deterministic algorithm outlined before Theorem 6 with t = s = 4k and
a 4k-uniform perfect hash family by Chen et al. [4]. The running time then works out
to O(6.44k log2 n ·

(
4k
k

)
· 2kBmk) which simplifies to O(213.8k ·Bmk · log2 n).

Theorem 10. Let (G, B, k, c, p) be an instance of BUDGETED MAX CUT. Then we
can find a cut (S, S′) such that c(S) ≤ B and p(S, S′) ≥ k, if there exists one, in time
O(213.8k ·Bmk · log2 n).

4 Conclusions

In this paper we gave fixed-parameter tractable algorithms for BUDGETED UNIQUE
COVERAGE and several of its variants. Our algorithms were based on an application
of the well-known method of color-coding. Our randomized algorithms have good run-
ning times but the deterministic algorithms make use of either (k, s)-hash families or
perfect hash families and this introduces large constants in the running times, a common
enough phenomenon when derandomizing randomized algorithms using such function
families [2]. Our use of (k, s)-hash families to derandomize our algorithms is perhaps



the first application outside the domain of coding theory and it suggests the importance
of such hash families. It will be interesting to explicitly construct (k, s)-hash families
of size promised by Lemma 6 and explore other applications of our generalization of
the color-coding technique.
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