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As seen in previous lectures

Theorem
The languages over trees which are recognizable by DTA are
precisely those languages that are definable in MSO1 logic.

Corollary
Every graph property definable in monadic second-order logic
can be decided in linear time for trees of bounded degree.

Proof.

1 Convert the given MSO1 formula to a DTA A in constant
time.

2 Run A on the given tree.



As seen in previous lectures

Theorem
It is possible to convert EMSO-formulas for labeled trees of
bounded degree into automata that recognize the same lan-
guage over trees.



Today’s menu

1 How hard MSO-checking is on graphs in general?
2 Easy solution for MAXIMUM INDEPENDENT SET on trees of

bounded degree.
3 An unnecessarily complicated algorithm that solves

MAXIMUM INDEPENDENT SET on trees of unbounded
degree in linear time.

4 Show that what we did for MAXIMUM INDEPENDENT SET

can be used to solve any MSO1 formula on trees of
unbounded degree.

5 Generalize the proof so that it works on any graph class of
bounded treewidth.

6 We are gonna talk about the context of these results.



How hard is MSO1-checking?

Definition (PSPACE)
The complexity class PSPACE contains all problems which
are solvable using polynomial space.

Theorem
NP ⊆ PSPACE.

Proof.
For a problem in NP it is possible to enumerate all its possi-
ble polynomially sized certificates and check them in polynomial
time.

(It is assumed, but it has not yet been proven, that
NP ( PSPACE)



How hard is MSO1-checking?

Theorem
MSO2-checking is PSPACE-complete.



INDEPENDENT SET on trees

Definition (k-INDEPENDENT SET)

Given a graph G, does there exist a set S of vertices of size k
such that the graph induced by S is edgeless.

Does there exists a linear time algorithm that solves MAXIMUM

INDEPENDENT SET on trees of bounded degree?











INDEPENDENT SET on trees

For an ordered tree with maximum degree d + 1 we can write
the following constant sized formula to check if there is an edge
between two nodes.

φedge(x, y) := S1(x, y) ∨ . . . ∨ Sd(x, y) ∨ S1(y, x) ∨ . . . ∨ Sd(y, x)

We can now write a simple constant sized formula for MAXIMUM

INDEPENDENT SET on trees of bounded degree.

maxS(∀x∀y((x ∈ S ∧ y ∈ S)→ (x = y ∨ ¬φedge(x, y))))



INDEPENDENT SET on trees

Theorem
A tree of bounded degree T has an independent set of size k iff
there exists a set S ⊆ G of size k such that

(G,S) |= ∀x,∀y((x ∈ S ∧ y ∈ S)→ (x = y ∨ ¬φedge(x, y))

Corollary
It is possible to find an independent set of maximal size in
linear time on trees of bounded degree.
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INDEPENDENT SET on trees of
unbounded degree

Question
Does there exists a linear time algorithm that solves MAXIMAL

INDEPENDENT SET on trees of unbounded degree?



INDEPENDENT SET on trees of
unbounded degree

Idea

1 Convert the tree into a nice tree-decomposition of width
one.

2 Adapt the MAXIMUM INDEPENDENT SET EMSO formula for
trees to work on nice tree decompositions of width one.

3 Since a nice tree decomposition is a binary tree, we can
now convert the new EMSO formula to a deterministic
automata and solve the problem in linear time.



Finding a binary tree
decompositions



Finding a binary tree
decompositions



Finding a binary tree
decompositions



Finding a binary tree
decompositions

Can we treat the tree decomposition as a labeled graph?



Finding a binary tree
decompositions

Not like this: The size of the labeling depends on the number of
nodes of the original tree which is problematic.



Tree decomposition over finite
alphabet



Tree decomposition over finite
alphabet



Tree decomposition over finite
alphabet

Can we introduce bags that represent nodes?



Tree decomposition over finite
alphabet
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Tree decomposition over finite
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Tree decomposition over finite
alphabet



Tree decomposition over finite
alphabet

Are the nodes represented by these leaves connected?



Tree decomposition over finite
alphabet

Which bags contain the node represented by this leaf?



Label interpretation

The parent bag is exactly the same bag, order included.
The node on the left position appears in the parent bag at
the right position.
The bag is a leaf representing a node from the original
tree. It can have three further meanings:

1 If it is a single child, then the node it represents is in the
right position in the parent.

2 If it is not a single child and it is a left child, then it is
contained in the left position in the parent.

3 If it is not a single child and it is a right child, then it is
contained in the right position in the parent.



Overlap

Let us write formulas φi,j(s, t) for 0 ≤ i, j ≤ 1 that are true if s is
a parent of t in the tree decomposition and the positions j in s
and i in t are the same.

φ0,0(s, t) :=(S0(s, t) ∧ ( (t) ∨ (t)))
∨ (S1(s, t) ∧ (t))

φ0,1(s, t) :=(S0(s, t) ∧ (t) ∧ ∃y(S1(s, y)))
∨ (S1(s, t) ∧ (t))
∨ ((S0(s, t) ∨ S1(s, t)) ∧ (t))

φ1,1(s, t) := (S0(s, t) ∨ S1(s, t)) ∧ (t)



Overlap

Let us write formulas φi,j(s, t) for 0 ≤ i, j ≤ 1 that are true if s is
a parent of t in the tree decomposition and the positions j in s
and i in t are the same.

φ0,0(s, t) :=(S0(s, t) ∧ ( (t) ∨ (t)))
∨ (S1(s, t) ∧ (t))

φ0,1(s, t) :=(S0(s, t) ∧ (t) ∧ ∃y(S1(s, y)))
∨ (S1(s, t) ∧ (t))
∨ ((S0(s, t) ∨ S1(s, t)) ∧ (t))

φ1,1(s, t) := (S0(s, t) ∨ S1(s, t)) ∧ (t)



Overlap

Let us write formulas φi,j(s, t) for 0 ≤ i, j ≤ 1 that are true if s is
a parent of t in the tree decomposition and the positions j in s
and i in t are the same.

φ0,0(s, t) :=(S0(s, t) ∧ ( (t) ∨ (t)))
∨ (S1(s, t) ∧ (t))

φ0,1(s, t) :=(S0(s, t) ∧ (t) ∧ ∃y(S1(s, y)))
∨ (S1(s, t) ∧ (t))
∨ ((S0(s, t) ∨ S1(s, t)) ∧ (t))

φ1,1(s, t) := (S0(s, t) ∨ S1(s, t)) ∧ (t)



Overlap

Let us write formulas φi,j(s, t) for 0 ≤ i, j ≤ 1 that are true if s is
a parent of t in the tree decomposition and the positions j in s
and i in t are the same.

φ0,0(s, t) :=(S0(s, t) ∧ ( (t) ∨ (t)))
∨ (S1(s, t) ∧ (t))

φ0,1(s, t) :=(S0(s, t) ∧ (t) ∧ ∃y(S1(s, y)))
∨ (S1(s, t) ∧ (t))
∨ ((S0(s, t) ∨ S1(s, t)) ∧ (t))

φ1,1(s, t) := (S0(s, t) ∨ S1(s, t)) ∧ (t)



All the bags that contain a node

Assume that for any node u the set X0 contains all bags that
contain u at the left position and the set X1 contains all bags
that contain u at the right position. Let us write a formula
φconn(X0, X1) which is true on these sets, but false for all sets
X ′

0, X
′
1 ( X0, X1.

φconn(X0, X1) :=X0 6= ∅ ∧X1 6= ∅∧
∀s∀t(((t ∈ X0 → (φ0,0(s, t)→ s ∈ X0)

∨ (φ0,0(t, s)→ s ∈ X0)
∨ (φ0,1(s, t)→ s ∈ X1))

∧ (t ∈ X1 → (φ1,1(s, t)→ s ∈ X1)
∨ (φ1,1(t, s)→ s ∈ X1))))
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If X0 contains all the bags that contain a node u at position zero
and X1 contains all the bags that contain u at position one then
φconn(X0, X1) is true.

Problem: If X0 and X1 contain all bags, then φconn(X0, X1) is
also true.

Solution: Force exclusion minimality.
φexc(X0, X1) :=φconn(X0, X1)∧

∀X ′
0∀X ′

1((X ′
0 ( X0 ∨X ′

1 ( X1)
∧ (X ′

0 ⊆ X0 ∧X ′
1 ⊆ X1)

→ ¬φconn(X ′
0, X

′
1))

Finally φexc(X0, X1) is true iff there exists a node u such that
the set of bags that contain u is precisely X0 ∪X1.
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Interpretation

MSO-formula for trees of bounded degree.

φedge(x, y) := S1(x, y) ∨ . . . ∨ Sd(x, y) ∨ S1(y, x) ∨ . . . ∨ Sd(y, x)
maxS(∀x∀y((x ∈ S ∧ y ∈ S)→ (x = y ∨ ¬φedge(x, y))))



Interpretation

We can now rewrite the formula for edges with the help of φexc:

φedge(x, y) :=x 6= y ∧ ∃X0∃X1∃Y0∃Y1(x ∈ X0 ∧ y ∈ Y0

∧ φexc(X0, X1) ∧ φexc(Y0, Y1)
∧ ∃z((z ∈ X0 ∨ z ∈ X1) ∧ (z ∈ Y0 ∨ z ∈ Y1)))

And finally rewrite the formula for INDEPENDENT SET on trees.

maxS(∀x∀y( (x) ∧ (y) ∧ (x ∈ S ∧ y ∈ S)
→ (x = y ∨ ¬φedge(x, y))))



Linear algorithm for
INDEPENDENT SET on trees

1 Compute a tree decomposition T of the input tree T with
the following properties:

• T has width one.
• T is a binary tree.
• Every node of T appears as a leaf bag in T .

This is doable in linear time.
2 Compute a label tree T ′ that represent T .
3 Since the formula we created for INDEPENDENT SET on

tree decompositions of width one has constant size, we
can compute a DTA for it.

4 Run the DTA on T ′ and repeat the output.



Since there exists a rather simple dynamic programming algo-
rithm to compute independent set on trees in linear time our
proof via tree-automata has been more of an exercise in mental
resilience than anything else. . . unless we can use these tech-
niques to prove something more general!



MSO1-checking on trees of
unbounded degree

We can use a similar algorithm to solve all problems expressible
with a MSO1 formula ψ of constant size on trees in linear time.

1 Compute a tree decomposition T of the input tree T with
the following properties:

• T has width one.
• T is a binary tree.
• Every node of T appears as a leaf bag in T .

This is doable in linear time.
2 Compute a label tree T ′ that represent T .
3 Translate ψ into a formula ψ′ on tree decompositions, by

forcing all variables to be leaves in the tree decomposition
and replacing the edge predicate by our MSO1-formula for
the edge relation.

4 We can compute a DTA for ψ′ in constant time.
5 Run the DTA on T ′ and repeat the output.



Courcelle’s Theorem

Question
Can we do something similar for any constant treewidth w?

Theorem (Courcelle’s Theorem)
Every graph property definable in monadic second-order logic
can be decided in linear time on graphs of bounded treewidth.

[This] result was first proved by Bruno Courcelle in
1990 and is considered the archetype of algorithmic
meta-theorems.

—Wikipedia
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Bruno Courcelle



Labeled trees for general tree
decompositions

Assume you are given a tree decomposition of width w, how can
we convert it into a tree with a finite labeling (where the size can
only depend on w) that is usable?







Labeled trees for general tree
decompositions

1 Write every bag set as a tuple of size w + 1 (repeat
vertices if necessary).

2 For every bag t generate a labeling
λ(t) := [eq(t)], [overlap(t)], [edge(t)] with the following
properties:

eq(t) Is a list of pairs of positions in the bag which represent the
same vertex of graph.

overlap(t) If there is a parent p = (p0, . . . , pw) of t = (t0, . . . , tw) it
contains a pair (i, j) if ti = pj .

edge(t) Contains a pair (i, j) if for t = (t0, . . . , tw) there is an edge
in the original graph between ti and tj .

The number of possible words representing bags of the tree de-
composition is bounded by 2(w+1)2 · 2(w+1)2 · 2(w+1)2 , thus the
alphabet of the tree has constant size.



Interpretation for width w

We can repeat the same principles we used for labeled trees
representing tree decompositions of width one for labeled trees
representing trees of width w.

Instead of using formulas like φ0,0, φ0,1 and φ1,1 to write a formula
which forces the inclusion of bags when they overlap with bags
already contained we use the relation overlapi,j to do the same.

φoverlap(X0, . . . , Xw) := ∀s∀t(∧
i,j

t ∈ Xi ∧ ((S0(s, t) ∨ S1(s, t) ∧ overlapi,j(t))

∨ (S0(t, s) ∨ S1(t, s) ∧ overlapj,i(s))))→ s ∈ Xj



Interpretation for width w

We can now force the inclusion of bags that overlap with bags
already contained for a set for some position. We have to be
careful to also deal with values repeating in a bag.

φeq(X0, . . . , Xw) :=
∧
i

∀t(t ∈ Xi → (
∧
i 6=j

eqi,j(t)→ t ∈ Xj))

The above formula forces a bag that contains repeated nodes
to be contained in all the appropriate position sets.



We can finally redefine φconn(X0, . . . , Xw) to be a formula which
is true when

⋃
iXi contains all bags that contain some node u.

φconn(X0, . . . , Xw) = φoverlap(X0, . . . , Xw) ∧ φeq(X0, . . . , Xw)

We can use as before exclusion minimality to make sure that
we get exactly the bags that contain some node u.

φexc(X0, . . . , Xw) := φconn(X0, . . . , Xw) ∧ (
∨
i

Xi 6= ∅)∧

∀X ′
0, . . . , X

′
w((

∨
i

X ′
i ( Xi) ∧ (

∧
i

X ′
i ⊆ Xi))→ ¬φconn(X ′

0, . . . , X
′
w))

And finally we can get the sought after formula for the edge
relation.

φedge(x, y) :=x 6= y ∧ ∃X0 . . . Xw∃Y0 . . . Yw(x ∈ X0 ∧ y ∈ Y0

∧ φexc(X0, . . . , Xw) ∧ φexc(Y0, . . . , Yw)

∧ ∃z((
∨
i,j

z ∈ Xi ∧ z ∈ Yj ∧ edgei,j(z))))
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Size of the formula for edges

Question
How big is our new φedge(x, y)?

Answer
Constant, since the size only depends on w.
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Almost Courcelle’s Theorem
Theorem (Almost Courcelle’s Theorem)
Every graph property definable in MSO1 can be decided in
linear time on graphs of bounded treewidth.

Proof.
The following algorithm achieves linear running time:

1 Compute a tree decomposition of minimal width w for the
graph in linear time.

2 Convert the tree decomposition into a leaf decomposition.
3 Convert the leaf decomposition into a labeled tree T ′

whose labeling is bounded in w.
4 Interpret the given MSO1 formula to work on tree

decompositions of width w.
5 Convert this formula into a DTA.
6 Run the DTA on T ′.



Courcelle’s Theorem

Theorem
MSO1 and MSO2 have the same expressive power on graph
classes of bounded treewidth.

Proof.
A graph class with bounded treewidth w is w-degenerate (every
subgraph contains a node of maximal degree w). MSO1 and
MSO2 have the same expressive power on graph classes with
bounded degeneracy.

We have now proven Courcelle’s Theorem.

Theorem (Courcelle’s Theorem)
Every graph property definable in monadic second-order logic
can be decided in linear time on graphs of bounded treewidth.
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Improvement

Definition (L)
The complexity class L contains all problems which can be
solved in logarithmic space.

Theorem (Elberfeld, Jakoby and Tantau)
Every graph property definable in monadic second-order logic
can be decided in logarithmic space on graphs of bounded
treewidth.



Running time

The running time of the previous algorithm for a formula ψ on
treewidth w is f(||ψ||, w) · n where f(||ψ||, w) is

f(||ψ||, w) := 22. . .2w }
Θ(||ψ||)

.

This is also basically the best one can do.

Theorem (Frick and Grohe)
Unless P = NP the the model-checking problem for monadic
second-order logic on finite words is not solvable in time f(||ψ||)·
p(n), for any elementary function f and any polynomial p.
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The complexity of MSO-checking

Question
Is there something in between which is polynomial?

Answer
Not really...
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The complexity of MSO-checking

Question
Is there something in between which is polynomial?

Answer
Not really. . .

Theorem (Kreutzer and Tazari)
Let C be a graph class that is closed under subgraphs, and has
polylogarithmically unbounded treewidth (logc(|Gn|) ≤ tw(Gn)).
Then given G ∈ C, ψ ∈ MSO1 with |ψ| as parameter, deciding
whether G |= ψ is not in XP, unless the Exponential Time Hy-
pothesis fails.



The complexity of MSO-checking

Question
Is there something in between which is polynomial?

Answer
Not really. . .

Theorem (Kreutzer and Tazari)
Let C be a graph class that is closed under subgraphs, and has
polylogarithmically unbounded treewidth (logc(|Gn|) ≤ tw(Gn)).
Then given G ∈ C, ψ ∈ MSO1 with |ψ| being a constant, de-
ciding whether G |= ψ is not solvable in time O(nf(|ψ|)), unless
something terrible happens.



Extension of Courcelle’s
Theorem

The following logics are also solvable in polynomial time on
graph classes of bounded treewidth:

1 EMSO [Arnborg et al.]
2 EMSO-counting [Arnborg et al.]
3 MSO-evaluation [Courcelle and Mosbah]



Takeaway

• MSO2 and extensions can be model-checked in linear time
for graphs of bounded treewidth.

• The running time dependence on the given formula is
terrible, and the worst case can not be good.

• This result can not be extended to graph classes where the
treewidth is not constant but grows very slowly.

• This gives a certain kind of characterization of MSO2

model-checking: It is very easy (linear time/logarithmic
space) for graphs of bounded treewidth and hard
otherwise.

• (It has cool implications in the realm of FPT, but more
about that on Monday).
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