
A B O U T T R E E D E P T H A N D R E L AT E D N O T I O N S

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

diplom-informatiker

fernando sánchez villaamil

aus

aachen

Berichter: Univ.-Prof. Dr. Peter Rossmanith
Univ.-Prof. Dr. Henning Fernau

Tag der mündlichen Prüfung: 10.11.2017

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

F. Sánchez Villaamil: About Treedepth and Related Notions.

To the void

There seems to be an inborn drive in all human beings not to live in a steady emotional state,
which would suggest that such a state is not tolerable to most people. [. . .] it’s the same old
lesson: everything in this life—I repeat, everything—is more trouble than it’s worth. And
simply being alive is the basic trouble.

— Thomas Ligotti [164]

A B S T R A C T

In this thesis we present several results relating to treedepth. First, we provide the
fastest linear-time fpt algorithm to compute the treedepth of a graph. It decides if a
graph has treedepth d in time 2O(d2) · n. In the process we answer an open question by
Nešetřil and Ossona de Mendez, which asked for a simple linear-time fpt algorithm.

We then proceed to compare treewidth to treedepth. We give lower bounds for the
running time and space consumption of any dynamic programming algorithm (for
a reasonable definition of dynamic programming on tree/path/treedepth decomposi-
tions which we introduce) for the problems Vertex Cover, 3-Coloring and Dominat-
ing Set on either a tree, a path or a treedepth decomposition. These bounds match
the best known running times for these problems to date. It is not difficult to see that
there are linear-time fpt algorithms for Vertex Cover and 3-Coloring parameterized
by a given treedepth decomposition of depth d with a space consumption bounded by
poly(d) · log n. We show the same is possible for Dominating Set.

We analyze the random intersection graph model, which attempts to model real-
world networks where the connections between actors represent underlying shared
attributes. We show that this model, when configured such that it generates degener-
ate graphs, produces with high probability graphs which belong to a class of bounded
expansion, otherwise the graphs are asymptotically almost surely somewhere dense.
We then present an algorithm for motif/subgraph counting on bounded expansion
graphs which exploits a characterization of bounded expansion graph classes via de-
compositions into parts of bounded treedepth.

Finally, we present a heuristic to compute tree decompositions which starts by com-
puting a treedepth decomposition and show that it is competitive against other known
heuristics.

Z U S A M M E N FA S S U N G

In dieser Doktorarbeit stellen wir verschiedene Ergebnisse in Bezug auf Baumtiefe vor.
Als Erstes liefern wir den schnellsten Linearzeit-fpt-Algorithmus, um die Baumtiefe
eines Graphen zu berechnen. Er entscheidet, ob ein Graph Baumtiefe d in 2O(d2) · n
Schritten hat. Dabei beantworten wir eine offene Frage von Nešetřil und Ossona de
Mendez, in der nach einem einfachen Linearzeit-fpt-Algorithmus gefragt wurde.

Als Nächstes vergleichen wir Baumweite und Baumtiefe. Wir beweisen untere Schran-
ken für die Laufzeit und den Platzverbrauch von dynamic programming-Algorithmen
(auf der Basis einer sinnvollen Definition von einem dynamic programming-Algorithmus)
für Vertex Cover, 3-Coloring und Dominating Set auf einer Baum-, Pfad- oder
Baumtiefenzerlegung. Diese Schranken stimmen mit den besten Laufzeiten von be-
kannten Algorithmen für diese Probleme überein. Es ist nicht schwierig, sich davon zu
überzeugen, dass man Vertex Cover und 3-Coloring, parametrisiert mit einer gege-
benen Baumtiefenzerlegung mit Tiefe d, mit einem Platzverbrauch von poly(d) · log n
lösen kann. Wir zeigen, dass das Gleiche für Dominating Set möglich ist.

Wir analysieren das random intersection graph-Modell, das versucht, Netzwerke zu
modellieren, bei denen Verbindungen gemeinsame Attribute der Knoten darstellen.
Wir zeigen, dass dieses Modell, derart konfiguriert, dass es degenerierte Graphen er-
zeugt, mit hoher Wahrscheinlichkeit Graphen generiert, die zu einer bounded expansi-
on-Graphklasse gehören. Weiterhin beweisen wir, dass dieses Modell auf andere Wei-
se konfiguriert, Graphen erzeugt, die asymptotisch fast sicher somewhere dense sind.
Wir stellen dann einen Algorithmus für motif/subgraph counting auf bounded expansion-
Graphen vor, der eine Charakterisierung von bounded expansion-Graphklassen mittels
einer Dekomposition des Graphen in Teilen mit beschränkter Baumtiefe ausnutzt.

Zuletzt beschreiben wir eine Heuristik, die zuerst eine Baumtiefenzerlegung und
daraus eine Baumzerlegung des Graphen berechnet. Wir zeigen, dass diese mit ande-
ren bekannten Heuristiken für Baumzerlegungen konkurrieren kann.

P R E FA C E

My work started when I joined Peter Rossmanith’s Group in 2012. There, Felix Reidl,
also a PhD student working at the chair, introduced me to bounded expansion graph
classes, which I immediately found fascinating. I thought that the idea of using
the complexity of the model of a minor to define new graph classes was intriguing.
Through bounded expansion I came to learn about treedepth, since graph classes of
bounded expansion can also be characterized via so-called low treedepth colorings.

During my stay at the RWTH I often had the opportunity to participate in the AMT
(Aachen–Metz–Trier) workshop, a regular meeting of Dieter Kratsch’s chair at Metz,
Henning Fernau’s chair at Trier and my own chair. Often we had the pleasure of
being joined by Alexander Grigoriev, Mathieu Liedloff and some of his students. At
the first one I participated, while looking for questions to work on, an open question
by Ossona de Mendez and Nešetřil asking for a simple linear-time fpt algorithm to
compute the treedepth of a graph was discussed. Felix and I shortly touched on the
idea that, in the context of this problem, one can approximate a tree decomposition
basically for free and that it might be possible to perform dynamic programming by
computing tables on small trees, e.g. by keeping the number of leaves bounded by the
size of the bags. Not much more work was made at this meeting about this problem.

After the workshop, I decided to attempt to tackle this idea and develop an algo-
rithm to compute the treedepth of a graph given a tree decomposition. The idea of
using the concept of restrictions, basically only keeping partial treedepth decomposi-
tions where all the leaves belong to the current bag, seemed immediately like a good
idea. Together with the idea of nice treedepth decompositions, which allow to exploit
the concept of topological generalizations, where we relate partial decompositions just
by the structure of their ancestor relationship, we were able to answer the open ques-
tion. I wrote then the complete proof, in a way that only I could understand. Felix
then worked heavily with me on streamlining the proof. While writing this thesis I
realized, that there is a simpler algorithm based on the same ideas, whose correctness
is also easier to prove. Both proofs are presented in this thesis.

After this, I joined Felix in working on his idea of showing that real-world networks
have bounded expansion. Together with Erik Demaine, Peter Rossmanith, Somnath
Sikdar and Blair Sullivan we attempted to pull through this framework. In my opinion
we were successful at it and from this effort the paper “Structural Sparsity of Complex
Networks: Bounded Expansion in Random Models and Real-World Graphs” origi-
nated. During this work we had the privilege of attending the ICERM seminar “To-
wards Efficient Algorithms Exploiting Graph Structure,” which was a great research

environment. The ideas in this rather out-of-left-field paper turned out to be difficult
to convey, as such the paper underwent many iterations. To this day, I still consider
this to be the most interesting work I have been involved with and I am very grateful
for Felix for inviting me to participate.

During this time Blair Sullivan roped Felix and me into a collaboration of hers with
Matthew Farrell, Timothy Goodrich and Nathan Lemons, where they were analyzing
the hyperbolicity of random intersection graphs, which attempts to model real-world
networks where relations represent common attributes between actors. We started
analyzing the conditions under which this model generates graphs of bounded expan-
sion with Dr. Sullivan during ICERM. On our return to Aachen, Felix and I proved
that it produces graphs of bounded expansion precisely when it produces degenerate
graphs.

During this time, I returned to thinking about treedepth, since we were trying to
exploit it via low treedepth colorings, a decomposition of a graph of bounded expan-
sion into graphs of bounded treedepth. I realized two things during this time which
are relevant to the contents of this thesis: First, I noticed that one could in principle
analyze dynamic programming on a treedepth decomposition not by its treedepth, but
by the longest distance between a node and an ancestor of the treedepth decomposi-
tion connected by an edge of the graph. This lead to the idea of deriving a heuristic
for treewidth from computing a treedepth decomposition and attempting to minimize
this distance. We gave this idea to Tobias Oelschlaegel as part of his Bachelor Thesis
and he did a superb job at developing and implementing a concrete instance of this
idea. Second, I noticed that for some problems like 3-Coloring and Vertex Cover

it is easy to design linear-time fpt branching algorithms on treedepth decomposition,
which use polynomial space in the depth of the decomposition and logarithmic in the
size of the instance. When I told this to Peter, he told me he had also been wonder-
ing about where this could be pushed. He also told Felix and me about his idea of
somehow formalizing the notion of a dynamic programming algorithm and proving
lower bounds for the space consumption of any such algorithm for certain problems.
Felix and I worked on it and figured out that we would need to have double expo-
nentially sized families of graphs, such that an algorithm which is only allowed to
read his input once cannot be prepared for all eventualities without using a consider-
able amount of memory. We used this notion to develop gadgets for 3-Coloring and
Vertex Cover proving that under a reasonable definition of dynamic programming,
no such algorithm could use less than Ω((3− ε)s · logO(1)n) and Ω((2− ε)s · logO(1)n)
space respectively. I then developed the gadget for the more complex case of Dom-
inating Set, proving an Ω((3− ε)s · logO(1)n) lower bound. Around the same time
together with Li-Hsuan Chen, who was visiting our chair at that time, we developed a
branching algorithm for Dominating Set on treedepth decompositions, whose space
consumption is polynomial in the treedepth and logarithmic in the size of the graph.

x

A C K N O W L E D G M E N T

First and foremost, I would like to thank my supervisor Peter Rossmanith. During my
time in Aachen I had the opportunity to hone many different skills which I am sure
will prove valuable in my future endeavors. I enjoyed the freedom and the interesting
challenges in which I had the opportunity to participate as part of the group. My
relation to the chair, which started way before my PhD, has made my academical
career infinitely more enriching. I furthermore thank Professor Fernau for being so
kind as to report on my thesis.

We must all be thankful to Birgit Willms for not only keeping the chaos we create
on a regular basis from exploding in our faces, but also being a friend. Thanks to her,
going to work was sure to be more fun and interesting. It is only appropriate to also
thank her for her seemingly bottomless well of patience.

I am thankful to all our student assistants Jan Dreier, Fred Grossman, Philipp Kuinke
and Kevin Jasik. Their diligence and capacity for independent thought made my life
so much easier.

Much of my work would not have been possible without the funding provided by
the Deutsche Forschungsgesellschaft under the RO 927/13-1 “Pragmatic Parameter-
ized Algorithms” grant.

It is impossible for me to conceptualize how my PhD would have been had I not
shared the journey with Felix Reidl. I am deeply grateful for his friendship. It is a
rare privilege that one can share such an experience in the company of a good friend.
Despite my generally dour personality, I regularly remind myself how lucky I am to
have such a supportive and positive person by my side.

I am grateful to Blair Sullivan for our close collaboration on several projects under
the umbrella of using deep theory in practical settings. I truly cherished the opportu-
nity to participate in ICERM and my visits to Raleigh.

During my research career I had the pleasure to collaborate with many other re-
searchers. Beyond the people already mentioned this list includes Aaron Adcock, Ka-
trin Casel, Li-Hsuan Chen, Erik Demaine, Martin Demaine, Markus Dregi, Jan Dreier,
Henning Fernau, Fedor Fomin, Jakub Gajarský, Moritz Gobbert, Petr Hlinený, Ling-
Ju Hung, Ton Kloks, Kyle Kloster, Philipp Kuinke, Philipp Kranen, Stephan Kreutzer,
Erik Jan van Leeuwen, Daniel Lokshtanov, Jan Obdrzálek, Michael O’Brien, Sebastian
Ordyniak, Marcin Pilipczuk, Michał Pilipczuk, Andrew van der Poel, Saket Saurabh,
Markus Schmid and Thomas Seidl. I am thankful to all of them for the opportunity to
work together.

Pål Grønås Drange and Pim van ’t Hof deserve special mention for being wonderful
hosts during our stays in Bergen. I am also thankful to Konstantinos Stavropoulos, not
only for the research collaborations, but for the camaraderie and the deep philosophi-
cal conversations about science and everything else.

I am also very thankful to my family and friends for their continued unwavering
support. If I showed fortitude in the face of adversity, it was in great part thanks to
their trust in my capabilities.

Last but not least, I am thankful to Helena for being the best thing to have happened
to me.

xii

C O N T E N T S

i introduction 1

1 treedepth by any other name 3

2 organization and summary of results 13

3 preliminaries 15

ii computing treedepth 21

4 computing treedepth in linear time 23

5 nice treedepth decompositions and restrictions 25

6 dynamic programming algorithm 32

7 simpler dynamic programming algorithm 45

8 simple algorithm 51

9 fast algorithm 53

10 treedepth and chordal graphs 54

11 conclusion 55

iii branching versus dynamic programming 57

12 branching , dynamic programming , treedepth and treewidth 59

13 myhill–nerode families 62

14 space lower bounds for dynamic programming 65

15 dominating set with O(d3 log d + d log n) space 70

16 conclusion 76

iv motif counting on random intersection graphs 79

17 sparsity of complex networks 81

18 random intersection graphs and bounded expansion 85

19 structural sparsity 87

20 experimental evaluation 97

21 counting graphlets and subgraphs 101

22 conclusion 106

v treewidth from treedepth 107

23 starting from treedepth 109

24 heuristic 111

25 experiments 115

xiv contents

26 conclusion 118

vi conclusion 119

27 consider treedepth 120

vii bibliography 125

viii appendix 145

a problems 146

b experimental result of treewidth heuristics 147

c list of author’s publications 171

Part I

I N T R O D U C T I O N

1
T R E E D E P T H B Y A N Y O T H E R N A M E

Almost every computational question is easy on trees. Since trees form a very restric-
tive graph class, a natural arising question is if problems remain easy when a graph
is close to being a tree. A useful way to formally capture this notion of similarity is
through the widely studied graph measure treewidth [160]. When we look at graph
classes with bounded treewidth, a host of NP-hard problems become solvable in poly-
nomial time. Most famously, by Courcelle’s Theorem, all problems expressible in
MSO (and later MSO-OPT), a rather general logic capable of expressing a wide array
of problems, are solvable in linear time on graphs of bounded treewidth [13, 58]. Nev-
ertheless, expecting a graph to have low treewidh is still rather restrictive. Is it worth
studying measures even more restrictive than treewidth? This is arguably the case
if the structural properties measured by such a notion are algorithmically exploitable
beyond what treewidth allows and/or appear naturally when studying some other
concept. Extensive analysis of measures that bound treewidth, such as pathwidth/ver-
tex separation number [40, 62, 84, 147, 223, 234], bandwidth [15, 20, 85, 106, 129, 233],
the size of a vertex cover [5, 85, 86, 129, 143, 151], etc., can be found in the literature. In
this thesis we present results related to another such measure, called treedepth,1 which
can be said to capture the similarity of a graph to a star (i.e. trees of depth one). We
start with an historical overview of treedepth and equivalent notions to show how it
is both algorithmically exploitable and arises organically in several contexts.

basic definition

Intuitively, in the same way that treewidth measures how tree-like a graph is, treedepth
measures how star-like a graph is. Formally, a treedepth decomposition of a graph G is
a pair (F, ψ), where F is a rooted forest and ψ : V(G) → V(F) is an injective mapping
such that if uv ∈ E(G) then either ψ(u) is an ancestor of ψ(v) in F or vice versa.
Whenever we deal with treedepth decompositions in this thesis, the mapping ψ will
usually be implicit as we will have V(G) ⊆ V(F). The depth of a treedepth decomposition
is the depth of its rooted forest, i.e. the maximum number of nodes in a path from a
root to a leaf.

Definition 1 (Treedepth). The treedepth td(G) of a graph G is the minimum depth of
any treedepth decomposition of G.

1 The spelling “tree-depth” is more common in the literature. Treewidth is written without a hyphen in
most of the rather extensive literature. Since in this work we often talk simultaneously about treewidth
and treedepth we decided to write both in a consistent manner.

4 1 treedepth by any other name

A different way to look at treedepth is as a quantification of the “depth” of a graph by
measuring the number of steps which are necessary to make the graph disappear by
iteratively removing a node from every component. Given a treedepth decomposition
of depth d, we know we can do this in d steps by iteratively removing the root nodes
of the remaining tree decomposition. This is formally expressed in the following
equivalent definition.

Definition 2 (Treedepth). The treedepth of a graph G with connected components
G1, . . . , G` is defined as follows:

td(G) =


1 G = K1

max16i6` td(Gi) ` > 1

1 + minv∈V(G) td(G− v) otherwise

If we are given a treedepth decomposition of a graph it is clear that, by always selecting
the root of a component in the third case, the measure as defined above is at most the
depth of the decomposition. In the other direction, we can recursively construct a
treedepth decomposition from the above definition by starting a new subtree for every
component and choosing the root of the subtree to be the node selected by the min
operator in third case. The treedepth is then in both cases the recursion depth and
thus the two definitions are equivalent.

history of treedepth and relation to treewidth

It is not difficult to show that the treedepth of a graph is bounded by its treewidth.
Even stronger, a treedepth decomposition of a graph immediately provides a path
decomposition, by taking as bags the nodes in paths from root to leave and arrang-
ing them in by the order of the leaves in any planar embedding of the decomposi-
tion [193]. The history of these two width-measures is both interesting and compli-
cated. Treewidth appeared in the literature first as dimension in 1972 [26] and was
rediscovered by Rudolf Halin in the context of S-functions in 1976 [116], which he had
already introduced previously as sZ-treues Feinheitsmaß [115]. Since S-functions gen-
eralize several graph measures, treedepth could be related to treewidth by also being
an instance of an S-function. This is not the case, since a fundamental characteristic
of S-functions is that the definition is recursive in such a way that the measure does
not necessarily decrease in the smaller parts. This is precisely the contrary of what
we want in treedepth, were the measure for a connected graph should decrease when
removing the root node of the decomposition.

Definition 3 (S-function [116]). A function f into the integers defined for all finite
graphs is an S-function if it fulfills the following properties:

1.2 History of Treedepth and Relation to Treewidth 5

1. if H is a minor of G =⇒ f (H) 6 f (G)

2. f (∅) = 0

3. f (G′) = f (G) + 1, where G′ is G with an added universal vertex

4. G = G′ ∪ G′′, G′ ∩ G′′ = Ks for s > 0 =⇒ f (G) = max{ f (G′), f (G′′)}

Treedepth fulfills the first three conditions but does not fulfill the more relevant fourth
condition. This is exemplified by the graph G in Figure 1.1. The subgraphs G′ =
G[{1, 2, 3, 4}] and G′′ = G[{1, 2, 3, 5}] fulfill the requirements of condition 4. Never-
theless, the treedepth of G is four, but the treedepth of G′ and G′′ is three and thus
td(G) 6= max{td(G′), td(G′′)}. This gives us an insight into a fundamental difference
between treewidth and treedepth. Both can be defined recursively, but in one case the
measure will stay the same in the subgraphs and in the other it must decrease.

Figure 1.1: A counter-example for treedepth being an S-function

The origin of the notion of treedepth is not easy to pinpoint. How easy it is to
take a graph apart by removing nodes is the kind of question that arises naturally. In
fact, this is precisely how it developed in research about Cholesky factorizations, a
common way to solve systems of linear equations. In this context, one can use a tree
structure which recursively decomposes the graph underlying the system of equations
to parallelize the problem and break a sparse instance into small dense parts. In this
context the notions of an elimination tree and elimination height, which are related to
treedepth decompositions and treedepth, respectively, are frequently used.

The question of the elimination height of a graph being equivalent to treedepth is
somewhat muddled since elimination trees are defined for chordal graphs. A graph is
chordal if every induced cycle has length three, i.e. if every cycle of length greater than
three has a chord, an edge connecting two non-consecutive nodes of the cycle. Every
chordal graph has at least one ordering of the nodes called a perfect elimination, such
that for every node all neighbors that come later in the ordering form a clique. With
these definitions at hand, elimination trees are defined as follows:

Definition 4 (Elimination tree). The elimination tree T of a chordal graph G is a tree on
the nodes of G such that all neighbors of a node u in G which are ancestors of u in T
form a clique in G.

This definition implies that recursively eliminating the leaves of the elimination tree
results in a perfect elimination of the chordal graph.

6 1 treedepth by any other name

To define the elimination height of a (possibly non-chordal) graph we need to define
a triangulation: A triangulation of a graph G is a supergraph on the same node set
which is chordal. The elimination height of a graph G is the minimum height over all
elimination trees of any triangulation of G. A treedepth decomposition T implicitly
describes a triangulation for a graph such that T is a valid elimination tree of the
resulting chordalization: Take every path from a root to a leaf and make it a clique
in the graph. Thus, the problem of deciding the elimination height of a graph is the
same as deciding its treedepth. This generalization of elimination trees via elimination
height to non-chordal graphs was not explicitly stated in the earliest works on this
notion, however, later texts on treedepth credit these early works as having established
the connection between elimination trees and treedepth implicitly [204].

The seemingly oldest reference that defines elimination trees (sometimes shortened
to e-trees) is in a technical report by Pieck from 1980 [200]. The presentation of elimi-
nation trees takes a whole Chapter in Kees’ doctoral thesis [145], who references the
aforementioned technical report, the technical report, in turn, states2 that its content
is based on preliminary work by Jess and Kees [132, 133], in which they also intro-
duce the notion of elimination trees.3 In its survey “The role of elimination trees
in sparse factorization” Liu claims that Schreiber [218] is “perhaps the first one to
formally define the elimination tree structure,” (Schreiber does not give it a name
though). The previously provided references that define elimination trees (actually
calling them elimination trees) are from around the same time or older and as such
this claim by Liu seems inaccurate. Liu also comments that the term elimination tree
had been previously used by Duff to refer to a slightly different structure in his paper
“Full matrix techniques in sparse Gaussian elimination” [75]. The term elimination
tree does not appear in this paper, nevertheless Duff does use the term in two re-
lated papers from 1983 [74, 76], which is around the same time Jess and Kees were
working with this concept. Several authors claim this notion was used implicitly in
previous work on factorization [133, 170]. Kees himself points out [145] that this no-
tion relates to the much older notions of tearing and decomposition into bordered block
diagonal form [47, 56, 146, 153, 215]. Since elimination trees are closely tied to chordal
graphs, computing an optimal elimination tree for such a graph can be done in poly-
nomial time [169].

The NP-hardness of deciding the treedepth of a graph was proven in this context by
Pothen, who showed that finding a chordalization such that the correspondent opti-
mal elimination tree’s height is minimized is NP-hard [204]. Interestingly, deciding the
treedepth of a chordal graph is NP-hard [68] (here the slight difference in the defini-
tions of elimination tree and treedepth makes a noticeable difference, since computing

2 The technical report is in Dutch and as such I have derived what it says with the help of my knowledge
of German and some guesswork.

3 It is worth mentioning that the definition by Pieck forces the nodes in the neighborhood of a node u
which are not ancestors of u to be a clique, which contradicts the later definition by Jess and Kees.

1.3 Equivalent Notions 7

the elimination height and an optimal elimination tree for a chordal graph are two
distinct problems).

The definition of elimination height being based on finding certain chordalizations
of graphs points to an interesting relation between treedepth and treewidth: Com-
puting the treewidth of a graph is equivalent to finding a triangulation with smallest
clique size [12]. Finding a triangulation of a graph such that its corresponding elim-
ination tree is of minimum depth is equivalent to finding a triangulation GT with
minimal clique size, such that GT is not only chordal but trivially perfect. A graph
is trivially perfect when for all of its induced subgraphs the size of the maximum
independent set equals the number of maximal cliques. This characterization of elim-
ination height/treedepth follows from trivially perfect graphs being precisely those
graphs which are closures of forests [107], since the closure of a forest is the graph
which results from adding all edges between any node and all its ancestors.

equivalent notions

Elimination trees are arguably the oldest studied concept that formalizes the notion of
treedepth, but the notion of the “depth” of a graph has been independently studied in
the past under other names and definitions, which are equivalent or strongly related
to treedepth.

We have already discussed how we can characterize treedepth via a process of it-
eratively removing nodes. This way of thinking about it can be found in literature
under the notion of a 1-partition tree [125]. A natural alternative way to think about
a treedepth decomposition is as a process of iteratively removing separators instead
of nodes. The separator removed becomes then a path of nodes in the tree, such that
all nodes except the deepest one have only one child. Obviously, removing such a
path starting at the root of a treedepth decomposition will result in the graph falling
apart into more components, thus making the nodes in the path a separator. This way
of looking at decomposing a graph has been independently studied under the name
separation game, which was introduced in the context of studying the complexity of
finding local optima and proven to be NP-hard [171] around the same time as Pothen
showed elimination height to be NP-hard.

We can find the claim in the literature that the notion of separator/partition trees,
which is used in VLSI design, is related to some notion equivalent to treedepth [126,
127, 138, 142, 151, 155, 208]. One should be careful with this statement since, as several
papers explicitly state, separator trees are only equivalent to treedepth if we attempt to
minimize the height [126, 127, 142, 155]. It seems important to mention that the depth
of separator trees does not appear to be a crucial factor in VLSI design [162] and that
partition trees are explicitly defined to be binary [228]. As such, it is not clear what
applicability concepts equivalent to treedepth have for VLSI design. The separator tree

8 1 treedepth by any other name

structure has been applied in the context of Cholesky factorization, but not in a direct
attempt to minimize the height of the elimination tree [168].

The notion of treedepth has also been studied under the names vertex ranking and
ordered coloring, which both share the same definition.

Definition 5 (Ordered coloring/vertex ranking). A d-ranking or ordered d-coloring of a
graph G = (V, E) is a vertex coloring c : V → {1, . . . , d} such that for any two vertices
of the same color, any path connecting them contains a vertex with a higher color. The
minimum value of d for which such a coloring exists is the the vertex ranking number
or the ordered chromatic number of the graph respectively.

It is easy to see that if we color every level of a treedepth decomposition of depth d
with a different color, we get a d-ranking/ordered d-coloring of the graph. The proof
of the other direction goes as follows: In a connected component of a graph with a
d-ranking/ordered d-coloring there can only be one node with the label d′, where d′

is the greatest label appearing in the component. From every component, remove the
node with the greatest label and add them as roots to the treedepth decomposition. Re-
curse into the remaining components and keep building the treedepth decomposition
in the same fashion. This results in a treedepth decomposition of depth at most d.

Several reasons are given in the literature to study this problem: As a more restric-
tive version of graph coloring [142]; an in-between step in the approximation of an
edge ranking [63]; making sure that communications in a network always have to go
through a node with a higher rank, so that they can be monitored [125, 126] and the
scheduling of assembly steps in manufacturing systems [67, 126].

More recently, Ossona de Mendez and Nešetřil reintroduced the concept in the
guise of treedepth in their monograph “Sparsity” [193]. They show that treedepth has
important connections to the structure of sparse graphs by proving that a very general
class of sparse graphs, the so-called graphs of bounded expansion, which generalize
even topological minor free graph classes, can be decomposed into pieces of bounded
treedepth.

Proposition 1 (Low treedepth colorings [190]). Let G be a graph class of bounded expan-
sion. There exists a function f such that for every G ∈ G, r ∈ N, the graph G can be colored
with f (r) colors so that any i < r color classes induce a graph of treedepth 6 i in G.

When using treedepth to give this alternative characterization of bounded expansion
graph classes they originally used the equivalent notion of a centered coloring.

Definition 6 (Centered coloring). A coloring of the nodes of a graph G is called cen-
tered if for every connected induced subgraph of G there is a color which appears
exactly once.

The size of a centered coloring is simply defined as the number of colors used. The
argumentation as to why this is equivalent to treedepth is very similar to the one for

1.4 Alternative Characterizations of Treedepth 9

a vertex ranking/ordered coloring. If we give every level of a given treedepth de-
composition a different color, this is clearly a centered coloring, since every connected
component corresponds to a subtree of the treedepth decomposition and thus the root
has a unique color. To construct a treedepth decomposition, we take every unique
color of every component of the graph and set them as the roots of the treedepth
decomposition. We remove these nodes and continue building the treedepth decom-
position in this fashion. This results in a treedepth decomposition of depth at most
the number of colors of the centered coloring.

The idea of centered colorings and treedepth can be traced to work by Nešetřil and
Shelah while studying notions related to homomorphisms of graphs, where they intro-
duce the treedepth-equivalent notion of a ranking [188]. Later, Nešetřil and Ossona de
Mendez, while also studying homomorphisms, re-introduced this notion and called it
treedepth [186]. The notion thus arose again naturally.

Even more recently, Gruber and Holzer noticed a connection between the notion
of the cycle rank and treedepth [110]. Cycle rank is a measure of digraphs which
is connected to results on the star height of regular languages [79, 111], itself a useful
parameterization to analyze the relative sizes of an automaton and a regular expression
which express the same language. If one defines undirected cycle rank by forcing the
directed graph to be symmetrical this is immediately equivalent to treedepth.

alternative characterizations of treedepth

Since treedepth is a minor-closed property, i.e. the treedepth of a graph cannot increase
after contracting edges and deleting nodes, it follows from the graph minor theorem
that graphs of treedepth d can be characterized by a finite set of forbidden minors.
This set grows at least like a double exponential and at most like a triple exponential
of d [77]. A polynomial approximation of treedepth is possible by excluding a few
simple minors [144], in a similar vein as what the polynomial grid minor theorem [53]
implies about treewidth.

Treedepth can be characterized in several ways by cops-and-robbers games, just like
treewidth and pathwidth can be characterized by variations of such games. In one
version [99, 109] of the cops-and-robbers game there are d cops and one robber. The
turns of the game alternate between the cops and the robber as follows. The cops
start and have full knowledge about the robber’s position. At the beginning of their
move they must announce on what vertex they want to place a cop. Cops cannot be
removed after being positioned. The robber can then move along a path of any length
as long as none of its nodes is already occupied by a cop. Then a new cop is set at the
announced position and the game repeats. The cops win if they set a cop where the
robber is. A graph has treedepth d if only if d cops have a winning strategy for the
graph.

10 1 treedepth by any other name

There are several more versions of a cops-and-robbers game that are equivalent to
treedepth. These are called LIFO-search games [101, 121]. Here the cops have two
possible moves. They can either position a cop on the graph up to a maximal number
of d cops or remove the last cop that was positioned on the graph. Interestingly, the
cops have a winning strategy with d cops if and only if the graph has treedepth d
irrespective of the cops being able to see the robber or of their tactic’s monotonicity
(i.e. whether the cops’ strategy provides the robber access to already searched areas).
These LIFO-games lead to a characterization of treedepth via shelters [101], in a similar
way that treewidth can be characterized via brambles [219].

Definition 7 (Shelter). Let S be a non-empty set of connected subgraphs of G partially
ordered by the subgraph relation. S is called a shelter if for every H ∈ S one of the
following holds:

• H is minimal in S w.r.t. the subgraph relation.

• For every x ∈ V(H) there exists an H′ ∈ S such that H′ ⊂ H and x /∈ V(H′).

The thickness of a shelter is minimal length of a maximal chain of S .

Proposition 2 ([101]). The treedepth of a graph is the maximum thickness of a shelter of G.

applications

Treedepth has turned out to be the right tool to characterize certain dichotomies. It
was shown that MSO and FO have the same expressive power on a graph class C if
and only if C has bounded treedepth [82]. This is related to a previous result showing
that MSO-definable problems are solvable by uniform constant-depth circuit families
when restricted to input structures of bounded treedepth [80, 83]. In a similar charac-
terization, a monotone class of graphs has bounded treedepth if and only if it is well
quasi-ordered for the induced-subgraph relation [71, 187].

The parameter modulator to bounded treedepth, i.e. a set of nodes whose removal
from the graph results in a graph of constant treedepth, was fundamental in the
development of meta-kernelization results for classes of bounded expansion and be-
yond [97]. Bougeret and Sau showed that this could also be used as a parameter
for a polynomial kernel of Vertex Cover on general graphs [45]. This is especially
interesting since there is no polynomial kernel when the parameter is a modulator
to bounded treewidth. They furthermore showed, that this does not work for Dom-
inating Set. The existence of a polynomial kernel for the problem of computing a
modulator to bounded treedepth, the size of the modulator itself being the parame-
ter, has been developed in the context of the F -Minor-Free Deletion problem [102].
Other research has explored the question of when q-Coloring can be solved in time
O((q− ε)k · poly(n)) for some ε > 0 when parameterized by modulator to some graph

1.5 Applications 11

class C [128]. The research indicates that C having or not having bounded treedepth
plays a fundamental role.

A further property of treedepth is that it works as a parameter when other related
parameters fail to make the problem fpt. Gutin, Jones and Wahlstöm proved that the
Mixed Chinese Postman Problem, which is W[1]-hard parameterized by treewidth,
is fpt parameterized by treedepth [112]. It is not difficult to see that the Firefighter

Problem, which is NP-hard on graphs of bounded treewidth [87], is MSO-expressible
for graphs of bounded path length. Since the path length is bounded in graphs of
bounded treedepth [193] it follows by Courcelle’s Theorem that the Firefighter Prob-
lem is fpt parameterized by the treedepth of the graph [130]. It is still an open question
whether Metric Dimension is fpt parameterized by treewidth [70], but it is clear that
it is fpt when parameterized by treedepth for the same reason [130]. Furthermore, H-
Coloring Reachability, which is not even fpt when parameterized by the bandwidth
of the graph (which is an upper bound of the treewidth), is nevertheless fpt when pa-
rameterized by treedepth [233]. Another problem which cannot be parameterized by
bandwidth but allows parameterization by treedepth is 1-Planar Drawing [20]. A
recent result presents tight bounds on the running time with which (k, r)-Center can
be solved when parameterized by treedepth [143] and provides a faster algorithm than
what is possible when parameterizing by treewidth (assuming SETH) [44].

At least twice in the recent past researchers have realized that the correct parameter
for their analysis was treedepth after parameterizing by both treewidth and the height
of the tree decomposition. This happened in the context of counting perfect matchings
using little space [95] and when investigating the space complexity of deciding MSO
formulas on graphs of bounded treewidth [81].

It is interesting to notice that the last results mentioned are about the space us-
age of algorithms. Treedepth allows for branching and thus some problems such
as Vertex Cover, Independent Set and 3-Coloring admit fpt algorithms that use
very little space. In the case of 3-Coloring, the space consumption is bounded by
O(d + log n). Based on this algorithm, Pilipczuk and Wrochna showed that compu-
tations on treedepth decompositions correspond to a model of non-deterministic ma-
chines that work in polynomial time and logarithmic space, with access to an auxiliary
stack of maximum height equal to the decomposition’s depth [201]. Treedepth is also
key in characterizing which homomorphism problems can be solved in logarithmic
space [54].

This condensed review of literature relating to the concept of treedepth makes it
clear that treedepth is a concept that is re-discovered over and over again. Further-
more, recent research indicates that real-world networks belong to classes of bounded
expansion [65]. Since there is a strong connection between bounded expansion graph
classes and treedepth, there might be practical applications for this measure, despite
it being likely big for most real-world graphs.

12 1 treedepth by any other name

In this thesis we present further results on computing treedepth, exploiting a tree-
depth decomposition to solve problems using little space, analyze the structure of
certain real-world complex networks, design an algorithm exploiting treedepth for
such networks and strengthen the relation to treewidth by developing a heuristic for
treewidth which starts by computing a treedepth decomposition. A more detailed
overview of the results in this thesis can be found in Section 2.

2
O R G A N I Z AT I O N A N D S U M M A RY O F R E S U LT S

This thesis is divided in five parts. Part i introduces the concept of treedepth, gives
some historical context. Furthermore, certain basic preliminary concepts and results
are introduced.

In Part ii an fpt algorithm to compute the treedepth of a graph is presented. We give
an algorithm to compute a treedepth decomposition of depth d in time 2O(wd) · n given
a tree decomposition of width w. We achieve this results by proving we only need to
be able to find nice treedepth decompositions, a concept that we introduce. We then show
how this algorithm can be extended to a simple algorithm that does not require to be

given a tree decomposition as part of the input and runs in time 22O(d2) · n. This solves
an open question posed by Ossona de Mendez and Nešetřil [193]. We can also use this
result to give the fastest known exact parameterized algorithm to date, with a running
time of 2O(d2) · n, using a previous result that provides a constant factor approximation
for treewidth in single-exponential time [38].

We then compare in Part iii what can be done via dynamic programming to what
can be done via branching given a tree/path/treedepth decomposition. We introduce
machinery to capture the workings of common dynamic programming algorithms on
treewidth. We show that it is neither possible to solve via dynamic programming
3-coloring or Dominating Set using less than O

(
(3− ε)s · log n

)
space nor Vertex

Cover using less than O
(
(2− ε)s · log n

)
for any ε > 0. As a lower bound for time

complexity these match the lower bounds previously proven based on SETH for any
algorithm working on a tree decomposition [172]. We thus conclude that (presuming
our machinery captures the basic procedure of dynamic programming) the assump-
tion that one cannot do better than dynamic programming to exploit a tree decomposi-
tion leads to even tighter bounds than assuming SETH. Since as good as all linear time
algorithms on tree decompositions for NP-hard problems are dynamic programming
algorithms, this is not a far-fetched assumption. When given a treedepth decomposi-
tion it is easy to see that Vertex Cover and 3-Coloring can be solved using space
bounded polynomially in the treedepth d and logarithmically in the number of nodes.
We show that the same is possible for Dominating Set. This, together with other
results from the literature, indicates that an advantage of treedepth is low space con-
sumption.

Previous results show that many real-world networks are likely to be structurally
sparse [65, 207]. This argument is defended by showing that certain random graph
models used to model real-world networks produce graphs which belong to a class of
bounded expansion with high probability. In Part iv we show that this is also true for
random intersection graphs whenever the model produces sparse graphs. These random
graphs are used to model networks where relationships express common attributes,

14 2 organization and summary of results

such as film actors having appeared on the same movie. We already mentioned how
bounded expansion graphs can be characterized by being decomposable into parts of
bounded treedepth. Using this decomposition we present a fast algorithm to count
subgraphs given a treedepth decomposition in linear time, assuming the network has
bounded expansion. Subgraph counting appears in the network science literature in
the form of motif counting and the graphlet degree distribution, a way of analyzing/fin-
gerprinting real-world networks [179, 206, 209].

Finally, in Part v we strengthen the relation between treewidth and treedepth by
showing how a heuristic for treedepth can be used as a fast heuristic for treewidth. For
this we introduce the notion of the stretch of a treedepth decomposition T, which we
define to be the maximum distance of any two nodes x and y in T which are connected
by an edge of G. We show that the stretch of a treedepth decomposition is an upper
bound on the graph’s treewidth. By manipulating the treedepth decomposition we can
attempt to minimize its stretch. Then we can derive an elimination scheme from the
manipulated treedepth decomposition. A comparison with thirteen well-established
heuristics shows that the resulting heuristic is indeed competitive in quality and speed.

3
P R E L I M I N A R I E S

All our graphs are finite and simple. Given a graph G, we use V(G) to denote its
vertex set and E(G) to denote its edge set. In the context of this work, n will always
be the number of vertices of the graph, unless otherwise stated. We assume that V(G)

is a totally ordered set and use uv instead of {u, v} to denote the edges of G. For
a graph G and a vertex x ∈ V(G), the set NG(x) denotes the neighbors of x in G.
We extend this notation to vertex sets via NG(S) =

⋃
x∈S NG(x) \ S. We write NG[x]

to denote the closed neighborhood of x in G and extend this notation to vertex sets
via NG[S] =

⋃
x∈S NG[x]. We will drop G in the subscript if the graph is clear from

the context. We let G[X] denote the subgraph of G induced by some set X ⊆ V(G),
where a subgraph H of G is induced if for every pair of vertices u, v ∈ V(H) the
edge uv exists in H if and only if it exists in G. We denote the complete graph on s
nodes by Ks. By dG(u, v) we will denote the distance between the nodes u and v in
the graph G, i.e. the number of edges in a shortest path of G between u and v. Here
we might also drop the subscript if the graph is clear from the context. An (6 r)-
subdivision of a graph H is the graph that results from replacing every edge of the
graph by a path with at most r nodes. Given a node x of a graph G we express the
graph that results after deleting x by G − x. Given an edge e = uv of a graph G, we
let G/e denote the graph obtained from G by contracting the edge e, which amounts
to deleting the endpoints of e, introducing a new vertex wuv and making it adjacent to
all vertices in (N(u) ∪ N(v)) \ {u, v}. For an edge e = uv, by contracting v into u, we
mean contracting e and renaming the vertex wuv to u. A graph H is minor of a graph
G if H can be constructed from G by contracting edges and deleting edges and nodes.
For a function f : X → Y and a set X′ ⊆ X we will define applying the function on
such a set to be f (X′) = { f (x) | x ∈ X′}. By f |X′ we will refer to the function we get
by restricting the input set of f to X′. For sets A, B, C we write A] B = C to express
that A, B partition C. We write the the symmetric difference between two sets A and
B as A4 B = {a | a ∈ A \ B or a ∈ B \ A}. All logarithms are base two.

We will work extensively on trees and forests. In this context, a rooted tree is a tree
with a specially designated node known as the root. Let T be a rooted tree with root r
and let x ∈ V(T). Then an ancestor of x is any node (other than itself) on the path from
r to x. Similarly a descendant of x is any node (other than itself) on a path from x to a
leaf of T. In particular, x is neither an ancestor nor a descendant of itself. We denote
by Px the set of ancestors of x in T.

A rooted forest is a disjoint union of rooted trees. Whenever we refer to a forest
we will mean a rooted forest. For a node x in a tree T of a forest, the depth of x
in the forest is the number of vertices in the path from the root of T to x (thus the

16 3 preliminaries

depth of the root is one). The height of a forest is the maximum depth of a node of the
forest. The closure clos(F) of a forest F is the graph with node set V(F) and edge set
{xy | x is an ancestor of y in F}. Furthermore we will need the notions of a subtree and
the height of a node.

Definition 8 (Subtree rooted at a node). Let x be a node of a tree T and let S be all the
descendants of x in T. The subtree of T rooted at x, denoted by Tx, is the subtree of T
induced by the node set S ∪ {x} with root x.

Definition 9 (Subtree rooted at a node with child selection). Let x be a node of a tree
T, let C be a set of children of x in T and let S be all descendants of nodes of C in T.
The tree denoted by TC

x , is the subtree of T induced by the node set S ∪ C ∪ {x} with
root x.

Definition 10 (Height of a node). Let x be a node of a tree T and let Tx be the subtree
of T rooted at x. Then we define the height of x in T (heightT(v)) to be the height of
Tx.

treedepth

If we consider a spanning tree of a graph given by a depth first search, we know
all edges of the graph will either be part of the tree, or forward/back edges. This
means that such a tree is a treedepth decomposition of the graph. Furthermore, since
a path of length greater than 2d − 1 has treedepth greater than d and treedepth is a
minor-closed property, it follows that no graph of treedepth d contains a path of length
greater than 2d − 1. Thus, if a graph has bounded treedepth, it is easy to find to find a
treedepth decomposition of bounded treedepth of the graph in linear time.

Proposition 3 ([193]). Let G be a graph of treedepth d. Then a treedepth decomposition which
is the tree given by a depth first search of G has treedepth at most 2d.

treewidth

One of the most famous width measures is treewidth, which measures the similarity of
a graph to a tree.

Definition 11 (Treewidth). Given a graph G = (V, E), a tree decomposition of G is an
ordered pair (T, {Wx | x ∈ V(T)}), where T is a tree and {Wx | x ∈ V(T)} is a
collection of subsets of V(G) such that the following hold:

1.
⋃

x∈V(T) Wx = V(G);

2. for every edge e = uv in G, there exists x ∈ V(T) such that u, v ∈Wx;

3.2 Treewidth 17

3. for each vertex u ∈ V(G), the set of nodes x ∈ V(T) such that u ∈ Wx induces a
subtree of T.

We call the vertices of T nodes. The vertex sets Wx are usually called bags. The width
of a tree decomposition is the size of the largest bag minus one. The treewidth of G,
denoted by tw(G), is the smallest width of a tree decomposition of G.

In the definition above, if we restrict T to being a path, we obtain the well-known
notions of a path decomposition and pathwidth. We let pw(G) denote the pathwidth
of G. Let (T, {Wx | x ∈ V(T)}) be a tree-decomposition; let x ∈ V(T) and, let S be the
set of descendants of x. Then we define V(TWx) =

⋃
y∈S∪{x}Wy.

We will only work on nice tree decompositions, which are tree decompositions with
the following characteristics:

• Every node has either zero, one, or two children.

• Bags associated with leaf nodes contain a single vertex.

• If x is a node of T with a single child x′ and if X and X′ are the bags assigned to
these nodes, then either |X \ X′| = 1 or |X′ \ X| = 1. In the first case, X is called
an introduce bag and, in the second, a forget bag.

• If x is a node with two children x1 and x2 and if X, X1, X2 are the bags assigned
to them, then X = X1 = X2. We call such a bag X a join bag.

Proposition 4 ([149]). Given a graph G with n vertices and a tree decomposition of G of
width w it is possible to compute a nice tree decomposition of G of width w with at most 4n
bags in linear time.

The main property of tree decompositions that we will exploit is the fact that each
bag X associated with an internal node is a vertex separator of G. Hence with each
bag X of a nice tree decomposition we can associate two (forget, introduce) or three
(join) well-defined terminal subgraphs with terminal set X. For further information on
treewidth and tree decompositions, we refer the reader to Bodlaender’s survey [34].

There is a clear relation between the treedepth and the treewidth of a graph. It is not
difficult to see that we can create a path decomposition of a graph G out of bags which
contains the paths from root to leaf of a treedepth decomposition of G. Furthermore,
it is easy to balance the separator tree given by a tree decomposition T of a graph G
such that it’s depth is logarithmic in the number of vertices of G. We can thus create
a treedepth decomposition T from T by converting paths of bags into paths of nodes.
The depth of T will thus only grow logarithmically in the number of nodes of G. These
relations are succinctly captured in the following proposition.

Proposition 5 ([193]). For a graph G, it holds that tw(G) 6 pw(G) 6 td(G) − 1 and
td(G) 6 tw(G) · log n.

18 3 preliminaries

fixed parameter tractability

Parameterized complexity deals with algorithms for decision problems with instances
consisting of a pair (x, k), where k is a secondary measurement known as the param-
eter. A major goal in parameterized complexity is to investigate whether a problem
with parameter k admits an algorithm with running time f (k) · |x|O(1), where f is a
function depending only on the parameter and |x| represents the input size. Parame-
terized problems that admit such algorithms are called fixed-parameter tractable and the
class of all such problems is denoted FPT. For an introduction to the area please refer
to existing literature [72, 88, 196]. It is sometimes useful in the context of fixed parame-
terized tractability to use the O∗ notation, which is the big O notation with suppressed
polynomial factors. We say an algorithm runs in linear fpt time if its running can be
expressed as f (k) · |x|.

probability

When we use the terms asymptotically almost surely (a.a.s.) and with high probability
(w.h.p.), we do so using the following conventions: For each integer n, let Gn define
a distribution on graphs with n vertices (for example, coming from a random graph
model). We say the events En defined on Gn hold asymptotically almost surely (a.a.s.) if
limn→∞ P[En] = 1. We say an event occurs with high probability (w.h.p.) if for any c > 1
the event occurs with probability at least 1− f (c)/nc for n greater than some constant,
where f is some function only depending on c. As a shorthand, we will simply say
that Gn has some property a.a.s. (or w.h.p.).

strong exponential time hypothesis

We will mention certain results from the literature which assume the strong exponential
time hypothesis (SETH) to be true. This hypothesis was first proposed as part of an
open question by Impagliazzo and Paturi [122] while presenting results relating to the
exponential time hypothesis (ETH) [123]. It was then given this name and formalized
by Calabro, Impagliazzo and Paturi [51]. These are both conjectures about the time
complexity of solving k-SAT. Let sk = inf{δ : k-SAT can be solved in time 2δn}, where
n is the size of the input instance. The exponential time hypothesis is that s3 > 0 and
the strongly exponential time hypothesis is that limk→∞ sk = 1. For justifications and
support of these hypotheses see the referenced literature.

3.6 Bounded Expansion 19

bounded expansion

Some of our results with pertain the notion of bounded expansion graph classes. We
provide now the basic characterization of these classes and some equivalent ones we
will make heavy use of later. First some preliminary definitions.

Definition 12 (Shallow topological minor, nails, subdivision vertices). A graph M is
an r-shallow topological minor of G if a (6 2r)-subdivision of M is isomorphic to a
subgraph G′ of G. We call G′ a model of M in G. For simplicity, we assume by default
that V(M) ⊆ V(G′) such that the isomorphism between M and G′ is the identity when
restricted to V(M). The vertices V(M) are called nails and the vertices V(G′) \ V(M)

subdivision vertices. The set of all r-shallow topological minors of a graph G is denoted
by G Õ r.

Definition 13 (Topological grad). For a graph G and integer r > 0, the topological
greatest reduced average density (grad) at depth r, is defined as

∇̃r(G) = max
H∈G Õ r

|E(H)|/|V(H)|.

For a graph class G, define ∇̃r(G) = supG∈G ∇̃r(G).

With the help of these definition we can define bounded expansion.

Definition 14 (Bounded expansion). A graph class G has bounded expansion if there
exists a function f such that for all r, we have ∇̃r(G) < f (r).

When introduced, bounded expansion was originally defined using an equivalent char-
acterization based on the notion of shallow minors [189]: H is a r-shallow minor of G if
H can be obtained from G by contracting disjoint subgraphs of radius at most r and
deleting vertices. In the context of this thesis, however, the topological shallow minor
variant proves more useful, so we restrict our attention to this setting. Let us point
out that bounded expansion implies bounded degeneracy, with 2 f (0) being an upper
bound on the degeneracy of the graphs.

Nowhere dense is a generalization of bounded expansion in which we measure the
clique number instead of the edge density of shallow minors. Let ω(G) denote the size
of the largest complete subgraph of a graph G and let ω(G) = supG∈G ω(G) be the
natural extension to graph classes G.

Definition 15 (Nowhere dense [191, 192]). A graph class G is nowhere dense if there
exists a function f such that for all r ∈N it holds that ω(G Õ r) < f (r).

There are many equivalent definitions [193]. A graph class is somewhere dense precisely
when it is not nowhere dense.

As previously mentioned the other characterization of bounded expansion that will
prove to be useful exploits treedepth. This characterization was first presented via

20 3 preliminaries

the notion of a p-centered coloring which is based on the notion of a centered coloring
(cf. Definition 6), which, as mentioned before, is equivalent to treedepth.

Definition 16 (p-centered coloring [189]). Given a graph G, let c : V(G) → {1, . . . , r}
be a vertex coloring of G with r colors. We say that the coloring c is p-centered, for
p > 2, if any connected subgraph of G either receives at least p colors or contains
some color exactly once. Define χp(G) to be the minimum number of colors needed
for a (p + 1)-centered coloring.

While this definition looks rather cryptic, it is easy to see that every graph has a p-
centered coloring for any p: simply assign a distinct color to each vertex of the graph.
Note that p-centered colorings are proper colorings for p > 2 and in particular, χ1

is precisely the chromatic number. Typically, the number of colors q is much larger
than p and one is interested in minimizing q.

The following structural property, which follows directly from the equivalence be-
tween centered colorings and treedepth, make them an attractive tool for algorithm
design.

Proposition 6 (Low treedepth colorings [190]). Let G be a graph class of bounded expan-
sion. There exists a function f such that for every G ∈ G, r ∈ N, the graph G can be colored
with f (r) colors so that any i < r color classes induce a graph of treedepth 6 i in G. Such a
coloring can be computed in linear time.

Nešetřil and Ossona de Mendez show that graph classes of bounded expansion are
precisely those for which there exists a function f such that every member G of the
graph class satisfies χp(G) 6 f (p) (see Theorem 7.1 [189]). The authors also showed
how to obtain a p-centered coloring with at most P(f (p)) colors for each fixed p in
linear time, where P is some polynomial of degree roughly 22p

[190]. We will make
use of this algorithm in Section 21.

Part II

C O M P U T I N G T R E E D E P T H

4
C O M P U T I N G T R E E D E P T H I N L I N E A R T I M E

Formally, the Treedepth problem is to decide, given a graph G and an integer d,
whether G has treedepth at most d. This decision problem is NP-complete even on
co-bipartite graphs as shown by Pothen [204] and later by Bodlaender et al. [37]. On
trees, the problem can be decided in linear time [216]. Deogun et al. [66] showed
that Treedepth can be computed in polynomial time on the following graph classes:
permutation, circular permutation, interval, circular-arc, trapezoid graphs and also on
co-comparability graphs of bounded dimension. It is, however, NP-hard on chordal
graphs [68]. The best-known approximation algorithm is due to Bodlaender et al. [39]
and has performance ratio O(log2 n). The best-known exact algorithm for this problem
is due to Fomin, Giannopoulou and Pilipczuk [91] and runs in time O∗(1.9602n). For
practical applications, several simple heuristics exist (see Section 24 and 26).

Concerning parameterized complexity, it is not difficult to prove that Treedepth is
fixed-parameter tractable parameterized by the solution size. This follows from the
fact that graphs of bounded treedepth are minor-closed and hence, by the celebrated
Graph Minors Theorem of Robertson and Seymour, are characterized by a finite set of
forbidden minors. One can test whether H is a minor of a graph G in time O(f (h) ·
n3), where h is the number of vertices in H and f is some recursive function [210].
Therefore, for every fixed d, one can decide whether a graph contains as minor a
member of the (finite) set that characterizes graphs of treedepth d in time O(g(d) · n3),
for some recursive function g which implies that the problem is fpt. We can do one
better and use this property to show that there is a linear-fpt time algorithm thanks
to bounded treedepth implying bounded treewidth. Testing if a minor exists is MSO-
expressible. Therefore we can apply Courcelle’s Theorem to test if a graph contains
one of the forbidden minors, as pointed out by Ossona de Mendez and Nešetřil [193].
They also present the following as an open problem:

Problem ([193]). Is there a simple linear time algorithm to check td(G) 6 d for fixed d?

Bodlaender et al. developed a dynamic programming algorithm that takes as input
a graph G and a tree decomposition of G of width w and decides whether G has
treedepth at most d in time1 2O(w2d) · n2 [37]. In this paper we present a linear time
algorithm that decides whether td(G) 6 d in time 2O(wd) · n, improving both the depen-
dence on w and n. If indeed td(G) 6 d, then the algorithm also constructs a treedepth

1 We point out that the running time analysis in this work simply states that the algorithm runs in polyno-
mial time for a fixed d and w. However, it is not difficult to restate the running time to include d and w
as parameters, which is what we have done. In personal communication, H. Bodlaender suggested that
the running time can be improved to 2O(w2d)n [41].

24 4 computing treedepth in linear time

decomposition within this time. That a better dynamic programming algorithm can
be achieved using treedepth leads us to believe that representing the ranking of the
vertices as a tree might be algorithmically helpful in other cases.

We can then, by using previous known characteristics of treedepth, easily extend
this result to get the following two algorithms:

• A simple algorithm which runs in time 22O(d) · n.

• A fast algorithm which runs in time 2O(d2) ·n using a 5-approximation for treewidth
by Bodlaender et al. [38].

5
N I C E T R E E D E P T H D E C O M P O S I T I O N S A N D R E S T R I C T I O N S

In this section we will introduce the necessary notions and lemmas we will need for
the dynamic programming algorithm we present in Section 6.

nice treedepth decompositions

A treedepth decomposition of a graph is not unique. This is especially true since
the definition allows to add unnecessary components to the treedepth decomposition
without increasing its height. We introduce the notion of trivially improvable treedepth
decomposition so that we can differentiate between treedepth decompositions which
have such unnecessary nodes and those who do not.

Definition 17 (Trivially Improvable Treedepth Decompositions). A treedepth decom-
position T of a graph G is trivially improvable if V(G) (V(T).

We will also use extensively a special kind of treedepth decompositions that we will
call nice treedepth decompositions. This notion is similar to that of minimal trees [91], the
difference being that the properties that are directly enforced by the definition of a
nice treedepth decomposition are only implied as a consequence of the definition in
minimal trees.

Definition 18 (Nice Treedepth Decomposition). A treedepth decomposition T of G is
nice if the following conditions are met:

• T is not trivially improvable.

• For every node x ∈ V(T), the subgraph of G induced by the nodes in Tx is
connected.

In this section we will, for the sake of completeness, re-prove some known properties
that can be enforced in treedepth decompositions. We will work with decompositions
that are not trivially improvable. The next lemmas shows that one can always obtain
such a decomposition from a trivially improvable one without increasing the height.

Lemma 1. Let T be a trivially improvable treedepth decomposition of a graph G of height h.
Let x ∈ V(T) \ V(G) be a root of some tree in the decomposition T. Then the decomposition
obtained by removing x is a treedepth decomposition of G with height at most h.

Proof. Since x /∈ V(G), we have that G ⊆ clos(T − x). Thus T − x is a treedepth
decomposition of G. Clearly the height does not increase on deleting x.

26 5 nice treedepth decompositions and restrictions

Lemma 2. Let T be a trivially improvable treedepth decomposition of a graph G with height h.
Suppose that x ∈ V(T) \ V(G) be a non-root node and let y be its parent in T. Then the
treedepth decomposition obtained by contracting the edge xy is a treedepth decomposition of G
with height at most h.

Proof. Suppose T′ is the forest obtained by contracting the edge xy. Then the height
of T′ is at most h. If a, b ∈ V(T) is an ancestor-descendant pair that represents an
edge of G, then these vertices form an ancestor-descendant pair in T′ too. Thus T′ is a
treedepth decomposition of G with height at most h.

Corollary 1. Given a trivially improvable treedepth decomposition T of a graph G, one can
obtain a decomposition of G that is not trivially improvable and a minor of T in time polynomial
in |T|.

Proof. Apply either Lemma 1 or 2 until V(T) = V(G).

The operations described in Lemma 1 and Lemma 2 do not increase the height of a
decomposition. It therefore suffices to work with decompositions that are not trivially
improvable. We will now use these results to prove certain properties of nice treedepth
decompositions. In a sense, nice treedepth decompositions are those whose structure
cannot be easily improved.

Lemma 3. Every graph G admits a nice treedepth decomposition of height td(G).

Proof. Let us assume G to be connected. If G has more than one component then we
can apply this argument to each component in turn. By Corollary 1, it is sufficient to
show that, given an optimal treedepth decomposition that is not trivially improvable,
one can construct a decomposition of the same height that is nice. Therefore, let T be
an optimal decomposition of G with root r that is not trivially improvable and let x ∈
V(T) be a node at which the niceness condition is violated that has no descendant with
the same property. That is, the subgraph G[V(Tx)] of G induced by the vertices in the
subtree of T rooted at x has more than one component. Let C be the set of children of
x in T. For all c ∈ C we are assuming that G[V(Tc)] has a single component. These are
precisely the components of G[V(Tx) \ {x}]. Let C′ be the maximal set of children of x
such that x does not have a neighbor in V(Tc′) for all c′ ∈ C′. Compute a new treedepth
decomposition T′ by deleting every xc′ edge for c′ ∈ C′ and adding an edge between
c′ and the deepest node y in the path from r to x such that yc′ ∈ E(G) and no edge if
no such node y exists. T′ is clearly a valid treedepth decomposition of G. Notice that
G[T′x] now has a single component and that we have not introduced any node which
breaks the second property of nice treedepth decompositions. Thus this operation
strictly decreases the number of nodes which break the property and by applying it
repeatedly we can compute a nice treedepth decomposition in polynomial time.

5.1 Nice Treedepth Decompositions 27

Computing a nice treedepth decomposition from a general treedepth decomposition
can be done in O(n + m · α(m)) amortized time, where α is the inverse of the Acker-
mann function (see Section 24). As a result of Corollary 1 and the proof of Lemma 3,
we obtain the following.

Corollary 2. Let T be a treedepth decomposition of a graph G. One can compute in time
polynomial in |G|, a nice treedepth decomposition T′ with the following properties:

1. height(T′) 6 height(T);

2. for each vertex x ∈ V(G), heightT′(x) 6 heightT(x);

3. for any node x ∈ V(T′), we have that A′ ⊆ A, where A are the ancestors of x in T and
A′ are the ancestors of x in T′;

4. for any node x ∈ V(T′), we have that D′ ⊆ D, where D are the descendants of x in T
and D′ are the descendants of x in T′.

Given that one can transform any treedepth decomposition T into one that is nice and
not trivially improvable in time polynomial in |V(T)|, we will henceforth assume that
the treedepth decompositions we deal with have this property. Lastly, we prove some
lemmas about nice treedepth decompositions that will be useful later.

Lemma 4. Let T be a nice treedepth decomposition of a graph G. Let x ∈ V(G) be a vertex
such that x is not a leaf in T. If y is a child of x in T, then there exists an edge xc ∈ E(G), for
some c ∈ V(Ty).

Proof. Since T is a nice treedepth decomposition, the subtree Tx rooted at x induces
a connected subgraph of G. From the definition of a treedepth decomposition, it
follows that there can be no edge in G adjacent to a node of V(Ty) and a node of
(V(Tx) \ {x}) \ V(Ty). From this it follows that for G[V(Tx)] to be connected, there
must be an edge between x and some node of Ty.

Thus every inner node in a nice treedepth decomposition has an edge to at least one
of its descendants (in the graph represented by the decomposition).

Lemma 5. Given a nice treedepth decomposition T of a graph G, let x ∈ V(G) and let C be
the children of x in T. For C′ ⊆ C, let TC′

x denote the tree obtained from Tx by deleting the
subtrees rooted at the vertices of C \ C′. Then G[V(TC′

x)] is a connected subgraph of G.

Proof. Since T is a nice treedepth decomposition, it follows that for every c ∈ C the
subtree Tc of T rooted at c induces a connected subgraph of G. From Lemma 4, it
follows that x is connected to a node of Tc. Thus the lemma follows.

28 5 nice treedepth decompositions and restrictions

rooted graphs

We will show that it suffices to work on rooted graphs. This is not fundamental to the
algorithm, but it will make its description and proof of correctness easier, since it helps
us to avoid dealing with forests which are not trees and special-casing our operations
for the empty set.

Definition 19 (Rooted graph). A rooted graph G = (V, E, r) is a graph with the specified
universal vertex r ∈ V(G) which is adjacent to every other vertex of G.

Lemma 6. Let G = (V, E, r) be a rooted graph with root r. Then there is an optimal treedepth
decomposition T of G such that r is its root.

Proof. Suppose that T′ is an optimal treedepth decomposition of G with root r′ 6= r
(since G is connected, T′ is actually a tree). We assume that T′ is not trivially improv-
able so that every node of T′ is a vertex of G. Let x0, x1, . . . , xp denote the vertices
on the (r′, r)-path in T′, where x0 = r′ and xp = r. Then note that since T′ is a
treedepth decomposition and r is a universal vertex, for 0 6 i 6 p− 1, xi has exactly
one child xi+1 in T′. That is, T′ consists of the path r′, x1, . . . , xp−1, r with subtrees
attached to r. Transform T′ to obtain T by exchanging the position of r and r′. Notice
that clos(T) = clos(T′) and height(T) = height(T′).

Corollary 3. Let G be a rooted graph obtained by adding a universal vertex r to a graph G′.
Then td(G) = td(G′) + 1.

Proof. To see that td(G) 6 td(G′) + 1, take any optimal treedepth decomposition T′

of G′ and add edges between r and the roots of the forest of T′. This yields a treedepth
decomposition of G of height td(G′) + 1. To see that td(G′) 6 td(G) − 1, take an
optimal treedepth decomposition T of G with root r (Lemma 6 guarantees the existence
of such a decomposition). Now delete r from T to obtain a treedepth decomposition
of G′.

Lemma 6 motivates the following definition of treedepth decompositions of rooted
graphs.

Definition 20 (Treedepth Decomposition of a Rooted Graph). A treedepth decomposition
T of a rooted graph G = (V, E, r) is a treedepth decomposition of G whose root is r.

restrictions and partial decompositions

In standard dynamic programming algorithms on tree decompositions a table is com-
puted for every bag of the decomposition. The entries of these tables represent many
partial solutions. By a partial solution we mean a solution that “covers” the graph
restricted to the nodes in the current bag X and all bags that are descendants of X. For

5.3 Restrictions and Partial Decompositions 29

a more in-depth explanation of how standard dynamic programming algorithms on
tree decompositions work see Section 13. We will now define what entries our tables
will contain, namely structures we call partial decompositions. Then we will introduce
a relation between treedepth decompositions and partial decompositions by defining
what we call the restriction of a tree.

Definition 21 (Partial decomposition). A partial decomposition is a triple (F, X, h), where

• F is a forest of rooted trees with X ⊆ V(F); and,

• h : V(F)→ N+ is a height function which obeys the property that for nodes x, y ∈
V(F) where x is an ancestor of y, h(x) > h(y).

Definition 22 (Restriction of a partial decomposition). The restriction of a partial decom-
position (F, X, h) to ∅ 6= X′ ⊆ X is the partial decomposition (F′, X′, h′), where F′ is
obtained by iteratively deleting the leaves of the forest F that are not in X′. The height
function h′ is obtained from h by restricting it to V(F′).

Notice that F′ is an induced subgraph of F in the above definition. We want the
restriction of a tree to be closed under isomorphism. For this we introduce partial
decomposition equivalency. This notion will also be key in keeping the tables during the
dynamic programming small.

Definition 23 (Partial decomposition equivalency). Two given partial decompositions
(F1, X1, h1) and (F2, X2, h2) are equivalent if X1 = X2 and there exists a bijective function
ψ : V(F1)→ V(F2) such that

• the function ψ expresses an isomorphism between F1 and F2,

• ψ|X1 is the identity function,

• h1(v) = h2(ψ(v)) for every node v in the forest F1.

We can now formalize a relation between trees (and as such treedepth decompositions)
and partial decompositions.

Definition 24 (Restriction of a tree). Given a tree T, let (T, V(T), h) be the partial
decomposition where h(x) is the height of x in T for all x ∈ V(T). A partial decompo-
sition (F′, X, h′) is a restriction of T if (F′, X, h′) is equivalent to the restriction (F, X, h)
we get from restricting (T, V(T), h) to X. We call the function ψ : V(F′) → V(F) that
witnesses the equivalency as per Definition 23 of these two restrictions the witness of
the restriction.

Notice that given a tree T and its restriction (F, X, h) to X with the corresponding
witness ψ it follows that the induced subgraph T[ψ(V(F))] is isomorphic to F. Since
we are going to use partial decompositions to represent treedepth decompositions of
a graph we need to introduce some notion of their height.

30 5 nice treedepth decompositions and restrictions

Definition 25 (Height of a partial decomposition). Let (F, X, h) be a partial decompo-
sition and let R be the set of all roots in F. The height of (F, X, h) is maxx∈R h(x).

Clearly two equivalent partial decompositions have the same height. For a specific
set X and a graph G, the restrictions to X define equivalence classes for all treedepth
decompositions of G. Later we will show that it suffices to keep a representative for
certain equivalence classes during the dynamic programming.

As we move from the leaves to the root of the tree decomposition we will need
a relationship between the entries of the table from the previous step and the new
ones for the current table, such that the predecessor relationship is maintained. The
following definitions will be used to make sure that this relation is kept intact.

Definition 26 (Topological generalization). Let F1, F2 be rooted forests and let X be
a set of vertices such that X ⊆ V(F1) ∩ V(F2). We say F1 topologically generalizes F2

under X if there exists an injective mapping f : V(F2) → V(F1) where the following
conditions hold:

• f |X is the identity function.

• For any node x ∈ V(F2) and an ancestor y of x, f (y) is an ancestor of f (x) in F1.

We say that a partial decomposition (F1, X1, h1) topologically generalizes a partial decom-
position (F2, X2, h2) if X2 ⊆ X1 and F1 topologically generalizes F2 under X2.

We will now prove some basic properties of restrictions which will be useful later on.

Lemma 7. Let (F, X, h) be a partial decomposition. For X′ ⊆ X, let (F′, X′, h′) be the
restriction of (F, X, h) to X′. Then for any X′′ ⊆ X′, the restrictions of (F′, X′, h′) and
(F, X, h) to X′′ are identical.

Proof. First observe that if x is a leaf in F then for any y 6= x, x is a leaf in F − y.
Moreover if we restrict the decomposition (F, X, h) to X′′, then the only leaves of the
forest are elements of X′′. Suppose that the restrictions of (F′, X′, h′) and (F, X, h) to X′′

yields (respectively) the decompositions (F̃′, X′′, h̃′) and (F̃, X′′, h̃). Let s1 = v1, . . . , vp

be the sequence in which vertices were deleted to obtain (F̃′, X′′, h̃′) from (F, X, h); and,
s2 = w1, . . . , wq were the vertices that were deleted to obtain (F̃, X′′, h̃) from (F, X, h).

Suppose that there exists a node y in the sequence s1 that does not occur in s2 and
suppose that v`+1 is the first such node of s1. Note that v`+1 is a leaf after the vertices
v1, . . . , v` are deleted, irrespective of the order of deletion. Since the vertices v1, . . . , v`
occur in s2, suppose that wi is the last of these that occurs in s2. Then after the deletion
of wi (in the sequence s2), the node v`+1 remains as a leaf and this fact does not change
with further deletions down the sequence s2. But v`+1 was deleted in the sequence
s1 and hence v /∈ X′′ and the fact that v does not appear in the sequence s2 implies
that F̃ has a leaf node that is not an element of X′′, a contradiction. This shows that
every node of s1 appears in s2. Reversing the argument, one sees that every node in s2

5.3 Restrictions and Partial Decompositions 31

appears in s1. Hence s1 and s2 contain the same vertices, possibly in a different order.
Therefore V(F̃) = V(F̃′) and the partial decompositions (F̃′, X′′, h̃′) and (F̃, X′′, h̃) are
identical.

Lemma 7 immediately implies the following.

Corollary 4. Let (F, X, h) be a partial decomposition and let X′ ⊆ X. The restriction of
(F, X, h) on X′ is unique up to isomorphism.

Importantly, the number of vertices in the forest of a restriction is at most |X| · d,
where d is the treedepth of the graph. This follows since every leaf of the forest is an
element of X and the number of vertices from any root to leaf path is at most d. Notice
furthermore that the height of a restriction of a partial decomposition or a tree is the
same as the height of the partial decomposition or tree respectively.

Lemma 8. Let T be a (not trivially improvable) treedepth decomposition of a graph G, X′ ⊆
X ⊆ V(G) and let F and F′ be the forests of the decomposition T when restricted to the sets X
and X′, respectively. Then F topologically generalizes F′ under X′.

Proof. Note that V(F′) ⊆ V(F) and hence the function f : V(F′) → V(F) defined by
f (x) = x for all x ∈ V(F′) witnesses that F topologically generalizes F′.

We not only need to understand the relations between partial decompositions and
treedepth decompositions, but also how these relate to each other when considering
subgraphs.

Lemma 9. Let G = (V, E, r) be a rooted graph, let G′ = (V ′, E′, r) be a rooted subgraph
of G and X ⊆ V(G′) be a set of nodes. Further, let T be a nice treedepth decomposition of
G and T′ be a nice treedepth decomposition of G′ computed from T as per Corollary 2. Let
(F, X, h), (F′, X, h′) be respective restrictions of T, T′ to X. Then for every pair of functions ψ

and ψ′ that witness that (F, X, h) is a restriction of T to X and (F′, X, h′) is a restriction of T′

to X respectively, it holds that ψ′(F′) ⊆ ψ(F).

Proof. Assume to the contrary that there exist functions ψ, ψ′ such that there exists
v ∈ F′ with ψ′(v) 6∈ ψ(F). First note that v 6∈ X as X ⊆ ψ(F). Since v is retained in F′,
there exists a successor y ∈ X of v in F′. But by Corollary 2, the ancestor relationship
of vertices in T′ is preserved in T, therefore y is also a successor of v in T. But then, by
construction of F, the vertex v must also be contained in ψ(F).

6
D Y N A M I C P R O G R A M M I N G A L G O R I T H M

In this section we present an algorithm which takes as input a triple (G, T , d), where
G is a graph, T a tree decomposition of G of width w and d an integer, and decides
whether td(G) 6 d in time 2O(wd) · n. For yes-instances, the algorithm can be modified
to output a treedepth decomposition by backtracking.

main algorithm

Our algorithm is a dynamic programming algorithm. It works by creating tables of
partial decompositions. The operations will be the standard join, forget and introduce
operations for dynamic programming algorithms on tree decompositions. Thus, every
operation of the algorithm will take one or two sets of partial decompositions and
create a new set of partial decompositions. More specifically, such an operation will
be done for every bag of the tree decomposition. These partial decompositions will be
restrictions to the current bag of tree decompositions of the part of the graph we have
seen up to this point.

Definition 27 (Forgetting a vertex from a partial decomposition). Let G be a graph,
let X ⊆ V(G) and let R′ be a set of partial decompositions on the set X. For a vertex
u ∈ X, the forget operation on u denoted by forget(R′, X, u) is defined to be a set A
of partial decompositions obtained as follows: Initially set A ← ∅; for every partial
decomposition (F′, X′, h′) ∈ R′, consider its restriction to the set X \ {u} and add it to
the set A only if it is not equivalent to any member in A.

The introduce operation is somewhat more involved. The general idea is that given a
set R′ of partial decompositions of the form (F′, X′, h′) where X′ ⊆ V(G), the result
of introducing u ∈ V(G) \ X′ is a set A of partial decompositions whose elements
(F, X, h) are computed as follows:

1. For every reasonable forest F look for a partial decomposition (F′, X′, h′) ∈ R′

such that F topologically generalizes F′. If no such partial decomposition exists,
discard F.

2. Given F and F′, for every function f that witnesses F topologically generalizing
F′, create a partial decomposition of the form (F, X = X′ ∪ {u}, h), for some
appropriate h.

3. Add (F, X, h) to A if its height is smaller than d and there is no equivalent partial
decomposition already contained in A.

6.1 Main Algorithm 33

Formally, the process outlined in the list above translates to the following.

Definition 28 (Vertex introduction into a partial decomposition). Let G = (V, E, r) be
a rooted graph, let X′ ⊆ V(G) and let R′ be a set of partial decompositions of the form
(F′, X′, h′). For a vertex u ∈ V(G) \ X′ and an integer d, the introduction operation
on u, denoted by introd(R′, X′, u, G), is defined to be a set A of partial decompositions
constructed as follows:

Let X = X′ ∪ {u}. Initialize S← ∅. Generate every tree F with up to |X| · d vertices
which fulfills the following properties:

• The node r is the root of F.

• The depth of F is 6 d.

• The set X ⊆ V(F).

• All leaves of F are in X.

• E(G[X]) ⊆ E(clos(F)[X]).

For every partial decomposition (F′, X′, h′) ∈ R′ and every function f : V(F′) →
V(F) that witnesses that F topologically generalizes F′ on the set X \ {u} add the
tuple (F, (F′, X′, h′), f) to S if f (F′) = V(F) \ {u}.

For every (F, (F′, X′, h′), f) ∈ S compute the partial decomposition (F, X, h), where
h is defined recursively by visiting the vertices of F in depth-first post-order fashion:
Let z ∈ F and let C be the set of children of z in F. When z is visited, if z 6= u and there
exists a node z′ ∈ V(F′) such that f (z′) = z, set h(z) = max{maxc∈C h(c) + 1, h′(z′)}.
Else for any other node z ∈ V(F) set h(z) = maxc∈C h(c) + 1, where we define the
maximum over the empty set to be zero. Finally add the partial decomposition (F, X, h)
to the set A, if its height is smaller that d and A does not contain an equivalent partial
decomposition to (F, X, h).

Lastly, we describe the join operation. Here we take two tables of restrictions on X
for two graphs G1 and G2 which intersect in X and compute a single table containing
restrictions on the union of G1 and G2.

Definition 29 (Joining Partial Decompositions). Let G = (V, E, r) be a rooted graph.
Let R1 and R2 be two sets of partial decompositions on X ⊆ V(G). Let d be an integer.
Then the join operation joind is defined via joind(X, R1, R2, G) = A, where A is a set of
partial decompositions which is constructed as follows:

Initialize S ← ∅. Generate every tree F with up to |X| · d vertices which fulfills the
following properties:

• r is the root of F.

• X ⊆ V(F).

• All leaves of F are in X.

34 6 dynamic programming algorithm

Take every pair of partial decompositions (F1, X, h1) ∈ R1 and (F2, X, h2) ∈ R2 and
every pair of functions f1 and f2 which witness that F topologically generalizes F1

and F2 on the set X respectively. Add the tuple (F, (F1, X, h1), (F2, X, h2), f1, f2) to S if
f1(F1) ∩ f2(F2) = X and f1(F1) ∪ f2(F2) = V(F).

For every (F, (F1, X, h1), (F2, X, h2), f1, f2) ∈ S we get one partial decomposition
(F, X, h) where h is defined as follows: The function h is defined recursively by
visiting the vertices of F in depth-first post-order fashion. Let z ∈ F and let C be
the set of children of z in F. Let α1 = h1(z1) if there exists a node z1 such that
f1(z1) = z and α1 = 1 otherwise. Analogously, let α2 = h2(z2) if there exists a node
z2 such that f2(z2) = z and α2 = 1 otherwise. Then we compute the height of z as
h(z) = max{maxc∈C h(c) + 1, α1, α2}.

Finally add the partial decomposition (F, X, h) to the set A, if its height is smaller
that d and A does not contain an equivalent partial decomposition to (F, X, h).

The main algorithm can be found in Algorithm 1. We claim that this algorithm cor-
rectly decides, given an n-vertex graph G and a tree decomposition of width at most
w, whether G has treedepth at most d into time 2O(wd) · n.

correctness of dynamic programming algorithm

Our proof can be divided into the following steps:

1. We showed that every graph G admits a nice treedepth decomposition of height
td(G) (Lemma 3).

2. We showed that it is sufficient to work with rooted graphs and that such graphs
have an optimal nice treedepth decomposition T such that root of T is the root of
graph (Lemma 6).

3. We defined the restriction of a tree. Since in this context we treat treedepth
decompositions as trees, this will provide a relationship between treedepth de-
compositions and partial decompositions (Definition 31).

4. We will show that for any nice treedepth decomposition of the graph, our table
contains its restriction (Lemma 10);

5. and that every partial decomposition contained in the table is a restriction of
some treedepth decomposition of the graph (Lemma 11).

All this together achieves the desired result.
As seen Algorithm 1, we use the contents of the bags of a tree decomposition as the

set on which we restrict. Since we work on rooted graphs and the root r of the graph
is contained in every bag any restriction of a tree on the set X will be a tree. We will
enforce that r is always the root of this tree. Since its depth will be at most d, its size
will be bounded by |X| · d.

6.2 Correctness of Dynamic Programming Algorithm 35

Input: A graph G′, an integer d and a nice rooted tree decomposition T ′ of G′ with root
bag X.

Output: True if the treedepth of G′ is at most d and False otherwise.

1 Add a universal vertex r /∈ V(G′) to the graph G′ to obtain G;
2 Obtain a nice tree decomposition T of G as follows;
3 start with T := T ′;
4 add r to every bag of T ;
5 for every leaf bag of T , add {r} as a child-bag;
6 R := treedepth-rec(G, d + 1, T , X);
7 return R 6= ∅;

Algorithm 1: treedepth

Input: A rooted graph G = (V, E, r), an integer d and a tree decomposition T of G
containing r in every bag and a bag X of T .

Output: A set R of partial decompositions.

1 R := ∅;

2 if X is a leaf then
3 r := the only vertex contained in X;
4 F := a tree consisting of just the node r;
5 h is a function which is only defined for r and h(r) = 1;
6 R := {(F, {r}, h)};
7 else if X is a forget bag then
8 u := forgotten vertex;
9 X′ := the child of X;

10 R′ := treedepth-rec(G, d, T , X′);
11 R := forget(R′, X′, u);

12 else if X is an introduce bag then
13 u := introduced vertex;
14 X′ := the child of X;
15 R′ := treedepth-rec(G, d, T , X′);
16 R := introd(R′, X′, u, G);

17 else if X is a join bag then
18 {X1, X2} := the set of children of X;
19 R1 := treedepth-rec(G, d, T , X1);
20 R2 := treedepth-rec(G, d, T , X2);
21 R := joind(X, R1, R2, G);

22 return R;
Algorithm 2: treedepth-rec

Lemma 10. Let Algorithm 2 be called on (G, d, T , X), where G is a graph rooted at r, the
remaining parameters d, T , X are as described in the algorithm. Then for every nice treedepth
decomposition T of height at most d rooted at r of G[V(TX)], the set R returned by the algo-
rithm contains a restriction of T to the set X.

36 6 dynamic programming algorithm

Proof. We will prove this by structural induction over tree decompositions: Consider
the case that the tree decompositions consists of a single leaf bag. Remember that
Algorithm 2 works on nice tree decompositions whose leaves contain a single vertex.
The returned set R then consists of the unique partial decomposition for a graph with
a single vertex. In the following we will often consider induced graphs G[V(TX)] for
some bag X. Notice that by the way the algorithm works the root r is contained in
all bags and as such is also a root of such a subgraph. We will thus assume in the
following that any treedepth decomposition of such a induced subgraph has r as its
root.

forget case If X is a forget bag whose single child in T is the bag X′, then the
if-clause at line 7 is entered. By induction hypothesis, we assume that R′ contains a
restriction to the set X′ of every nice treedepth decomposition T rooted at r of the
graph G[V(TX′)]. Fix such a T and let (F′, X′, h′) ∈ R′ be a restriction of T to the set X′.
Notice that G[V(TX′)] = G[V(TX)]. Therefore by Corollary 4, we can restrict (F′, X′, h′)
to the set X to obtain a restriction (F, X, h) of T to X. By the definition of the forget
operation (Definition 32) the restriction of (F′, X′, h′) to X is added to R.

introduce case If X is an introduce bag whose single child in T is the bag X′,
then the if-clause at line 12 is entered. Fix a nice treedepth decomposition T rooted
at r of the graph G[V(TX)] of height at most d. We want to show that a partial de-
composition (F, X, h) is contained in R, which is a restriction of T to X. Note that the
treedepth decomposition T is also a treedepth decomposition of G[V(TX′)]. Let T′ be
the nice treedepth decomposition of G[V(TX′)] computed from T using Corollary 2.
The difference between T and T′ is a single contraction of the introduced node u into
its parent. By induction hypothesis we assume that R′ contains a restriction (F′, X′, h′)
of T′ to X′. Since (F, X, h) is a restriction, the height of F is at most d, its leaves are in
X and r is its only root. Therefore F has at most |X| · d vertices. This means that at
some point the introduce operation will generate F, since all trees which comply with
these characteristics are enumerated. By Lemma 8 the tree F topologically generalizes
F′. Thus a tuple (F, X, h) will be added to the set R of the introduce function from
Definition 28 and it is left to show that h is computed correctly.

Let (FT, X, h′T) be the restriction of (T, V(T), hT) to X, where hT is the height function
for the nodes of T. By definition, F and FT must be isomorphic and there exists a
witness of this fact ψ such that ψ|X is the identity function. Let ψ′ be function that
witnesses that (F′, X′, h′) is a restriction of T′ to X′. Consider the subgraph F′T′ =
T′[ψ′(V(F′))]. Since T′ is the result of contracting u into its parent in T, together with
FT and F′T′ being connected subgraphs of T and T′ respectively such that V(F′T′) ⊂
V(FT) and V(FT) \V(F′T′) = u it follows that contracting u into its parent in FT results
in F′T′ . By inductive hypothesis (F′, X′, h′) is a restriction of T′ to X′ and as such it
follows that h′(ψ′−1(x)) is the height of x in T′ for any node x ∈ V(F′T′). The height

6.2 Correctness of Dynamic Programming Algorithm 37

of such a node x differs in T and T′ only if u is an ancestor of x in T. This means that
h(y) = h′T(ψ(y)) for any y ∈ V(F) which is not an ascendant of u in F, especially for
all descendants of u in F. This implies that h(u) = h′T(u). The function furthermore
only updates the value of an ascendant a of u, if the subtree Tc rooted at a child c of a
that contains u now decides the height of a. This means that h is correctly set.

join case Finally, if X is a join bag with two children X1 and X2 in T , then the if-
clause at line 17 is entered. Let again T be a nice treedepth decomposition rooted at r of
the graph G[V(TX)]. Then T is also a treedepth decomposition of both G[V(TX1)] and
G[V(TX2)]. Notice that by the properties of tree decompositions, V(TX1)∩V(TX2) = X.
Let (F, X, h) be a restriction of T to the set X for the graph G[V(TX)]. Let T1 and
T2 be nice treedepth decomposition computed from T by Corollary 2 for the graphs
G[V(TX1)] and G[V(TX2)] respectively. By inductive hypothesis there exists partial
decompositions (F1, X, h1) ∈ R1 and (F2, X, h2) ∈ R2 such that (F1, X, h1) is a restriction
of T1 and (F2, X, h2) is a restriction of T2. At some point the introduce operation
will generate F for the same reason as in the introduce case. By Lemma 8 F is a
topological generalization of F1 and F2. We now need to show that there exist two
witness functions f1 and f2 respectively such that the intersection of their images is
exactly X.

Let (FT, X, h′T) be the restriction of (T, V(T), hT) to X, where hT is the height function
for the nodes of T. By definition, F and FT must be isomorphic and there exists a
witness of this fact ψ such that ψ|X is the identity function. Let ψ1, ψ2 witness that
(F1, X, h1), (F2, X, h2) are restrictions of T1 and T2 to X, respectively. By Lemma 9 we
have that ψ1(V(F1)) ⊆ ψ(V(F)) and ψ2(V(F2)) ⊆ ψ(V(F)). Therefore we can construct
f1 = ψ−1 ◦ ψ1 and f2 = ψ−1 ◦ ψ2, both of which are well-defined. It remains to show
that f1(V(F1)) ∩ f2(V(F2)) = X. By construction we already see that f1(X) = f2(X) =

X. Since ψ1(V(F1)) ⊆ V(T1) and ψ2(V(F2)) ⊆ V(T2) with V(T1) ∩ V(T2) = X, the
claim follows. Since f1, f2 exist, the join operation will generate them at some point.
Therefore a partial decomposition whose tree is F will be added to the result set. It
remains to show that the height function as computed in the join operation is correct.

Let us first show the following: let z ∈ V(T) \ V(FT) be a node whose parent is
contained in FT. Then either V(Tz) ∩V(TX1) = ∅ or V(Tz) ∩V(TX2) = ∅. Assume to
the contrary that Tz contains vertices of both V(TX1) and V(TX2). Since X separates
these two sets in G[V(TX)] and by assumption no vertex of X is contained in Tz this
implies that G[V(Tz)] has more than one connected component. This contradicts T
being a nice treedepth decomposition.

The remaining proof parallels the proof for the introduce case. Let z be a leaf of
FT, C1 be the set of children of z in T contained in V(TX1) and C2 the set of children
contained in V(TX2). Notice that since z is a leaf of FT, the set C1 ∪ C2 does not
contain any element of X. By Lemma 5, the tree TC1

z induces a connected subgraph

38 6 dynamic programming algorithm

in G[V(TX1)] and the tree TC2
z induces a connected subgraph in G[V(TX2)]. The trees

TC1
z , TC2

z are by construction subtrees of T1 and T2, respectively.
We will now show that the height function h is computed correctly for the leaves of

F. The height of z in T is either the height of TC1
z or of TC2

z . By the previous observation
these two trees are subtrees of respectively T1 and T2 and by induction hypothesis their
heights are given by h1(z) and h2(z), respectively. As the height of z is computed as
h(z) = max{h1(z), h2(z)} we conclude that the height of the leaves of F is correct.

We can now prove inductively that the height h(z) for any internal node z is also
computed correctly. Let C be the set of children of z in T which are not nodes of F.
Define C1 = C ∩ V(TX1) and C2 = C ∩ V(TX2), both of which could potentially be
empty. As previously stated, TC1

z and TC2
z induce connected subgraphs in G[V(TX1)]

and G[V(TX2)] and are subtrees of T1 and T2, respectively. From Corollary 2 we know
that the height of z in T is at least the height of z in T1 (if it is contained in T1) and the
height of z in T2 (if it is contained in T2).

Thus it follows that if the height of z in T equals the height of TC1
z , then this it also

equals the height of z in T1. Analogously, if the height of z in T equals the height of
TC2

z , then this it also equals the height of z in T2. Taking the maximum of h1(ψ
−1
1 (z))

and h2(ψ
−1
2 (z)) (if the inverse values exist) and all the children of ψ−1(z) in F therefore

yields the correct value for h(ψ−1(z)).
Since these are all the possible execution paths of the algorithm, it follows by induc-

tion that the lemma is correct.

We have now shown that our algorithm will contain a partial decomposition repre-
senting any nice treedepth decomposition of height at most d. This is not sufficient
to prove the correctness of the algorithm since our tables could still contain partial de-
composition which are not restrictions of treedepth decompositions of height at most
d. The next lemma proves precisely that this is not the case.

Lemma 11. Let Algorithm 2 be called on (G, d, T , X), where G is a graph rooted at r, the
remaining parameters d, T , X are as described in the algorithm. Then every member of R
returned by the algorithm is a restriction of a treedepth decomposition of G[V(TX)] to X.

Proof. We will prove this by structural induction over tree decompositions: Consider
the case that the tree decomposition consists of a single leaf bag containing only a
single vertex. The returned set R then consists of the unique partial decomposition for
this graph.

forget case For the forget case, the correctness of the statement follows directly
from Lemma 7 using the induction hypothesis.

introduce case Consider the case that the bag X with single child X′ intro-
duces the vertex u. The set R′ contains, by induction hypothesis, only restrictions of

6.2 Correctness of Dynamic Programming Algorithm 39

treedepth decompositions. We have to show that the operation of introducing u gen-
erates again only restrictions of treedepth decompositions. Consider any (F, X, h) ∈ R.
First let us show that every edge incident to u in G[V(TX)] is contained in clos(F).
Because X′ separates u from G[V(TX′) \ X], any such edge has its other endpoint nec-
essarily in X′. Since the introduce operation by construction only returns restrictions
with E(G[X]) ⊆ E(clos(F)[X]), we conclude that every edge incident to u in G[V(TX)]

is contained in the closure of F.
Consider (F′, X′, h′) ∈ R′ such that F topologically generalizes F′ and such that

(F, X, h) ∈ introd({(F′, X′, h′)}, X′, u, G). Such a restriction must, by the definition
of the introduce operation, exist and by induction hypothesis be a restriction of a
treedepth decomposition T′ of G[V(TX′)]. Note that every edge vw ∈ E(G[V(TX)])

with v 6= u 6= w is by induction hypothesis contained in the closure of T′.
We will now show that we can construct a treedepth decomposition T of G[V(TX)]

from T′ of which (F, X, h) is a restriction. Let ψ′ witness that (F′, X′, h′) is a restriction
of T′ to X′. Let f : V(F′)→ V(F) be a function that witnesses that F topologically gen-
eralizes F′ with u /∈ f (F′). We first construct (F̂, X, ĥ), (F̂′, X′, ĥ′) which are equivalent
to (F, X, h), (F′, X′, h′), respectively, such that V(F̂′) ⊂ V(F̂) ⊆ V(T′)∪ {u} and so that
the function f carried over to F̂′, F̂ is simply the identity.

By Definition 31, there exists F̂′ ⊆ T′ and ĥ′ such that (F̂′, X′, ĥ′) is a restriction
of T′ to X′. Let ψ̂′ : V(F̂′) → V(F′) be the function that witnesses the equivalency
of (F̂′, X′, ĥ′) and (F′, X′, h′). Then F̂ is the tree with nodes V(F̂) = V(F̂′) ∪ {u}
isomorphic to F where the isomorphism is witnessed by the bijection φ : V(F̂)→ V(F)
defined via

φ(v) =

v for v = u

f (ψ̂′(v)) otherwise

and ĥ = h ◦ φ. We finally construct T as follows: take the rooted forest T′ \ F̂′ and add
F̂ to it, then add the edge set {xy ∈ E(T′) | x ∈ F̂′, y 6∈ F̂′}.

Let us first verify that (F̂, X, ĥ), and thus by equivalency also (F, X, h), is indeed
a restriction of T to X. By construction it is immediately apparent that the iterative
deletion of leaves of T not in X indeed yields the tree F̂. However, we also need to
verify that the height function ĥ is correct.

We prove the correctness of ĥ inductively beginning at the leaves of F̂: consider a leaf
v ∈ F̂ with v 6= u. The introduce operation sets the value ĥ(v) to h(φ(v)) = h′(ψ̂′(v)) =
ĥ′(v). By construction, v in T inherits the subtrees of v in T′, thus heightT(v) =

heightT′(v) = ĥ(v). Next assume u is a leaf in F̂: then the introduce operation sets
ĥ(v) = 1. By construction of T, u will then not have any children and we conclude that
heightT(u) = ĥ(u) in this case. The statement now follows by induction: consider any
internal node v ∈ F̂, v 6= u with children C in T. Let C′ be the set of children of v in T′.

40 6 dynamic programming algorithm

By induction hypothesis, for all w ∈ C ∩V(F̂), heightT(w) = ĥ(w). By construction of
T, it holds that

max
w∈C\V(F̂)

heightT(w) = max
w∈C′\V(F̂′)

heightT′(w). (6.1)

By construction of T and the fact that F̂ is a topological generalization of F̂′, it holds
that no node can have fewer descendants in F̂ than F̂′ and thus

max
w∈C′∩V(F̂′)

heightT′(w) 6 max
w∈C∩V(F̂)

heightT(w). (6.2)

Further note that by the induction hypothesis

ĥ′(v)− 1 = max
w∈C′

heightT′(w)

= max{ max
w∈C′\V(F̂′)

heightT′(w), max
w∈C′∩V(F̂′)

heightT′(w)}. (6.3)

Therefore it holds that

max
w∈C

heightT(w) = max{ max
w∈C\V(F̂)

heightT(w), max
w∈C∩V(F̂)

heightT(w)}

= max{ max
w∈C′\V(F̂′)

heightT′(w), max
w∈C∩V(F̂)

heightT(w)} (by 6.1)

= max{ max
w∈C′\V(F̂′)

heightT′(w), max
w∈C′∩V(F̂′)

heightT′(w),

max
w∈C∩V(F̂)

heightT(w)}
(by 6.2)

= max{ĥ′(v)− 1, max
w∈C∩V(F̂)

heightT(w)} (by 6.3)

= max{ĥ′(v)− 1, max
w∈C∩V(F̂)

ĥ(w)} (by induction)

= ĥ(v)− 1 (by introduce operation.)

The proof for ĥ(u) works analogously, with the slight difference that u will not have
any children that are not in F̂. We conclude that (F̂, X, ĥ) and therefore (F, X, h) is a
restriction of T to X.

It remains to show that T is a treedepth decomposition of G[V(TX)]. Note that
V(T) = V(TX). By construction of F and thus F̂, edges incident to u are contained in
clos(F̂) and thus in clos(T). Since F̂ is a topological generalization of F̂′, clos(F̂′) ⊆
clos(F̂) and therefore every edge of G[V(TX)] that lives in V(F̂′) is contained in the
closure of T. As T′ \ F̂′ is a subgraph of T, the edges contained in clos(T′ \ F̂′) are
contained in clos(T). It remains to show that every edge xy that has one endpoint
x ∈ F̂′ and the other endpoint y ∈ T′ \ F̂′ will also be covered by the closure of T.
Consider the x-y-path in T′: this path contains a node z ∈ F̂′ whose successor is

6.2 Correctness of Dynamic Programming Algorithm 41

not contained in F̂′. Because F̂ is a topological generalization of F̂′, the node x is an
ancestor of z in F̂ and thus in T. Furthermore, by construction of T, the node z is
an ancestor of y in T; it follows by transitivity that xy ∈ clos(T). Therefore T is a
treedepth decomposition of G[V(TX)] and the lemma follows for the introduce-case.

join case Consider the case of a bag X with children X1 = X2 = X. The sets
R1, R2 contain, by induction hypothesis, only restrictions of treedepth decomposi-
tions. We have to show that the operation of joining X1, X2 generates only restric-
tions of treedepth decompositions. Consider any (F, X, h) ∈ R, (F1, X, h1) ∈ R1 and
(F2, X, h2) ∈ R2 such that F topologically generalizes both F1 and F2 and (F, X, h) is the
result of joining the other two, i.e. (F, X, h) ∈ joind(X, {(F1, X, h1)}, {(F2, X, h2)}, G).
The restrictions (F1, X, h1) and (F2, X, h2) must, by the definition of the join opera-
tion, exist and by induction hypothesis they are restrictions of treedepth decompo-
sitions T1, T2 of G[V(TX1)] and G[V(TX2)], respectively. Note that every edge vw ∈
E(G[V(TX)]) is either contained in the closure of T1 or the closure of T2. We will now
show that we can construct a treedepth decomposition T of G[V(TX)] from T1, T2 of
which (F, X, h) is a restriction.

For i ∈ {1, 2}, let ψi witness that (Fi, X, hi) is a restriction of Ti to Xi. Let fi : V(Fi)→
V(F) be a function that witnesses that F topologically generalizes Fi. We first construct
(F̂, X, ĥ), (F̂i, X, ĥi), i ∈ {1, 2} which are equivalent to (F, X, h), (Fi, X, hi), respectively,
such that V(F̂i) ⊆ V(F̂) ⊆ V(T1) ∪V(T2) and so that the functions fi that witness the
topological generalization of Fi by F simply become the identity on F̂i, F̂. By Defini-
tion 31, there exists a subgraph F̂i of Ti and a function ĥi such that (F̂i, X, ĥi) is a restric-
tion of Ti to Xi = X. Let ψ̂i : V(F̂i) → V(Fi) be the function that witnesses the equiva-
lency of (F̂i, X, ĥi) and (Fi, X, hi). Then F̂ is the tree with nodes V(F̂) = V(F̂1) ∪V(F̂2)

isomorphic to F where the isomorphism is witnessed by the bijection φ : V(F̂)→ V(F)
defined via

φ(v) = fi(ψ̂i(v)) v ∈ V(F̂i),

where we use the fact that for any v ∈ X, ψ̂i(v) = v and fi(v) = v. We further set
ĥ = h ◦ φ. We finally construct T as follows: Take the union of the rooted forests
T1[V(T1) \ V(F̂1)], T2[V(T2) \ V(F̂2)] and F̂, then add to the resulting forest the edge
sets {xy ∈ E(Ti) | x ∈ V(F̂i), y 6∈ V(F̂i)} for i ∈ {1, 2}.

Let us first verify that (F̂, X, ĥ), and thus by equivalency also (F, X, h), is indeed
a restriction of T to X. By construction it is immediately apparent that the iterative
deletion of leaves of T not in X indeed yields the tree F̂. However, we also need to
verify that the height function ĥ is correct, i.e., that for all v ∈ F̂, ĥ(v) = heightT(v).
We prove the correctness of ĥ inductively beginning at the leaves of F̂: consider a leaf
v ∈ F̂. Since v ∈ X, the join operation calculates h as h(v) = maxi∈{1,2} hi(v) and thus
ĥ as ĥ(v) = maxi∈{1,2} hi(v). By construction, v in T inherits the subtrees of v in T1 and
of v in T2, thus heightT(v) = maxi∈{1,2} heightTi

(v) = ĥ(v). Consider now any internal

42 6 dynamic programming algorithm

node v ∈ F̂ with children C in T. For i ∈ {1, 2}, let Ci be the set of children of v in Ti.
By induction hypothesis, for all w ∈ C ∩V(F̂), heightT(w) = ĥ(w). By construction of
T and the fact that F̂ is a topological generalization of F̂1, F̂2, it holds that

max
w∈C\V(F̂)

heightT(w) = max
i∈{1,2}

max
w∈Ci\V(F̂i)

heightTi
(w). (6.4)

By construction of T and the fact that F̂ is a topological generalization of F̂1 and F̂2, it
holds that every node of F̂ has at least all descendants it has in F̂1 and F̂2 and thus

max
i∈{1,2}

max
w∈Ci∩V(F̂i)

heightTi
(w) 6 max

w∈C∩V(F̂)
heightT(w). (6.5)

Further note that

ĥi(v)− 1 = max
w∈Ci

heightTi
(w)

= max{ max
w∈Ci\V(F̂i)

heightTi
(w), max

w∈Ci∩V(F̂i)
heightTi

(w)}. (6.6)

Therefore it holds that

max
w∈C

heightT(w) = max{ max
w∈C\V(F̂)

heightT(w), max
w∈C∩V(F̂)

heightT(w)}

= max{ max
i∈{1,2}

max
w∈Ci\V(F̂i)

heightTi
(w), max

w∈C∩V(F̂)
heightT(w)} (by 6.4)

= max{ max
i∈{1,2}

{ max
w∈Ci\V(F̂i)

heightTi
(w), max

w∈Ci∩V(F̂i)
heightTi

(w)},

max
w∈C∩V(F̂)

heightT(w)}
(by 6.5)

= max{ max
i∈{1,2}

ĥi(v)− 1, max
w∈C∩V(F̂)

heightT(w)} (by 6.6)

= max{ max
i∈{1,2}

ĥi(v)− 1, max
w∈C∩V(F̂)

ĥ(w)} (by induction)

= ĥ(v)− 1 (by join operation.)

It remains to show that T is a treedepth decomposition of G[V(TX)]. Note that
V(T) = V(TX). Since F̂ is a topological generalization of F̂i for i ∈ {1, 2}, it holds
that clos(F̂i) ⊆ clos(F̂) and therefore every edge of G[V(TX)] that lives in V(F̂i) is
contained in the closure of T. As Ti[V(Ti) \V(F̂i)] is by construction a subgraph of T,
the edges contained in each clos(Ti[V(Ti) \V(F̂i)]) are contained in clos(T). It remains
to show that for i ∈ {1, 2}, every edge xy that has one endpoint x ∈ V(F̂i) and the
other endpoint y ∈ V(Ti) \ V(F̂i) will also be covered by the closure of T. Consider
the x-y-path in Ti: this path contains a node z ∈ F̂i whose successor is not contained
in F̂i. Because F̂ is a topological generalization of F̂i, the node x is an ancestor of z in F̂
and thus in T. Furthermore, by construction of T, the node z is an ancestor of y in T.
It follows by transitivity that xy ∈ clos(T). Therefore T is a treedepth decomposition
of G[V(TX)] and the lemma follows for the introduce-case.

6.3 Running time of Dynamic Programming Algorithm 43

Lemma 12. Algorithm 1 decides the treedepth of the input graph G′.

Proof. By Lemma 10 it follows that the set R contains all restrictions of any nice
treedepth decomposition rooted at r of the rooted graph G after line 6 of Algorithm 1

is executed. We know that the height of the partial decomposition equals the height
of the treedepth decomposition of which it is a restriction. From Lemma 11 we know
that every partial decomposition in R is a restriction of a treedepth decomposition of
G. From Lemma 3 and Lemma 6 we know that there is a nice treedepth decomposition
rooted at r of minimal height of the rooted graph G. From Lemma 3 we know that
G has a treedepth decomposition of height d + 1 if and only if G′ has one of height d.
Thus the return statement at line 7 will give the correct answer.

running time of dynamic programming algorithm

We start by proving an upper bound on the size of the tables.

Lemma 13. For a set X, the number of possible restrictions on X of height at most d is, up to
equivalency, bounded by 2|X|d+|X| log d+|X| log |X|.

Proof. For any restriction (F, X, h) of height at most d, we have that |F| 6 |X| · d, since
every leaf of F is contained in X and the height of F is 6 d.

First note that any monotone path P (i.e., a path on which every node is either an
ancestor or a descendant of any other node on the path) inside the forest of a restriction
can be labeled by h in at most 2d ways: Since h will increase strictly while following P
from top to bottom and |P| 6 d, the function h|P is already completely determined by
the set h(P).

Consider any ordering x1, . . . , x|X| of the elements in X and denote by Xi the set
{x1, . . . , xi} for 1 6 i 6 |X|. We upper bound the number of restrictions by considering
the following construction: Given a restriction (F, Xi, hi), we have at most i · d · 2d ways
of constructing a restriction on Xi+1: We choose one of i · d nodes of F and attach one
of the possible 2d labeled paths to it, with leaf-node xi+1. We allow adding a path of
length zero, such that this operation simply exchanges the initially chosen node with
xi+1. Clearly all restrictions on Xi+1 can be generated in such a way from restrictions
on Xi. Thus the number of restrictions is upper bounded by

|X|

∏
i=1

di2d = 2|X|d+|X| log d|X|! 6 2|X|d+|X| log d+|X| log |X|

which is the desired bound.

Next we upper the number of possible function to consider as a witness for a topolog-
ical generalization.

44 6 dynamic programming algorithm

Lemma 14. Given restrictions (F, X, h), (F′, X′, h′) with X′ ⊆ X there are at most 2d·|X′|/2

ways how F can topologically generalize F′ and all candidate functions witnessing this fact can
be generated in this time.

Proof. We upper bound the number of possible functions f that witness that F is a
topological generalization of F′. Consider a leaf node v ∈ F′, which is necessarily
contained in v ∈ X′ ⊆ X. Let P′v be the path from the root of F′ to v (in F′) and Pv the
path from the root of F to v (in F). In order for f to preserve the ancestor relationship
of vertices in F′, the vertices of P′v must be mapped to vertices of Pv while preserving
order, i.e., if x appears before y in P′v then f (x) must appear before f (y) in Pv. It follows
that there are exactly (|Pv|

|P′v|
) ways of how f could map P′v to Pv. We upper bound the

number of functions by taking the product of all such paths by ∏v∈X′ (
|Pv|
|P′v|

) 6 2d·|X′|/2,
using the fact that no rooted path in F and F′ exceeds length d. This method can
be used constructively (since we can check whether a function indeed witnesses a
topological generalization in polynomial time) to enumerate all functions.

Lemma 15. Algorithm 2 called on G, d, T and X, where G is a graph rooted at r of size n, T
is a nice tree decomposition of G of width w where every bag contains r and X is a bag of T
runs in time O(24wd+3w log wd · wd · n).

Proof. A nice tree decomposition has O(n) bags (Proposition 4), therefore the lin-
ear dependence on n follows easily. By Lemma 13, the set R of restrictions at any
given time cannot contain more then 2wd+w log d+w log w elements. During the join
case, we generate all possible restrictions (F, X, h) and for each we consider all pairs
(F1, X, h1), (F2, X, h2) from the respective tables R1, R2 of the child bags. For such a pair
we need to compute all possible functions f1, f2 that might witness that F topologically
generalizes both F1 and F2. To check if a function witnesses a topological generaliza-
tion takes linear time in the size of the trees, i.e. O(d · |X|). The total amount of
time needed for this operation, using the bound provided by Lemma 14, is at most
(2wd+w log d+w log w)3 · (2d/2·w)2 ·O(wd) = O(24wd+3w log wd · wd). Both forget and intro-
duce operation and checking if the result set already contains an equivalent partial de-
composition have running times bounded by this function, thus O(24wd+3w log wd · wd)
is also an upper bound for the total running time of every operation and the lemma
follows.

We finally are able to sum up the results in the following theorem, a direct consequence
of Lemma 19 and Lemma 15. To actually construct a solution, we keep the tables
of all bags in memory and employ backtracking to reconstruct a minimal treedepth
decomposition.

Theorem 1. Let G be a graph of size n and d an integer. Given a tree decomposition of G of
width w, one can decide in time and space O(24wd+3w log wd · wd · n) whether G has treedepth
at most d and if so, output a treedepth decomposition of that height.

7
S I M P L E R D Y N A M I C P R O G R A M M I N G A L G O R I T H M

The algorithm we presented in Section 6 is the algorithm that was presented at ICALP
2014. We now present a simpler algorithm with a similar running time that exploits
the same basic ideas. We will avoid the use of topological generalizations and a height
function to make both the description of the algorithm and the proof of its correctness
simpler. The idea here is, whenever we encounter a new node during the dynamic
programming, to attempt to introduce it at the depth it would be in a treedepth de-
composition for the whole graph. For this we introduce “future” nodes, i.e. nodes
we expect to encounter in the part of the graph we have not yet considered. Since
every node is immediately introduced at its final depth, it suffices to make sure that
no node is too deep. This allows us to avoid the need for a height function. We replace
it with a function which tells us if a node in the partial decomposition was already
“used” by a node which was then forgotten or is still free for a vertex which will be in-
troduced. More specifically, we replace the height function of partial decompositions
by a function h : V(F) \ X → {◦, •}. We can think of nodes labeled •, as nodes that
were forgotten and are thus in the “past”, and of nodes labeled ◦ as nodes we expect
to encounter later and are thus in the “future.” We need to adapt the definitions for
restrictions accordingly.

Definition 30 (Restriction of a partial decomposition). The restriction of a partial decom-
position (F, X, h) to (∅ 6= X′ ⊆ X, Y, Z), where Y ∩ Z = ∅, is the partial decomposition
(F′, X′, h′), where F′ is obtained by iteratively deleting the leaves of the forest F that
are not in X′. The function h′ is defined for any x ∈ V(F′) \ X′ to be

h′(x) =


• if x ∈ Y

◦ if x ∈ Z

h(x) otherwise

Accordingly we redefine the restriction of a tree.

Definition 31 (Restriction of a tree). Given a tree T, a set Y and a set Z such that
Y ∩ Z = ∅, let (T, V(T), ∅) be a partial decomposition, where ∅ is the null function.
A partial decomposition (F′, X, h′) is a restriction of T to (X, Y, Z) if (F′, X, h′) is equiv-
alent to the restriction (F, X, h) we get from restricting (T, V(T), ∅) to (X, Y, Z). We
call the function ψ : V(F′)→ V(F) that witnesses the equivalency as per Definition 23

of these two restrictions the witness of the restriction.

The following statement follows from the proof of Lemma 7.

46 7 simpler dynamic programming algorithm

Lemma 16. Let (F, X, h) be a partial decomposition. For X′ ⊆ X, and sets Y and Z, where
Y ∩ Z = ∅, let (F′, X′, h′) be the restriction of (F, X, h) to (X′, Y, Z). Then for any X′′ ⊆ X′,
the restrictions of (F′, X′, h′) and (F, X, h) to (X′′, Y, Z) are identical.

We can redefine the forget, introduce and join operations.

Definition 32 (Forgetting a vertex from a partial decomposition). Let G be a graph,
let X ⊆ V(G) and let R′ be a set of partial decompositions on the set X. For a vertex
u ∈ X, the forget operation on u denoted by forget(R′, X, u) is defined to be a set A
of partial decompositions obtained as follows: Initially set A ← ∅; for every partial
decomposition (F′, X′, h′) ∈ R′, consider its restriction to (X \ {u}, {u}, ∅) and add it
to the set A only if it is not equivalent to any member in A.

Definition 33 (Vertex introduction into a partial decomposition). Let G = (V, E, r) be
a rooted graph, let X′ ⊆ V(G) and let R′ be a set of partial decompositions of the form
(F′, X′, h′). For a vertex u ∈ V(G) \ X′ and an integer d, the introduction operation
on u, denoted by introd(R′, X′, u, G), is defined to be a set A of partial decompositions
constructed as follows: Let X = X′ ∪ {u}. Initialize A← ∅. For every (F′, X′, h′) ∈ R′

create new partial decompositions (F, X′ ∪ {u}, h) in the following ways:

• For every node x ∈ V(F′) \ {X′} where h′(x) = ◦ create F by replacing x with u
in F′ and set h = h′|V(F′)\(X′∪{u}).

• For every node x ∈ X′ and every i < d create F by adding a path with i nodes
to x and u at the end of the path. The function h is an extension of h′, such that
h(y) = ◦ for every node of the added path besides u.

If E(G[X]) ⊆ E(clos(F)[X]) and the depth of F is 6 d add (F, X′ ∪ {u}, h) to A.

Definition 34 (Joining Partial Decompositions). Let G = (V, E, r) be a rooted graph.
Let R1 and R2 be two sets of partial decompositions on X ⊆ V(G). Let d be an integer.
Then the join operation joind is defined via joind(X, R1, R2, G) = A, where A is a set
of partial decompositions which is constructed as follows: Initialize S ← ∅. Take
every pair of partial decompositions (F1, X, h1) ∈ R1 and (F2, X, h2) ∈ R2. If there
is an isomorphism φ between F1 and F2, such that φ|X is the identity and for every
x ∈ V(F1) \ X it holds that h1(x) = • ⇒ h2(φ(x)) = ◦, add the partial decomposition
(F1, X, h) to the set A, where for all y ∈ V(F1) \ X it holds that h(y) = • if h1(y) = • or
h2(φ(x)) = • and h(y) = ◦ otherwise.

We can already see that the operations become simpler in this version of the algorithm.
We will show now that the proof of its correctness also simplifies. We will prove its
correctness via the following two lemmas, which parallel Lemmas 10 and 11. In the
following assume that we replaced line 6 in Algorithm 2 by R := {(F, {r}, ∅)}.

Lemma 17. Let Algorithm 2 be called on (G, d, T , X), where G is a graph rooted at r, the
remaining parameters d, T , X are as described in the algorithm. Then for every nice treedepth

47

decomposition T of depth at most d rooted at r of G, the set R returned by the algorithm
contains a restriction of T to (X, V(TX), V(G) \V(TX)).

Proof. We show this by induction, starting at the leaves. Notice that by construction
the leaves of T only contain the root node r. This is the only restriction of any nice
treedepth decomposition rooted at r of G.

introduce case If X is an introduce bag whose single child in T is the bag X′,
then the if-clause at line 12 is entered. Fix a nice treedepth decomposition T rooted at r
of G of depth at most d. We want to show that a partial decomposition (F, X, h) is con-
tained in R, which is a restriction of T to (X, V(TX), V(G) \V(TX)). By induction we as-
sume that the set R′ contains a restriction (F′, X′, h′) of T to (X′, V(TX′), V(G) \V(TX′)).
Since the introduced node u is not contained in V(TX′) but is contained in X it follows
by Lemma 16 that we can compute a restriction equivalent to (F′, X′, h′), by first taking
the restriction (F, X, h) of T to (X, V(TX), V(G) \V(TX)) and then restricting (F, X, h)
to (X′, V(TX′), V(G) \ V(TX′)). In this last restriction, only two things can happen,
depending on u being a leaf or not in F. If u is an internal node in F, its value in h′

will be set to ◦ and no other changes are made. This change is made backwards on
F′ by the introduce operation from Definition 33, since it replaces all nodes for which
the value of h′ is ◦ by u. As such, this case is correct. In the other case the node u is a
leaf in F and as such u and all its ancestors A that do not have a descendant x ∈ X′ in
F are deleted. However long this deleted path is, it is reintroduced by the introduce
operation. We just need to show that the value of h(a) = ◦ for all a ∈ A. Assume that
there is at least one node for which this is not the case and let a be the deepest such
node on the path. This implies that a ∈ V(TX′) \ X′. Since the subtree Ta does by con-
struction not contain any nodes of X′, but contains at least one of V(TX′) \ X′ (namely
a) and at least one node of V(G) \ (V(TX′) ∪ X′) (namely u) and by the properties of
tree decompositions X′ is a separator between these two sets, it follows that Ta has
more than one component and T is not nice. Contradiction.

join case Finally, if X is a join bag with two children X1 and X2 in T , then the if-
clause at line 17 is entered. Let again T be a nice treedepth decomposition rooted
at r of the graph G. By inductive hypothesis there exists partial decompositions
(F1, X, h1) ∈ R1 and (F2, X, h2) ∈ R2 such that (F1, X, h1) and (F2, X, h2) are restric-
tions of T to (X, V(TX1), V(G) \V(TX1)) and (X, V(TX2), V(G) \V(TX2)), respectively.
We want to show that a restriction equivalent to the restriction (F, X, h) of the partial
decomposition (T, V(T), ∅) to (X, V(TX), V(G) \V(TX)) is added to the result set. By
induction, there is an isomorphism φ between F1 and F2, such that φ|X is the identity
and there is no node x ∈ V(F1) \ X such that h1(x) = • and h2(φ(x)) = •, since
that would mean that there is a node of T that is both contained in V(TX1) \ X and
V(TX2) \ X, which is not possible by the properties of tree decompositions. Further-
more, there are functions φ1 and φ2 which witness that F1 and F2 are isomorphic to F,

48 7 simpler dynamic programming algorithm

respectively, such that both φ1|X and φ2|X are the identity function. This means that
h(y) for any y ∈ V(F) \ X must be ◦ iff h1(φ

−1
1 (y)) = ◦ and h2(φ

−1
2 (y)) = ◦, since oth-

erwise y 6∈ V(G) \V(TX). If h(y) = • for any y ∈ V(F) \ X then either h1(φ
−1
1 (y)) = •

or h2(φ
−1
2 (y)) = •, since y ∈ V(TX) \X and V(TX) \X = (V(TX1) \X1)∪ (V(TX2) \X2).

It follows that the restriction (F1, X, h′) added to the result set, where h′ is the function
computed in the join operation, is equivalent to (F, X, h).

Lemma 18. Let Algorithm 2 be called on (G, d, T , X), where G is a graph rooted at r, the
remaining parameters d, T , X are as described in the algorithm. Then every member of R
returned by the algorithm is a restriction of a treedepth decomposition of depth 6 d of G[V(TX)]

to (X, Y, Z), for some sets Y and Z, such that Z ∩V(TX) = ∅.

Proof. We prove this by induction. This statement is clearly correct for the case of
leaves, since then h is the null function, and as such it is irrelevant what Y and Z are.

introduce case If X is an introduce bag whose single child in T is the bag X′,
then the if-clause at line 12 is entered. By induction every (F′, X, h′) ∈ R′ is a restriction
to (X′, Y′, Z′) of a treedepth decomposition T′ of G[V(TX′)] where Z′ ∩ V(TX′) = ∅.
Let φ′ be the function that witnesses this restriction. Consider the case when the
introduce operation generates (F, X′ ∪ {u}, h) after replacing a node x ∈ V(F′) \ X′

for which h′(x) = ◦ with the introduced node u. Let T be a treedepth decomposition
computed by replacing the node φ′(x) with u in T′. The partial decomposition (F, X′ ∪
{u}, h) is a restriction of T to (X, Y′, Z = Z′ \ {φ′(x)}). Since Z ⊆ Z′ it holds that
Z ∩ V(TX) = ∅. If (F, X′ ∪ {u}, h) is added to the result set, it holds that E(G[X]) ⊆
E(clos(F)[X]). Thus all edges incident to u are covered. Furthermore, since φ′(x) was
not a node in G[V(TX′)], we have not removed any graph edge from the closure of T′

and thus T is a treedepth decomposition of G[V(TX)] and its height equals the height
of T′. Consider now the case where u is added via a path with the node set A. We add
the same path to T′ to create T. Clearly, the resulting partial decomposition from the
introduce operation (F, X′ ∪ {u}, h) in this case is a restriction of T to (X, Y′, Z′ ∪ {A})
and by construction (Z′ ∪ {A}) ∩ V(TX) = ∅. Since we check that all edges of u are
covered and that the depth of u is 6 d before adding it to the result set, this case is
correct.

join case Finally, if X is a join bag with two children X1 and X2 in T , then the
if-clause at line 17 is entered. By inductive hypothesis any partial decompositions
(F1, X, h1) ∈ R1 and (F2, X, h2) ∈ R2 are restrictions of treedepth decompositions T1

of G[V(TX1)] to (X1, Y1, Z1) and T2 of G[V(TX2)] to (X2, Y2, Z2), respectively, such that
Z1 ∩ V(TX1) = ∅ and Z2 ∩ V(TX2) = ∅. Let φ1 and φ2 be the witnesses of these
restrictions, respectively, and let ψ : V(F1) → V(F2) be the function that witnesses the
equivalency of (F1, X, h1) and (F2, X, h2). Assume that the join operation adds a partial
decomposition (F, X, h) constructed from (F1, X, h1) and (F2, X, h2) to the result set.

49

Let T be the treedepth decomposition achieved by taking T1, replacing for every node
x ∈ V(F1) where h1(x) = ◦ and h2(ψ(x)) = • the node φ1(x) with φ2(ψ(x)), adding
the components of T2[V(T2) \ φ2(V(F2))] and adding to the resulting forest the edge
set {φ1(ψ

−1(φ−1
2 (u)))v | u ∈ φ2(V(F2)), v ∈ V(T2) \ φ2(V(F2)), uv ∈ E(T2)}. Since in T

the set of ancestors for any node of T1 or T2 not in Z1 ∪ Z2 is a strict superset to the set
of ancestors in T1 or T2 it follows that T is a treedepth decomposition of G[V(TX)] and
its height is by construction the maximum over the heights of T1 and T2. Furthermore,
by construction (F, X, h) is a restriction of T to (X, Y1 ∪ Y2, (Z1 ∪ Z2) \ (Y1 ∪ Y2)) and
by construction and the induction hypothesis ((Z1 ∪ Z2) \ (Y1 ∪Y2))∩V(TX) = ∅.

Lemma 19. Algorithm 1 decides the treedepth of the input graph G′.

Proof. By Lemma 17 and it follows that the set R contains all restrictions of any nice
treedepth decomposition rooted at r of depth 6 d+ 1 of the rooted graph G after line 6

of Algorithm 1 is executed. From Lemma 11 we know that every partial decomposition
in R is a restriction of a treedepth decomposition of depth 6 d+ 1 of G. From Lemma 3

and Lemma 6 we know that there is a nice treedepth decomposition rooted at r of
minimal height of the rooted graph G. From Lemma 3 we know that G has a treedepth
decomposition of height d + 1 if and only if G′ has one of height d. Thus the return
statement at line 7 will give the correct answer.

Since we changed the definition of restrictions we need to prove an upper bound for
the number of possible restrictions on a certain set. This proof follows rather closely
the proof of Lemma 13. The upper bound becomes slightly worse. Nevertheless, the
final upper bound for the running time will be slightly better.

Lemma 20. For a set X, the number of possible restrictions of the form (F, X, h) where F has
height at most d is, up to equivalency, bounded by 2|X|d+2|X| log d+|X| log |X|.

Proof. For any restriction (F, X, h) of height at most d, we have that |F| 6 |X| · d, since
every leaf of F is contained in X and the height of F is 6 d. Consider any ordering
x1, . . . , x|X| of the elements in X and denote by Xi the set {x1, . . . , xi} for 1 6 i 6 |X|.
We upper bound the number of trees by considering the following construction: Given
a restriction (F, Xi, ∅), we have at most i · d2 ways of constructing the tree F′ of a
restriction of the form (F′, Xi+1, ∅): We choose one of i · d nodes of F and attach one
of the possible d− 1 paths of length at most d− 1 to it, with leaf-node xi+1. We allow
adding a path of length zero, such that this operation simply exchanges the initially
chosen node with xi+1. These are i · d2 possibilities in total. Clearly all restrictions on
Xi+1 can be generated in such a way from restrictions on Xi. Thus the number of such
restrictions is upper bounded by

|X|

∏
i=1

d2i = 22|X| log d|X|! 6 22|X| log d+|X| log |X|.

50 7 simpler dynamic programming algorithm

There are at most 2|X|d many h functions for a tree of size |X| · d. Thus the desired
bound follows.

Lemma 21. Algorithm 2 called on G, d, T and X, where G is a graph rooted at r of size n, T
is a nice tree decomposition of G of width w where every bag contains r and X is a bag of T
runs in time O(22wd+5w log wd · wd · n).

Proof. A nice tree decomposition has O(n) bags (Proposition 4), therefore the linear
dependence on n follows easily. Checking if an appropriate isomorphism to perform
a join exists, can be done in linear time in the size of trees, since the mapping of the
leaves is fixed. To perform a join we to thus check this for every pair of partial decom-
positions. The total amount of time needed for this is at most (2wd+2w log d+w log w)2 ·
O(wd) = O(22wd+5w log wd · wd). Both forget and introduce operation and checking if
the result set already contains an equivalent partial decomposition have running times
bounded by this function, thus the lemma follows.

To compute a treedepth decomposition we can perform backtracking. This leads to the
following theorem, which is very close to Theorem 1. We point out that the running
time given here is slightly better.

Theorem 2. Let G be a graph of size n and d an integer. Given a tree decomposition of G of
width w, one can decide in time and space O(22wd+5w log wd · wd · n) whether G has treedepth
at most d and if so, output a treedepth decomposition of that height.

This means, that by introducing future nodes, we achieved an algorithm whose de-
scription is simpler, whose correctness is easier to prove and which is faster. This
simplification comes from the following insight: In our computation we only need to
really check edges between a node and its ancestors in the treedepth decompositions.
Since the number of ancestors is always bounded, we can exploit this to keep place-
holders for any node that is an ancestor in the final solution. In this way we never
have to restructure any treedepth decompositions.

8
S I M P L E A L G O R I T H M

We can now use Theorem 1 to answer the problem posed by Ossona de Mendez and
Nešetřil.

Problem ([193]). Is there a simple linear time algorithm to check td(G) 6 d for fixed d?
Is there a simple linear time algorithm to compute a rooted forest Y of height d such that
G ⊆ clos(Y) (provided that such a rooted forest exists)?

Treedepth—being a minor-closed property—can be expressed in monadic second or-
der (MSO) logic and thus one can, as mentioned before, employ Courcelle’s theorem
to compute the treedepth of a graph in linear time. The above problem is motivated
by the fact that the running time of this approach is unclear: To use this approach
we need a different MSO formula for every d, which depends on the size of the set
of forbidden minors for graphs of treedepth d. These families are unknown and it
is unclear how to compute them. Thus, to compute the treedepth of a graph exploit-
ing Courcelle’s theorem is non-constructive. Furthermore, the size of these forbidden
minor families grows at least like a double exponential (and at most like a triple ex-
ponential) of d [77] and thus the size of the formula for a specific treedepth grows
accordingly. Even worse, the dependency of the running time on the size of the MSO
formula of model-checking MSO on graphs of bounded treewidth cannot be bounded
by any elementary function unless P = NP [94]. Work has been done to simplify the
machinery [150, 157], some of it has even been implemented [158, 159], but the tools
necessary still remain quite complex. It is thus also not clear how bad the running
time dependency on the size of MSO-formula is. We will show that we can use the
algorithm presented in Section 6 to give a much more direct and simpler algorithm.

From Proposition 3 we know that a depth first search of a graph with treedepth d
gives us a treedepth decomposition of depth at most 2d. Furthermore, from Proposi-
tion 5 we know that from this treedepth decomposition we can easily compute a path
decomposition of width 2d − 1. We can exploit this to construct an algorithm which
only takes a graph as its input, cf., Algorithm 3. The following theorem now follows
from Theorem 1 and Algorithm 3.

Theorem 3. There is a simple algorithm to decide whether the treedepth of a graph is at
most d in time and space 22O(d) · n and, in the positive case, output a treedepth decomposition
witnessing this fact.

We point out that Algorithm 3 can be made to run in logarithmic space.

Lemma 22. The algorithm in Algorithm 3 can be made to run in logarithmic space for a fixed
treedepth d.

52 8 simple algorithm

Input: A graph G, an integer d
Output: Is the treedepth of G smaller or equal to d?

Start computing a tree Y representing a depth first search in G;
while Computing Y do

if depth is greater than 2d − 1 then
return No;

Compute a nice path decomposition P of G from Y;
return treedepth(G, d,P);

Algorithm 3: treedepth-simple

Proof. A depth first search can be implemented in such a way that only the current
path from the root of the search tree to the leaf must be kept in memory. Since the
depth of our search is bounded by 2d keeping such a path in memory requires at
most O(2d · log n) bits. The bags of the path decomposition on which we want to run
Algorithm 1 are by construction precisely these paths in the order they are generated
in a depth first search of the graph. The dynamic programming procedure runs over
the bags of the decomposition just once. For path decompositions we only need the
forget and introduce operations. As such, we only need to keep two bags in memory
at any point. If we run the depth first search only until it finds the next leaf, this can
be done using logarithmic space. Since furthermore, the size of the tables is bounded
by 22O(d) · log n, it follows that the algorithm in Algorithm 3 can be implemented in
such a way that it only uses logarithmic space for a fixed depth d.

In conclusion, we consider this algorithm to solve the problem stated by Ossona de
Mendez and Nešetřil.

9
FA S T A L G O R I T H M

The version we presented in the previous section might be simple, but it runs in double
exponential time. This is because the way we compute the required tree decomposition
for Algorithm 1, which is fast and simple, but we cannot guarantee that its width will
be better than 2d − 1. If we could bound the width of the tree decomposition we
compute before running Algorithm 1 then we could get a much better running time.
Remember that tw(G) 6 pw(G) 6 td(G) − 1 for any graph G (Proposition 5). It
follows then that if we bound the width of the tree decomposition linearly on the
treewidth of the graph we will also be bounding it on the treedepth of the graph.
There is an algorithm which runs in time 2O(w) · n and calculates a 5-approximation
tree decomposition for a graph of treewidth w [38]. The algorithm in Algorithm 4

shows an algorithm that uses these two facts to give a fast algorithm.

Input: A graph G, an integer d
Output: Is the treedepth of G smaller or equal to d?

Compute a 5-approximated nice tree decomposition T of G [38];
if no such tree decomposition is found then

return No;

return treedepth-on-tree-decomposition(G, d, T);
Algorithm 4: treedepth-fast

Lemma 23. Algorithm 4 decides the treedepth of the input graph G.

Proof. Since tw(G) 6 td(G)− 1 if the graph G has treedepth d then there must exist a
tree decomposition of width at most 5d which is a 5-approximation for the treewidth of
the graph. Thus returning with a negative result on line 4 is correct. From Theorem 1

we know that the call to Algorithm 1 decides if G has treedepth d.

Lemma 24. Algorithm 4 runs in time 2O(d2) · n given a graph G and an integer d.

Proof. Since tw(G) 6 td(G)− 1 it follows that the width of the tree decomposition T
is at most 5d. The running time of computing the tree decomposition is 2O(d) · n and
from Theorem 1 the the call to Algorithm 1 is 2O(dw) · n, where w is the width of T .
Since w 6 5d it follows that the running time of the call to Algorithm 1 is 2O(d2) · n.

We arrive at the main theorem of this section.

Theorem 4. Let G be a graph with n nodes. Deciding if G has a treedepth decomposition of
height d and constructing such a treedepth decomposition can be computed in time 2O(d2) · n.

10
T R E E D E P T H A N D C H O R D A L G R A P H S

As mentioned in the introduction, deciding treedepth remains NP-hard even on chord-
al graphs. Interestingly, the special structure of tree decompositions of chordal graphs
can be used to reduce the running time of our algorithm significantly with only minor
changes. To the best of our knowledge, no such algorithm was known so far (an
algorithm with exponential dependence on the number of cliques in a chordal graph
has been proposed before [14]). Since obtaining an optimal tree decomposition for
chordal graphs is possible in linear time, we do not need the treewidth approximation
here.

Theorem 5. Given a chordal graph G and an integer d, one can decide in time and space
2O(d log d) · n whether td(G) 6 d and in the positive case output a treedepth decomposition of
that height.

Proof. Since adding a universal vertex to a chordal graph does not violate the chordal-
ity, we tacitly assume in the following that such a vertex r exists. First, check whether
ω(G) > d and if that is the case, output that the treedepth of G is greater than d.
Otherwise, ω(G) 6 d which implies that tw(G) 6 d. It is possible to compute a clique
tree of G in linear time [29], i.e., an optimal tree decomposition of G in which every
bag induces a clique.

If we now run Algorithm 2 on G we can show that only partial decompositions
whose forest is a path are kept during each step of the dynamic programming: Con-
sider a bag X and a set of restrictions R computed by the algorithm. For any partial
decomposition (F, X, h) ∈ R, the condition E(G[X]) ⊆ E(clos(F)[X]) must be fulfilled
(in the join- and introduce-case this is explicitly enforced and it is easy to see that the
forget-case cannot create a non-path from a path). Therefore, all elements of X lie in
a single path from the root to a leaf in F—but since in a restriction every leaf of F
must be a member of X, this path is exactly F. The maximum number of restrictions
of height at most d and whose forest is a single path is bounded by 2O(d log d), cf., proof
of Lemma 13. If we modify the introduce- and join-procedure of Algorithm 2 to only
generate restrictions whose forests are paths, which by the previous observation are
the only restrictions that would be kept in any case, the running time reduces to the
claimed bound.

11
C O N C L U S I O N

We provide an explicit simple self contained algorithm, i.e. an algorithm which does
not rely on any other complex results, which for a fixed d decides if a graph G has
treedepth d and computes a treedepth decomposition of height d if one exists in linear
time. This answers an open question posed by Ossona de Mendez and Nešetřil. We
also provide an explicit algorithm to decide the treedepth and construct an optimal
treedepth decomposition of a given graph in time 2O(d2)n.

A natural question that arises is whether one can find a constant-factor approxima-
tion for treedepth in single-exponential time, similar to the algorithm for treewidth.
Such an algorithm would be interesting in the sense that it would remove the depen-
dency of the algorithm provided in this paper on the treewidth approximation.

Part III

B R A N C H I N G V E R S U S D Y N A M I C P R O G R A M M I N G

12
B R A N C H I N G , D Y N A M I C P R O G R A M M I N G , T R E E D E P T H
A N D T R E E W I D T H

As previously discussed, treedepth is algorithmically interesting since it is structurally
more restrictive than pathwidth. Remember that there are clear bounds between the
treedepth, pathwidth and treewidth of a graph, i.e. by Proposition 5 it holds that
tw(G) 6 pw(G) 6 td(G)− 1 6 tw(G) · log n . Furthermore, a path decomposition can
be easily computed from a treedepth decomposition. Not only are there, as previously
mentioned, problems that are W[1]-hard or remain NP-hard when parameterized by
treewidth or pathwidth, but fpt when parameterized by treedepth [20, 112, 130, 233];
low treedepth can also be exploited to count the number of appearances of different
substructures, such as matchings and small subgraphs, much more efficiently [65, 95].

Lokshtanov, Marx and Saurabh showed—assuming SETH—that for 3-Coloring,
Vertex Cover and Dominating Set algorithms on a tree decomposition of width w
with running time O(3w · n), O(2w · n) and O(3ww2 · n), respectively, are basically
optimal [172]. Their stated intent (as reflected in the title of the paper) was to sub-
stantiate the common belief that known DP algorithms that solve these problems
were optimal. This is why we feel that a restriction to a certain type of algorithm
is not necessarily inferior to a complexity-based approach. Indeed, most algorithms
leveraging treewidth are dynamic programming algorithms or can be equivalently
expressed as such [33, 35, 36, 42, 43, 217]. Even before dynamic programming on
tree-decompositions became an important subject in algorithm design, similar con-
cepts were already used implicitly [23, 27]. The sentiment that the table size is the
crucial factor in the complexity of dynamic programming algorithms is certainly not
new (see e.g. [212]), so it seems natural to provide lower bounds to formalize this
intuition. Our tool of choice will be a family of boundaried graphs that are distinct
under Myhill–Nerode equivalence. The perspective of viewing graph decompositions
as an “algebraic” expression of boundaried graphs that allow such equivalences is
well-established [36, 43].

It can be noted that there have been previous formalizations of common algorithmic
paradigms in an attempt to investigate what different kinds of algorithms can and
cannot achieve, including dynamic programming [7, 50, 118, 137]. This allowed to
prove lower bounds for the number of operations required for certain specific prob-
lems when a certain algorithmic paradigm was applied. Other research shows that
for certain problems such as Steiner Tree and Set Cover an improvement over the
“naive” dynamic programming algorithm implies improving exhaustive k-SAT, which
would have implications related to SETH [61, 185].

To formalize the notion of a dynamic programming algorithm on tree, path and
treedepth decompositions, we consider algorithms that take as input a tree-, path-

60 12 branching , dynamic programming , treedepth and treewidth

or treedepth decomposition of width/depth s and size n and satisfy the following
constraints:

1. They pass a single time over the decomposition in a bottom-up fashion;

2. they use O(f (s) · logO(1) n) space; and

3. they do not modify the decomposition, including re-arranging it.

While these three constraints might look stringent, they include pretty much all dy-
namic programming algorithm for hard optimization problems on tree or path de-
compositions. For that reason, we will refer to this type of algorithms simply as DP
algorithms in the following.

In order to show the aforementioned space lower bounds, we introduce a simple ma-
chine model that models DP algorithms on treedepth decompositions and construct
superexponentially large Myhill–Nerode families that imply lower bounds for Domi-
nating Set, Vertex Cover/Independent Set and 3-Colorability in this algorith-
mic model. These lower bounds hold as well for tree and path decompositions and
align nicely with the space complexity of known DP algorithms: for every ε > 0, no
DP algorithm on such decomposition of width/depth k can use space bounded by
O
(
(3 − ε)k · logO(1)n

)
for 3-coloring or Dominating Set nor O

(
(2 − ε)k · logO(1)n

)
for Vertex Cover/Independent Set. While probably not surprising, we consider a
formal proof for what previously were just widely held assumptions valuable. The
provided framework should easily extend to other problems.

Consequently, any algorithmic benefit of treedepth over pathwidth and treewidth
must be obtained by non-DP means. We demonstrate that treedepth allows the de-
sign of branching algorithms whose space consumption grows only polynomially in
the treedepth and logarithmic in the input size. Such space-efficient algorithms are
quite easy to obtain for 3-Coloring and Vertex Cover/Independent Set with run-
ning time O(3d · n) and O(2d · n), respectively, and space complexity O(d + log n) and
O(d · log n). Our main contribution on the positive side here are two linear-fpt algo-
rithms for Dominating Set which use more involved branching rules on treedepth de-
compositions. The first one runs in time dO(d2) · n and uses space O(d3 log d + d · log n).
Compared to simple dynamic programming, the space consumption is improved con-
siderably, albeit at the cost of a much higher running time. For this reason, we design
a second algorithm that uses a hybrid approach of branching and dynamic program-
ming, resulting in a competitive running time of O(3d log d · n) and space consumption
O(2dd log d + d log n). Both algorithms are amenable to heuristic improvements (see
Section 16 for a discussion).

While applying branching to treedepth seems natural, it is unclear whether it could
be applied to treewidth or pathwidth. Recent work by Drucker, Nederlof and San-
thanam suggests that, relative to a collapse of the polynomial hierarchy, Independent

Set restricted to low-pathwidth graphs cannot be solved by a branching algorithm in
fpt time [73].

61

The idea of using treedepth to improve space consumption is not novel. Fürer and
Yu demonstrated that it is possible count matchings using polynomial space in the
size of the input [95] and a parameter closely related to the treedepth of the input.
Their algorithm achieves a small memory footprint by using the algebraization frame-
work developed by Lokshtanov and Nederlof [173]. This technique was also used by
Pilipczuk and Wrochna to develop an algorithm for Dominating Set which runs in
time 3d · poly(n) (non-linear) and uses space O(d · log n) [201]. Based on this last al-
gorithm they showed that computations on treedepth decompositions correspond to
a model of non-deterministic machines that work in polynomial time and logarithmic
space, with access to an auxiliary stack of maximum height equal to the decomposi-
tion’s depth.

In our opinion, algorithms based on algebraization have two disadvantages: On the
theoretical side, the dependency of the running and space consumption on the input
size is often at least Ω(n). On the practical side, using the Discrete Fourier Transform
makes it hard to apply common algorithm engineering techniques, like branch & bound,
which are available for branching algorithms.

13
M Y H I L L – N E R O D E FA M I L I E S

In this section we introduce the basic machinery to formalize the notion of dynamic
programming algorithms and how we prove lower bounds based on this notion. To
make things easier, we assume that the input graphs are connected, which allows us
to presume that the treedepth decomposition is always a tree instead of a forest.

First of all, we need to establish what we mean by dynamic programming (DP). DP
algorithms on graph decompositions work by visiting the bags/nodes of the decom-
position in a bottom-up fashion (a post-order depth-first traversal), maintaining tables
to compute a solution. For decision problems, these algorithms only need to keep at
most log n tables in memory at any given moment (achieved in the case of treewidth
by always descending first into the part of the tree decomposition with the greatest
number of leaves). We propose a machine model with a read-only tape for the input
that can only be traversed once, which only accepts as input decompositions presented
in a valid order. This model suffices to capture known dynamic programming algo-
rithms on path, tree and treedepth decompositions. More specifically, given a decision
problem on graphs Π and some well-formed instance (G, ξ) of Π (where ξ encodes
the non-graph part of the input), let T be a tree, path or treedepth decomposition of
G of width/depth k. We fix an encoding T̂ of T that lists the separators provided by
the decomposition in the order they are normally visited in a dynamic programming
algorithm (post-order depth-first traversal of the bag/nodes of a tree/path/treedepth
decomposition) and additionally encodes the edges of G contained in a separator us-
ing O(k log k) bits per bag or path. Then (k, T̂, ξ) is a well-formed instance of the DP
decision problem ΠDP. Pairing DP decision problems with the following machine model
provides us with a way to model DP computation over graph decompositions.

Definition 35 (Dynamic programming TM). A DPTM M is a Turing machine with an
input read-only tape, whose head moves only in one direction and a separate working
tape. It accepts as inputs only well-formed instances of some DP decision problem.

Any single-pass dynamic programming algorithm that solves a DP decision problem
on tree, path or treedepth decompositions of width/depth k using tables of size f (k)
that does not re-arrange the decomposition can be translated into a DPTM with a
working tape of size O(f (k) · log n). This model does not suffice to rule out algebraic
techniques, since this technique, like branching, requires to visit every part of the
decomposition many times [95]; or algorithms that preprocess the decomposition first
to find a suitable traversal strategy.

An s-boundaried graph ◦G is a graph G with a set bd(◦G) ⊆ V(G) of s distinguished
vertices labeled 1 through s, called the boundary of ◦G. We will call vertices that are

63

not in bd(◦G) internal. By ◦Gs we denote the class of all s-boundaried graphs. For
s-boundaried graphs ◦G1 and ◦G2, we let the gluing operation ◦G1 ⊕ ◦G2 denote the s-
boundaried graph obtained by first taking the disjoint union of G1 and G2 and then
unifying the boundary vertices that share the same label.1

The following notion of a Myhill–Nerode family will provide us with the machinery
to prove space lower-bounds for DPTMs where the input instance is an unlabeled
graph and hence for common dynamic programming algorithms on such instances.
Recall that ◦Gs denotes the class of all s-boundaried graphs. The idea is to construct a
sufficient number of bounded treedepth instances, such that any two of these instances
can be extended such that only one of them is part of the DP-decision problem. Since
a correct DPTM has to differentiate all these instances it needs to use at least one bit
of memory for every instance in the family, since otherwise there is a pair of instances
that could not be differentiated. For technical reasons that will become clear in the
proof of Lemma 25 we also have to make sure that all these graphs are small enough.

Definition 36 (Myhill–Nerode family). A set H ⊆ ◦Gs ×N is an s-Myhill–Nerode family
for a DP-decision problem ΠDP if the following holds:

1. For every (◦H, q) ∈ H it holds that |◦H| = |H| · logO(1)|H| and q = 2|H|·logO(1)|H|.

2. For every subset I ⊆ H there exists an s-boundaried graph ◦GI ∈ ◦Gs with
|◦GI | = |H| · logO(1)|H| and an integer pI such that for every (◦H, q) ∈ H it holds
that

(◦GI ⊕ ◦H, pI + q) 6∈ ΠDP ⇐⇒ (◦H, q) ∈ I .

Let ◦td(◦G) be the minimal depth over all treedepth decompositions of ◦G ∈ Gs where
the boundary appears as a path starting at the root. We define the size of a Myhill–
Nerode family H as |H|, its treedepth as

td(H) = max
(◦H,·)∈H,I⊆H

◦td(◦GI ⊕ ◦H)

and its treewidth and pathwidth as the maximum tree/path decomposition of lowest
width of any (◦H, ·) ∈ H where the boundary is contained in every bag.

The following lemma still holds if we replace “treedepth” by “pathwidth” or “tree-
width”.

Lemma 25. Let ε > 0, c > 1 and Π be a DP decision problem such that for every s there
exists an s-Myhill–Nerode family H for Π of size cs/ f (s) where f (s) = sO(1) ∩Ω(1) and
depth td(H) = s + o(s). Then no DPTM can decide Π using space O((c− ε)k · logO(1) n),
where n is the size of the input instance and k the depth of the treedepth decomposition given
as input.

1 In the literature the result of gluing is often an unboundaried graph. Our definition of gluing will be
more convenient in the following.

64 13 myhill–nerode families

Proof. Assume to the contrary that such a DPTM M exists. Fix s and consider any
subset I ⊆ H of the s-Myhill–Nerode family H of Π. By definition, all graphs in H
and the graph ◦GI have size at most

|H| · logO(1)|H| = cs · sO(1).

By definition, for every s-boundaried graph ◦H contained in H, there exist treedepth
decompositions for ◦GI ⊕ ◦H of depth at most s + o(s) such that the boundary vertices
of ◦GI appear on a path of length s starting at the root of the decomposition. Hence, we
can fix a treedepth decomposition TI of GI with exactly these properties and choose
a treedepth decomposition T of ◦GI ⊕ ◦H such that TI is a subgraph. Moreover, we
choose an encoding of T that lists the separators of TI first.

Notice that M only uses (c− ε)s+o(s) · sO(1) space. There are 2|H| = 2cs/ f (s) choices
for I . For there to be a different content on the working tape of M for every choice of I
we need at least cs/ f (s) bits. We rewrite this as (c− ε)s · αs/ f (s), where α = c/(c− ε).
Since α > 1 it follows that αs/ f (s) grows exponentially faster than (c − ε)o(s) · sO(1)

and thus cs/ f (s) ∈ ω((c− ε)s+o(s) · sO(1)). By pigeonhole principle it follows that there
exist graphs ◦GI , ◦GJ for sets I 6= J ⊆ H for sufficiently large s for which M is in the
same state and has the same working tape content after reading the separators of the
respective decompositions TI and TJ . Choose (◦H, q) ∈ I 4J . By definition

(◦GI ⊕ ◦H, pI + q) 6∈ Π ⇐⇒ (◦GJ ⊕ ◦H, pJ + q) ∈ Π

but M will either reject or accept both inputs. Contradiction.

14
S PA C E L O W E R B O U N D S F O R D Y N A M I C P R O G R A M M I N G

In this section we prove space lower bounds for dynamic programming algorithms
as defined in Section 12 for 3-Coloring, Vertex Cover and Dominating Set. These
space lower bounds all follow the same basic construction. We define a problem-
specific “state” for the vertices of a boundary set X and construct two boundaried
graphs for it: one graph that enforces this state in any (optimal) solution of the respec-
tive problem and one graph that “tests” for this state by either rendering the instance
unsolvable or increasing the costs of an optimal solution. We begin by proving a lower
bound for 3-Coloring.

Theorem 6. For every ε > 0, no DPTM solves 3-Coloring on a tree, path or treedepth
decomposition of width/depth k with space bounded by O((3− ε)k · logO(1)n).

Proof. For any s we construct an s-Myhill–Nerode family H. Let X be the s vertices
in the boundary of all the boundaried graphs in the following. Then for every three-
partition X = {R, G, B} of X we add a boundaried graph ◦HX to the family H by
taking a single triangle vR, vG, vB and connecting the vertices vC to all vertices in X \ C
for C ∈ {R, G, B}. Notice that any 3-coloring of ◦HX induces the partition X on the
nodes X. Since instances of three-coloring do not need any additional parameter, we
ignore this part of the construction of H and implicitly assume that every graph in H
is paired with zero.

To construct the graphs GI for I ⊂ H, we will employ the circuit gadget v1, v2, u
highlighted in Figure 14.1. Note that if v1, v2 receive the same color, then u must be
necessarily colored the same. In every other case, the color of u is arbitrary. Now for
every three-partition X = {R, G, B} of X we construct a testing gadget ◦ΓX as follows:
For every C ∈ {R, G, B} we arbitrarily pair the vertices in C and connect them via
the circuit gadget (as v1, v2). If |C| is odd, we pair some vertex of C with itself. We

Figure 14.1: The gadget ◦ΓX for X = {R, G, B}.

66 14 space lower bounds for dynamic programming

then repeat the construction with all the u-vertices of those gadgets, resulting in a
hierarchical structure of depth ∼ log |Bi| (cf., Figure 14.1 for an example construction).
Finally, we add a single vertex a and connect it to the top vertex of the three circuits.
Note that by the properties of the circuit gadget, the graph ◦ΓX is three-colorable iff
the coloring of X does not induce the partition X . In particular, the graph ◦ΓX ⊕ ◦HX ′
is three-colorable iff X 6= X ′.

Now for every subset I ⊆ H of graphs from the family, we define the graph ◦GI =⊕
◦HX∈I

◦ΓX . By our previous observation, it follows that for every ◦HX ∈ H the
graph ◦GI ⊕ ◦HX is three-colorable iff ◦HX 6∈ I . Furthermore, every composite graph
has treedepth at most s + 3dlog se+ 1 as witnessed by a decomposition whose top s
vertices are the boundary X and the rest has the structure of the graph itself after every
triangle is made into a path. The graphs ◦GI for every I ⊆ H have size at most 3s · 6s.
We conclude that H is an s-Myhill–Nerode family of size 3s/6 (the factor 1/6 accounts
for the 3! permutations of the partitions) and the claim follows from Lemma 25.

Surprisingly, the construction to prove a lower bound for Vertex Cover is very similar
to the one for 3-coloring.

Theorem 7. For every ε > 0, no DPTM solves Vertex Cover on a tree, path or treedepth
decomposition of width/depth k with space bounded by O((2− ε)k · logO(1)n).

Proof. For every s we construct an s-Myhill–Nerode family H. Let X be the s vertices
in the boundary of all the boundaried graphs in the following. Assume for now that s
is even. For every subset A ⊆ X such that |A| = |X|/2 we construct a graph ◦HA which
consists of the boundary as an independent set and a matching to A and add (◦HA, s/2)
to H. Note that any optimal vertex cover of any ◦HA has size s/2 and that A is such a
vertex cover.

Consider I ⊆ H. We will again use the circuit gadget highlighted in Figure 14.1 to
construct ◦GI . Note that if either v1 or v2 is in the vertex cover we can cover the rest of
gadget with two vertices, one of them being the top vertex u. Otherwise, u cannot be
included in a vertex cover of size two. We still need two vertices, even if both v1 and v2

are already in the vertex cover. For a set A ⊆ X such that |A| = |X|/2 we construct the
testing gadget ◦ΓA by starting with the boundary X as an independent set, connecting
the vertices of X \ A pairwise via the circuit gadget (using an arbitrary pairing and
potentially pairing a leftover vertex with itself). As in the proof of Theorem 6, we
repeat this construction on the respective u-vertices of the circuits just added and
iterate until we have added a single circuit at the very top. Let us denote the topmost
u-vertex in this construction by u′. Let λ be the number of circuits added in this
fashion. Any optimal vertex of ◦ΓA has size 2λ and does not include u′. Note that if a
node of X \ A is in the vertex cover, we can cover the rest of the gadget with 2λ many
vertices, such that u′ is part of the vertex cover.

We construct ◦GI by taking ⊕◦HA∈I
◦ΓA and adding a single vertex a that connects

to all u′-vertices of the gadgets {◦ΓA}◦HA∈I . Notice that, by the same reason u′ was

67

not part of an optimal vertex cover of any gadget ◦ΓA, the node a must be part of any
optimal vertex cover of ◦GI for |I| > 1. For |I| = 1 either the only u′ or a must be
contained besides the other vertices, but we will assume w.l.o.g. that it is a. Let ` be the
biggest optimal vertex cover for any such ◦GI . Let `I be the size of an optimal vertex
cover for a specific ◦GI . For simplicity, we pad ◦GI with `− `I isolated K2 subgraphs
to ensure that the size of an optimal vertex cover is `.

We claim that ◦GI ⊕ ◦HA has a vertex cover of size `+ s/2− 1 iff ◦HA 6∈ I . If HA 6∈ I ,
then for every gadget ◦ΓA′ that comprises ◦GI it holds that A′ 6= A. Since |A′| = |A| it
follows that (X \ A′) ∩ A 6= ∅. Since ◦GI ⊕ ◦HA has s/2 vertices of degree one whose
neighborhood is A, we can assume that an optimal vertex cover contains A. From the
previous arguments about the possible vertex covers for the ◦ΓA′ gadgets it follows
that the solution still needs two nodes for every circuit gadget of ◦ΓA′ , but now this
part of the vertex cover can include u′. Since this is true for every ◦ΓA′ it follows that a
does not need to be part of the vertex cover. Thus the size of an optimal vertex cover is
precisely `+ s/2− 1. If ◦HA ∈ I then the gadget ◦ΓA that has no vertex cover using two
nodes per circuit gadget that contains its node u′. It follows that any optimal vertex
cover of ◦GI ⊕ ◦HA must contain either a or its u′. Thus the size of the solution is at
least `+ s/2. We thus set pI to be `− 1.

The size of the family H is, using Stirling’s approximation, bounded from below by(
s

s/2

)
>

2s−1
√

s/2

and is smaller than 2s. All numbers involved describe subsets of graphs and thus
must be smaller than the sizes of those graphs. All graphs in the family have size
s. The graphs ◦GI as described, are constructed by adding a polylogarithmic number
of nodes to the boundary per gadget ◦ΓA and thus their size is bounded by |H| ·
logO(1)|H|. For uneven s we take the next smaller even s′ and use the s′-family as the s-
family. The treedepth is td(H) = s+ o(s) by the same argument as for the construction
for Theorem 6. We conclude that H is a s-Myhill–Nerode family of size 2s/ f (s) for
f (s) = sO(1) ∩Ω(1) and depth td(H) = s + o(s) and thus by Lemma 25 the theorem
follows.

Theorem 8. For every ε > 0, no DPTM solves Dominating Set on a tree, path or treedepth
decomposition of width/depth k with space bounded by O

(
(3− ε)k · logO(1)n

)
.

Proof. For any s divisible by three we construct an s-Myhill–Nerode family H as fol-
lows. Let X be the s boundary vertices of all the boundaried graphs in the following.
Then for every three-partition X = (B, D, W) of X into sets of size s/3, we construct a
graph HX by connecting two pendant1 vertices to every vertex in B, connecting every
vertex in D to a vertex which itself is connected to two pendant vertices and leaving

1 A pendant vertex is a node of degree one.

68 14 space lower bounds for dynamic programming

Figure 14.2: The gadget ◦ΓW for DW = {D1, D2, D3}. Padding-vertices are not included.

W untouched. Intuitively, we want the vertices of B to be in any minimal dominating
set, the vertices in D to be dominated from a vertex in HX not in the boundary and
the vertices in W to be dominated from elsewhere. We add every pair (HX , 2s/3) to H.
Notice that the size of an optimal dominating set of HX [B ∪ D] is 2s/3 and there is
only one such optimal dominating set, namely B ∪ N(D).

For a subset I ⊆ H let DW = {D | H(X\(D∪W),D,W) ∈ I} be a set defined for
every W ⊂ X. We construct the graph ◦GI using the circuit gadget with nodes v1, v2, u
highlighted in Figure 14.2: Note that if v1, v2 need to be dominated, then there is no
dominating set of the gadget of size two that contains u. If one of v1, v2 does not
need to be dominated (but is not in the dominating set) then a dominating set of
size two of the circuit gadget containing u exists. For every W ⊂ X with |W| = s/3
construct a testing gadget ◦ΓW as follows. Assume first that DW is non-empty. For
every set D ∈ DW we construct the gadget ◦ΛD by arbitrarily pairing the vertices in D
and connecting them via the circuit gadget as exemplified in Figure 14.2. This closely
parallels the constructions we have seen in the proofs for Theorem 6 and 7: If |D| is
odd, we pair some vertex of D with itself. We then repeat the construction with all the
u-vertices of those gadgets, resulting in a hierarchical structure of depth ∼ log |D|. To
finalize the construction of ◦ΛD we take the u-vertex of the last layer and connect it to
a new vertex u′. This concludes the construction of ◦ΛD. Let in the following λ be the
number of circuits we used to construct such a ◦ΛD gadget (this quantity only depends
on s and is the same for any ◦ΛD). If DW is empty, then ◦ΓW is the boundary and a K2

with one of its vertices adjacent to all vertices in W plus (2s/3
s/3)2λ isolated padding-

vertices. Otherwise we obtain ◦ΓW by taking the graph
⊕

D∈D
◦ΛD and adding two

additional vertices a, b as well as
(
(2s/3

s/3)− |DW |
)
2λ isolated vertices for padding. The

vertex a is adjacent to all u′ vertices of all the gadgets {◦ΛD}D∈DW and the vertex b

69

is adjacent to {a} ∪W (cf., again Figure 14.2 for an example). Finally we define for
every I ⊆ H the graph ◦GI =

⊕
W⊂X,|W|=s/3

◦ΓW .
Let α = (2s/3

s/3)2λ + 1. Consider some ◦ΓW , for a W such that DW 6= ∅. Assume
we start with a dominating set S such that S ∩ D = ∅ for at least one D ∈ DW . We
want to show that extending S to dominate V((◦ΓW) \ X) ∪W requires at least α + 1
many vertices. We can assume that b must be added to the dominating set. All(
(2s/3

s/3) − |DW |
)
2λ padding vertices must also be added. Since we need at least two

vertices per circuit gadget, at least 2λ vertices will always be necessary to dominate
each ◦ΛD subgraph of ◦ΓW (of which there are |DW | many). For ◦ΛD where S ∩ D = ∅
no dominating set of the circuit gadgets of size 2λ can also dominate u′. Thus we also
need to take a or u′ into the dominating set and we need at least α + 1 many vertices.

Now assume that we start with a dominating set S that contains at least one node of
every D ∈ DW 6= ∅. In this case we can dominate all the circuit gadgets and u′ with 2λ

many nodes in every ◦ΛD. Thus, there is a set in ◦ΓW that dominates V((◦ΓW) \X)∪W
of size α, since neither a nor any u′ needs to be in the dominating set.

Let us now show that our boundaried graphs work as intended and calculate the
appropriate parameters pI . Consider any graph ◦H(B0,D0,W0) ∈ H and the graph ◦GI for
any I ⊆ H. We show that ◦H(B0,D0,W0) ⊕ GI has an optimal dominating set of size at
most (s

s/3)α+ 2s/3 iff ◦H(B0,D0,W0) 6∈ I . We need to include the s/3 vertices of B0 and the
s/3 vertices of N(D)∩V(◦H(B0,D0,W0)). We use the sets DW as defined previously. First,
assume that DW0 = ∅, that is, for every set B′, D′ we have that H(B′,D′,W0) 6∈ I and
in particular H(B0,D0,W0) 6∈ I . It is easy to see that the simple version of the gadget
◦ΓW0 for the case where DW0 = ∅ can dominate its non-boundary nodes and W0

with α nodes. All other gadgets ◦ΓW ′ for W ′ 6= W0 do not need to dominate their
respective W ′-sets and can therefore include their a-vertices and not include their b-
vertices. Accordingly, they can all dominate their internal vertices with α many nodes.
This all adds up to a dominating set of size (s

s/3)α + 2s/3. Next, assume that DW0 6= ∅
and D0 6∈ DW0 , i.e., again H(B0,D0,W0) 6∈ I . Therefore, for every set D′ ∈ DW0 we have
that D′ ∩ B0 6= ∅. Since we can assume B0 is part of our dominating set, we only
need to add α vertices to the dominating from ◦ΓW0 to dominate V((◦ΓW0) \ X) ∪W0.
All gadgets ◦ΓW ′ , W ′ 6= W0 also need α vertices, as observed above. We obtain in
total a dominating set of size (s

s/3)α + 2s/3. Finally, consider the case that D0 ∈ DW0 ,
i.e. H(B0,D0,W0) ∈ I . Since B0 ∩D0 = ∅ the gadget ◦ΛD0 needs α+ 1 vertices to dominate
V((◦ΓW0) \X)∪W0. Dominating W0 with nodes different from the b-vertex of ◦ΓW0 does
not help. Thus we need at least (s

s/3)α+ 2s/3+ 1 vertices to dominate ◦H(B0,D0,W0)⊕GI .
Choosing pI = (s

s/3)α completes the construction of (◦GI , pI). The size of all these
graphs is bounded by O((s

s/3)(
2s/3
s/3) log s) = O(3s log s). We conclude that H is an s-

Myhill–Nerode family of size (s
s/3)(

2s/3
s/3) which is Ω(3s/s) and O(3s). For s indivisible

by three we take the next smaller integer s′ divisible by three and use s′-family as the
s-family. It is easy to confirm that the treedepth of H is td(H) = s + o(s) and the
theorem follows from Lemma 25.

15
D O M I N AT I N G S E T W I T H O (d 3 l o g d + d l o g n) S PA C E

That branching might be a viable algorithmic design strategy for low-treedepth graphs
can easily be demonstrated for problems like 3-Coloring and Vertex Cover: We sim-
ply branch on the topmost vertex of the decomposition and recurse into (annotated)
subinstances. For q-Coloring, this leads to an algorithm with running time O(qd · n)
and space complexity O(d log n). Since it is possible to perform a depth-first traver-
sal of a given tree using only O(log n) space [165], the space consumption of this
algorithm can be easily improved to O(d + log n). Similarly, branching solves Vertex

Cover in time O(2d · n) and space O(d log n).
The task of designing a similar algorithm for Dominating Set is much more in-

volved. Imagine branching on the topmost vertex of the decomposition: while the
branch that includes the vertex into the dominating set produces a straightforward re-
currence into annotated instances, the branch that excludes it from the dominating set
needs to decide how that vertex should be dominated. The algorithm we present here
proceeds as follows: We first guess whether the current node x is in the dominating
set or not. Recall that Px denotes the nodes of the decomposition that lie on the unique
path from x to the root of the decomposition (and x 6∈ Px). We iterate over every pos-
sible partition S1] · · ·] S` = Px ∪ {x} into ` 6 d sets of Px ∪ {x}. The semantic of a
block Si is that we want every element Si to be dominated exclusively by nodes from a
specific subtree of x. A recursive call on a child y of x, together with an element of the
partition Si, will return the size of a dominating set which dominates V(Ty) ∪ Si. The
remaining issue is how these specific solutions for the subtrees of x can be combined
into a solution in a space-efficient manner. To that end, we first compute the size of a
dominating set for Ty itself and use this as baseline cost for a subtree Ty. For a block Si
of a partition of Px, we can now compare the cost of dominating V(Ty) ∪ Si against
this baseline to obtain overhead cost of dominating Si using vertices from Ty. Collect-
ing these overhead costs in a table for subtrees of x and the current partition, we are
able to apply certain reduction rules on these tables to reduce their size to at most d2

entries. Recursively choosing the best partition then yields the solution size using only
polynomial space in d and logarithmic in n. Formally, we prove the following:

Theorem 9. Given a graph G and a treedepth decomposition T of G, Algorithm 5 finds the
size of a minimum dominating set of G in time dO(d2) · n using O(d3 log d + d log n) bits.

We split the proof of Theorem 9 into lemmas for correctness, running time and used
space.

Lemma 26. Algorithm 5 called on a graph G, a treedepth decomposition T of G, the root r of
T and P = D = ∅ returns the size of a minimum dominating set of G.

71

Proof. If we look at a minimal dominating set S of G we can charge every node in
V(G) \ S to a node from S that dominates it. We are thus allowed to treat any node in
G as if it was dominated by a single node of S. We will prove this lemma by induction,
the inductive hypothesis being that a call on a node x with arguments D = S∩ Px and
P ⊆ Px being the set of nodes dominated from nodes in Tx by S returns |S ∩V(Tx)|.

It is clear that the algorithm will call itself until a leaf is reached. Let x be a leaf of T
on which the function was called. We first check the condition at line 2, which is true
if either x is not dominated by a node in D or if some node in P is not yet dominated.
In this case we have no choice but to add x to the dominating set. Three things can
happen: P is not fully dominated, which means that it was not possible under these
conditions to dominate P, in which case we correctly return ∞, signifying that there
is no valid solution. Otherwise we can assume P is dominated and we return 1 if we
had to take x and 0 if we did not need to do so. Thus the leaf case is correct.

We assume now x is not a leaf and thus we reach line 6. We first add x to P, since it
can only be dominated either from a node in D or a node in Tx. Nodes in Tx can only
be dominated by nodes from V(Tx) ∪ Px. We assume by induction that D = S ∩ Px

and that P only contains nodes which are either in S or dominated from nodes in
Tx. Algorithm 5 executes the same computations for D and D ∪ {x}, representing
not taking and taking x into the dominating set respectively. We must show that
the set P for the recursive calls is correct. There exists a partition of the nodes of P
not dominated by D (respectively D ∪ {x}) such that the nodes of every element of
the partition are dominated from a single subtree Ty where y is a child of x. The
algorithm will eventually find this partition on line 8. The baseline value, i.e. the
size of a dominating set of Ty given that the nodes in D (respectively D ∪ {x}) are
in the dominating set, gives a lower bound for any solution. In the lists in L and L′

we keep the extra cost incurred by a subtree Ty if it has to dominate an element of
the partition. We only need to keep the best d values for every Si: Assume that it
is optimal to dominate Si from Ty and there are d + 1 subtrees induced on children
y′ 6= y of x whose extra cost over the baseline to dominate Si is strictly smaller than
the extra cost for Ty. At least one of these subtrees Ty′ is not being used to dominate
an element of the partition. This means we could improve the solution by letting Ty

dominate itself and taking the solution of Ty′ that also dominates Si. Keeping d values
for every element in the partition suffices to find a minimal solution, which is what
find_min_solution(L) does as follows: Create a bipartite graph G = (A] B, E) such that
A contains a node for every Si and B contains a node for every y for which there is an
entry (·, y) in L. For every node a representing Si we add an edge with weight d− c to
a node b representing y if (c, y) ∈ L[i]. Notice that the minimal number of nodes above
the baseline needed to dominate an element of the partition is always less than d. A
maximal matching in this bipartite graph tells us how many nodes above the baseline
are required to dominate the elements of the partition from subtrees rooted at children
of x. Since L contains at most d2 entries this can be computed in polynomial time in d.

72 15 dominating set with O(d3 log d + d log n) space

Since with lines 23 and 24 we take the minimum over all possible partitions and taking
x into the dominating set or not, we get that by inductive assumption the algorithm
returns the correct value. The lemma follows since the first call to the algorithm with
D = P = ∅ is obviously correct.

Input: A graph G, a treedepth decomposition T of G, a node x of T and sets P, D ⊆ V(G).
Output: The size of a minimum Dominating Set.

1 if x is a leaf in T then
2 if x /∈ NG[D] or P 6⊆ NG[D] then D := D ∪ {x} ;
3 if P 6⊆ NG[D] then return ∞ ;
4 else if x ∈ D then return 1 ;
5 else return 0 ;

6 result := ∞;
7 P := P ∪ {x};
8 foreach partition S1] · · ·] S` of P do
9 L := |P|-element array of ordered lists;

10 L′ := |P|-element array of ordered lists;
11 baseline := 0;
12 baseline′ := 0;
13 foreach child y of x in T do
14 b := domset(G, T, y,∅, D);
15 baseline := baseline + b;
16 b′ := domset(G, T, y,∅, D ∪ {x});
17 baseline′ := baseline + b′;
18 for Si ∈ {S1, . . . , S`} do
19 c := domset(G, T, y, Si, D)− b;
20 c′ := domset(G, T, y, Si, D ∪ {x})− b′;
21 Insert (c, y) into ordered list L[i] and keep only smallest ` elements;
22 Insert (c′, y) into ordered list L′[i] and keep only smallest ` elements;

/* Find minimal cost of dominating {S1, . . . , S`} from L and L′ by solving appropriate

matching problems (see proof of Lemma 26 for details). */

23 result := min(result, find_min_solution(L) + baseline);
24 result := min(result, find_min_solution(L′) + baseline′ + 1);

25 return result;
Algorithm 5: domset

Lemma 27. Algorithm 5 runs in time dO(d2) · n.

Proof. The running time when x is a leaf is bounded by O(d2), since all operations
exclusively involve some subset of the d nodes in Px ∪ {x}. Since |P| 6 d the number
of partitions of P is bounded by dd. When x is not a leaf the only time spent on
computations which are not recursive calls of the algorithm are all trivially bounded by
O(d), except the time spent on find_min_solution, which can be solved via a matching
problem in polynomial time in d (see proof of Lemma 26). The number of recursive
calls that a single call on a node x makes on a child y is O(d · dd) which bounds total
number of calls on a single node by dO(d2). This proves the claim.

15.1 Fast Dominating Set using O(2dd log d + d log n) space 73

Lemma 28. Algorithm 5 uses O(d3 log d + d log n) bits of space.

Proof. There are at most d recursive calls on the stack at any point. We will show that
the space used by one is bounded by O(d2 log d + log n). Each call uses O(d) sets, all
of which have size at most d. The elements contained in these sets can be represented
by their position in the path to the root of T, thus they use at most O(d2 log d) space.
The arrays of ordered lists L, L′ contain at most d2 elements and all entries are 6 d or
∞: If the additional cost (compared to the baseline cost) of dominating a block Si of
the current partition from some subtree Ty exceeds d, we disregard this possibility—it
would be cheaper to just take all vertices in Si, a possibility explored in a different
branch. To find a minimal solution from the table we need to avoid using the same
subtree to dominate more than one element of the partition; however, at any given
moment we only need to distinguish at most d2 subtrees. Thus the size of the arrays
L and L′ is bounded by O(d2 log d). The only other space consumption is caused by
a constant number of variables (result, baseline, baseline′, b, b′ and x) all of them 6 n.
Thus the space consumption of a single call is bounded by O(d2 log d + log n) and the
lemma follows.

fast dominating set using O(2d d log d + d log n) space

We have seen that it is possible to solve Dominating Set on low-treedepth graphs in a
space-efficient manner. However, we traded exponential space against superexponen-
tial running time and it is natural to ask whether there is some middle ground. We
present Algorithm 6 to answer this question: its running time O(3d log d · n) is com-
petitive with the default dynamic programming but its space complexity O(2d log d +

d log n) is exponentially better. The basic idea is to again branch from the top deciding
if the current node x is in the dominating set or not. Intertwined in this branching we
compute a function which for a subtree Tx and a set S ⊆ Px gives the cost of dominat-
ing V(Tx) ∪ S from Tx. For each recursive call on a node we only need this function
for subsets of Px which are not dominated. If d′ is the number of nodes of Px that are
currently contained in D, the function only needs to be computed for 2d−d′ sets. This
allows us to keep the running time of O∗(3d), since ∑d

i=0 (
d
i) · 2d−i = 3d, while only

creating tables with at most O(2d) entries. By representing all values in these tables as
6 d offsets from a base value, the space bound O(2dd log d + d log n) follows. Part of
the algorithm will be convolution operations.

Definition 37 (Convolution). For two functions M1, M2 with domain 2U for some
ground-set U we use the notation M1 ∗M2 to denote the convolution (M1 ∗M2)[X] :=
minA]B=X M1[A] + M2[B], for all X ⊆ U.

Theorem 10. For a graph G with treedepth decomposition T, Algorithm 6 finds the size of a
minimum dominating set in time O(3d log d · n) using O(2dd log d + d log n) bits of space.

74 15 dominating set with O(d3 log d + d log n) space

Input: A graph G, a treedepth decomposition T of G, a node x of T and a set D ⊆ V(G).
Output: The size of a minimum Dominating Set.

1 M, M1, M2 := are empty associative arrays. If a set is not in the array its value is ∞;
2 if x is a leaf in T then
3 M[NG[x] \ D] := 1;
4 if x ∈ NG[D] then M[∅] := 0 ;
5 return M;

/* Assume the children of x are {y1, . . . , y`}. */

6 for i ∈ {1, . . . , `} do
7 M′ := domset(G, T, yi, D);
8 M1 := M1 ∗M′;

/* x is not in the dominating set. Discard entries where x is undominated. */

9 if x /∈ NG[D] then delete all entries S from M1 where x /∈ S ;
10 for i ∈ {1, . . . , `} do
11 M′ := domset(G, T, yi, D ∪ {x});
12 M2 := M2 ∗M′;

13 foreach S ∈ M2 do M[S] := M[S] + 1 ;
14 M := M1 ∗M2;

/* Forget x. */

15 foreach S ∈ M where x /∈ S do M[S] := min(M[S], M[S ∪ {x}]) ;
16 Delete all entries S from M where x ∈ S;
17 if x is the root of T then return M[∅] ;
18 else return M ;

Algorithm 6: domset

We divide the proof into lemmas as before.

Lemma 29. Algorithm 6 called on G, T, r, ∅, where T is a treedepth decomposition of G with
root r, returns the size of a minimum dominating set of G.

Proof. Notice that the associative array M represents a function which maps subsets of
Px \ D to integers and ∞. At the end of any recursive call, M[S] for S ⊆ Px \ D should
be the size of a minimal dominating set in Tx which dominates Tx and S assuming
that the nodes in D are part of the dominating set. We will prove this inductively.

Assume x is a leaf. We can always take x into the dominating set at cost one. In
case x is already dominated we have the option of not taking it, dominating nothing
at zero cost. This is exactly what is computed in lines 2–5.

Assume now that x is an internal, non-root node of T. First, in lines 6–9 we assume
that x is not in the dominating set. By inductive assumption calling domset on a child y
of x returns a table which contains the cost of dominating Ty and some set S ⊆ Py \ D.
By convoluting them all together M1 represents a function which gives the cost of
dominating some set S ⊆ (Px ∪ {x}) \ D and all subtrees rooted at children of x. We
just need to take care that x is dominated. If x is not dominated by a node in D, then it
must be dominated from one of the subtrees. Thus we are only allowed to retain solu-
tions which dominate x from the subtrees. We take care of this on line 9. After this M1

15.1 Fast Dominating Set using O(2dd log d + d log n) space 75

represents a function which gives the cost of dominating some set S ⊆ (Px ∪ {x}) \ D
and Tx assuming x is not in the dominating set. Then we compute a solution assum-
ing x is in the dominating set in lines 10–13. We first merge the results on calls to the
children of x via convolution. Since we took x into the dominating set we increase the
cost of all entries by one. After this M2 represents the function which gives the cost of
dominating some set S ⊆ Px \D and Tx assuming x is in the dominating set. We finally
merge M1 and M2 together with the min-sum convolution. Since we have taken care
that all solutions represented by entries in M dominate x we can remove all informa-
tion about x. We do this in lines 15–16. Finally, M represents the desired function and
we return it. When x is the root, instead of returning the table we return the value for
the only entry in M, which is precisely the size of a minimum dominating set of G.

To prove the running time of Algorithm 6 we will need the values M to be all smaller
or equal to the depth of T. Thus we first prove the space upper bound. In the following
we treat the associative arrays M, M1 and M2 as if the entries were values between 0
and n. We will show that we can represent all values as an offset 6 d of a single value
between 0 and n.

Lemma 30. Algorithm 6 uses O(2dd log d + d log n) bits of space.

Proof. Let d be the depth of the provided treedepth decomposition. It is clear that the
depth of the recursion is at most d. Any call to the function keeps a constant number of
associative arrays and nodes of the graph in memory. By construction these associative
arrays have at most 2d entries. For any of the computed arrays M the value of M[∅]

and M[S] for any S 6= ∅ can only differ by at most d. We can thus represent every
entry for such a set S as an offset from M[∅] and use O(2d log d + log n) space for
the tables. This together with the bound on the recursion depth gives the bound
O(2dd log d + d log n).

Lemma 31. Algorithm 6 runs in time O(3d log d · n).

Proof. On a call on which d′ nodes of Px are in the dominating set the associative arrays
have at most 2s entries for s = d− d′. As shown above the entries in the arrays are 6 s
(except one). Hence, we can use fast subset convolution to merge the arrays in time
O(2s log s) [28]. It follows that the total running time is bounded by

O
(
n ·

d

∑
i=0

(
d
i

)
· 2d−i log(d− i)

)
= O(3d log d · n)

and thus the lemma follows.

16
C O N C L U S I O N

We have shown that single-pass dynamic programming algorithms on treedepth, tree
or path decompositions without preprocessing of the input must use space exponential
in the width/depth, confirming a common suspicion and proving it rigorously for
the first time. This complements previous SETH-based arguments about the running
time of arbitrary algorithms on low treewidth graphs. We further demonstrate that
treedepth allows non-DP linear-time algorithms that only use polynomial space in
the depth of the provided decomposition. Both our lower bounds and the provided
algorithm for Dominating Set appear as if they could be special cases of a general
theory to be developed in future work and we further ask whether our result can be
extended to less stringent definitions of “dynamic programming algorithms.”

It would be great to be able to characterize exactly which problems can be solved
in linear-fpt time using poly(d) · log n space. Tobias Oelschlägel proved as part of his
master thesis [199] that the ideas presented here can be extended to the framework of
Telle and Proskurowski for graph partitioning problems [225]. Mimicking the devel-
opment for treewidth would point to extending this result to MSO. Sadly, a proven
double exponential dependency on the run-time of model-checking MSO parameter-
ized by the size of a vertex cover implies that no such result is possible [156]. Is there a
characterization that better captures for which problems this is possible? Previous re-
search that might be relevant to this endeavor has investigated the height of the tower
in the running time for MSO model-checking on graphs of bounded treedepth [96].

Despite the less-than-ideal theoretical bounds of the presented Dominating Set al-
gorithms, the opportunities for heuristic improvements are not to be slighted. Take the
pure branching algorithm presented in Section 15. During the branching procedure,
we generate all partitions from the root-path starting at the current vertex. However,
we actually only have to partition those vertices that are not dominated yet (by virtue
of being themselves in the dominating set or being dominated by another vertex on
the root-path). A sensible heuristic as to which branch—including the current vertex
in the dominating set or not—to explore first, together with a branch & bound routine
should keep us from generating partitions of very large sets. A similar logic applies to
the mixed dynamic programming/branching algorithm since the tables only have to
contain information about sets that are not yet dominated. It might thus be possible
to keep the tables a lot smaller than their theoretical bounds indicate.

Furthermore, it seems reasonable that in practical settings, the nodes near the root
of treedepth decompositions are more likely to be part of a minimal dominating set.
If this is true, computing a treedepth decomposition would serve as a form of smart
preprocessing for the branching, a rough “plan of attack”, if you will. How much

77

such a guided branching improves upon known branching algorithms in practice is an
interesting avenue for further research.

It is still an open question, proposed by Michał Pilipczuk during GROW 2015,
whether Dominating Set can be solved in time (3 − ε)d · poly(n) when parameter-
ized by treedepth. Our lower bound result implies that if such an algorithm exists, it
cannot be a straightforward dynamic programming algorithm.

Part IV

M O T I F C O U N T I N G O N R A N D O M I N T E R S E C T I O N G R A P H S

17
S PA R S I T Y O F C O M P L E X N E T W O R K S

There has been a recent surge of interest in analyzing large graphs, stemming from
the rise in popularity (and scale) of social networks and significant growth of rela-
tional data in science and engineering fields (e.g. gene expressions, cybersecurity logs
and neural connectomes). One significant challenge in the field is the lack of deep
understanding of the underlying structure of various classes of real-world networks.

Although it is widely accepted that complex networks tend to be sparse (in terms of
edge density), this property usually is not sufficient to improve algorithmic tractabil-
ity: many NP-hard problems on graphs, for instance, remain NP-hard when restricted
to graphs with bounded average degree. In contrast, graph classes that are structurally
sparse (bounded treewidth, planar, etc.) often admit more efficient algorithms—in par-
ticular when viewed through the lens of parameterized complexity. Consequently, we
are interested whether random graph models and, by extension, real-world networks
exhibit any form of structural sparseness that might be exploitable algorithmically.

As a first step, we would like that a graph is not only sparse on average, but that
this property extends to all its subgraphs. This motivates a very general class of
structurally sparse graphs—those of bounded degeneracy, a property that has been
previously studied in the context of both graph theory and complex networks [8, 9, 10,
52, 104, 148].

Definition 38 (k-core). The k-core of G, denoted Ck, is the maximum induced subgraph
of G in which all vertices have degree at least k. The degeneracy of G is the maximum
k so that Ck is nonempty (equivalently, the least positive integer k such that every
induced subgraph of G contains a vertex with at most k neighbors).

Some classes of graphs where the members have bounded degeneracy have stronger
structural properties—here we focus on graphs of bounded expansion (see Defini-
tion 14). In the context of networks, bounded expansion captures the idea that net-
works decompose into small dense structures (e.g. communities) connected by a sparse
global structure.

Intuitively, a graph class has bounded expansion if for every member G, one cannot
form arbitrarily dense graphs by contracting subgraphs of small radius. Formally,
the degeneracy of every minor of G is bounded by a function of the depth of that
minor (the maximum radius of its branch sets). Bounded expansion offers a structural
generalization of both bounded-degree and graphs excluding a (topological) minor.

This property presents challenges for empirical evaluation, since bounded expan-
sion is only defined with respect to graph classes (not for single instances). As is
typical in the study of network structure, we instead ask how the properties behave

82 17 sparsity of complex networks

Figure 17.1: The graph H on the right is a 1-shallow topological minor of G, as witnessed by
the 6 2-subdivision highlighted inside G. Further, H is the densest among all
1-shallow topological minor of G: hence ∇̃1(G) = |E(H)|/|V(H)| = 9/5.

with respect to randomized models which are designed to mimic aspects of network
formation and structure. In related work several previously proposed models for ran-
dom networks have been analyzed and shown to produce graphs belonging to a class
of bounded expansion w.h.p. [65]:

• Graphs sampled with the Molloy-Reed configuration model (including a variation
of the model which achieves high clustering) or the Chung-Lu model with a pre-
scribed sparse degree sequence (including heavy-tailed degree distributions)

• Perturbed bounded-degree graphs

• Stochastic block models with small probabilities

Furthermore, experimental evidence for the claim that many complex networks have
bounded expansion was given, by measuring the “low treedepth coloring number” on
a corpus of real-world data.

We expand on this previous work by considering the random intersection graph model
introduced by Karoński, Scheinerman and Singer-Cohen [136, 220] which has recently
attracted significant attention in the literature [31, 64, 105, 131, 214]. Random intersection
graphs are based on the premise that network edges often represent underlying shared
interests or attributes. The model first creates a bipartite object-attribute graph B =

(V, A, E) by adding edges uniformly at random with a fixed per-edge probability p(α),
then considers the intersection graph: G := (V, E′) where xy ∈ E′ if the neighborhoods
of the vertices x, y in B have a non-empty intersection. The parameter α controls both
the ratio of attributes to objects and the probability p: for n objects the number of
attributes m is proportional to nα and the probability p to n−(1+α)/2.

This model is attractive because they meet three important criteria: (1) the gen-
erative process makes sense in many real-world contexts, for example collaboration
networks of scientists [195, 232]; (2) they are able to generate graphs which match key
empirically established properties of real data—namely sparsity, (tunable) clustering
and assortativity [30, 31, 64]; and (3) they are relatively mathematically tractable due
to significant amounts of independence in the underlying edge creation process.

83

We will show that the random intersection graphs model generates graphs that
belong w.h.p. to a graph class of bounded expansion precisely when it generates de-
generate graphs. More specifically, we present the following results on the structure
of random intersection graphs.

(i) For α 6 1, random intersection graphs are w.h.p. somewhere dense (and thus
do not have bounded expansion) and have unbounded degeneracy.

(ii) For α > 1, random intersection graphs have w.h.p. bounded expansion (and
thus constant degeneracy).

While in general a graph class with unbounded degeneracy is not necessarily some-
where dense, the negative proofs presented here show that members of the graph
class contain w.h.p. large cliques. This simultaneously implies unbounded degener-
acy and that the class is somewhere dense (as a clique is a 0-subdivision of itself).
Consequently, we prove a clear dichotomy: random intersection graphs are either
structurally sparse or somewhere dense.

In particular, the second result strengthens the original claim that the model gen-
erates sparse graphs for α > 1, by establishing they are in fact structurally sparse in
a robust sense. It is of interest to note that random intersection graphs only exhibit
tunable clustering when α = 1 [64], when our results indicate they are not structurally
sparse (in any reasonable sense).1

It is easy to see that the degeneracy is lower-bounded by the size of the largest
clique. Thus, the degeneracy of intersection graphs is bounded below by the maximum
attribute degree in the associated bipartite graph since each attribute contributes a
complete subgraph of size equal to its degree to the intersection graph. For certain
parameter values, this lower bound will, w.h.p., give the correct order of magnitude
of the degeneracy of the graph.

Algorithmically, this property is extremely useful: every first-order-definable prob-
lem is decidable in linear fpt-time in these classes [78]. In the following we highlight
domain-specific applications of computing the frequency of small fixed pattern graphs
inside a network. In particular, the concept of network motifs and graphlets has proven
very useful in the area of computational biology.

A network motif is a (labeled) subgraph that appears more often in a real-world
network than one would expect by pure chance. The hypothesis here is that such a
structure is likely to have some particular significance [184]. By now, motifs have been
found in a wide range of domains, such as protein-protein-interaction networks [6],
brain networks [221] and electronic circuits [124]. For an extensive overview see
the surveys of Kaiser, Ribeiro and Silva [209] and Masoudi-Nejad, Schreiber and
Kashani [179].

1 This is not tautological—a previous result shows that constant clustering and bounded expansion are not
orthogonal [65].

84 17 sparsity of complex networks

Graphlets are a related concept, which is used to “fingerprint” networks instead of
identifying interesting local structures. Pržulj introduced the graphlet degree distribu-
tion as a way of measuring network similarity [206]. The idea is to enumerate all
connected graphs of small size (originally up to size five) and count for every node
in the network how often they appear as part of such graphs (taking automorphisms
into account). The degree distribution is then how many vertices are part of 0, 1, 2, . . .
subgraphs isomorphic to Gi for every Gi—more precisely, in how many orbits of the
automorphism group it appears in. Notice that if we only take the edge as a graphlet
this becomes the classical degree distribution.

This distribution can be used to measure the similarity of multiple networks, es-
pecially biological networks [117]. Furthermore, the local structure around a vertex
can reveal a domain-specific function, such as in protein-protein interaction networks,
where local structure correlates with biological activity [183]. This has been used to
identify cancer genes [182] and construct phylogenetic trees [154]. Graphlets have also
been used in aiding the analysis of workplace dynamics [226], photo cropping [48]
and DoS attack detection [203].

Ugander et al. [227] showed with their empirical analysis via subgraph counting and
subsequent modeling of social networks that there is a bias towards the occurrence of
certain subgraphs. This indicates that the frequencies of small subgraphs are a good
indicator for the social domain, similar to the role of graphlet frequencies in biological
networks.

For graph classes of bounded expansion counting the number of satisfying assign-
ments of a fixed Boolean query is possible in linear time on a labeled graph (Theo-
rem 18.9 [193]), which immediately implies that (labeled) graphlet and motif counting
can be computed in linear time on a graph class of bounded expansion. This result
is achieved by counting on graphs of bounded treedepth (Lemma 17.3 [193]) with a
running time of O(2hd · hd · n), where h is the number of nodes in the graphlet or motif
and d is the depth of a treedepth decomposition. We provide an algorithm with a
running time of O(6h · dh · h2 · n). This achieves a better running time when used to
count on graphs of bounded expansion, since then d will equal h, i.e., a constant. With
a small modification, this algorithm can count how many times a node appears as a
specific node of a specific graphlet or motif.

18
R A N D O M I N T E R S E C T I O N G R A P H S A N D B O U N D E D
E X PA N S I O N

We formalize the model and introduce another characterization of bounded expansion
and the concept of stable-r subdivisions which are used to simplify later proofs.

random intersection graphs

A wide variety of random intersection graph models have been defined in the lit-
erature; in this paper, we restrict our attention to the most well-studied of these,
G(n, m, p), which is defined as follows:

Definition 39 (Random Intersection Graph Model). Fix positive constants α, β and γ.
Let B be a random bipartite graph on parts of size n and m = βnα with each edge
present independently with probability p = γn−(1+α)/2. Let V (the nodes) denote
the part of size n and A (the attributes) the part of size m. The associated random
intersection graph G = G(n, m, p) is defined on the nodes V: two nodes are adjacent in
G if they share (are both adjacent to in B) at least one attribute in A.

We note that G(n, m, p) defines a distribution Gn on graphs with n vertices. The nota-
tion G = G(n, m, p) denotes a graph G that is randomly sampled from the distribution
Gn. Throughout the manuscript, given a random intersection graph G(n, m, p) we will
often refer to B, the associated bipartite graph on n nodes and m attributes from which
G is formed.

degeneracy & expansion

We now state a characterization of bounded expansion which is often helpful in estab-
lishing the property for classes formed by random graph models.

Proposition 7 ([193, 194]). A class C of graphs has bounded expansion if and only if there
exists real-valued functions f1, f2, f3, f4 : R → R+ such that the following two conditions
hold:

(i) For all positive ε and for all graphs G ∈ C with |V(G)| > f1(ε), it holds that

1
|V(G)| · |{v ∈ V(G) : deg(v) > f2(ε)}| 6 ε.

(ii) For all r ∈N and for all H ⊆ G ∈ C with ∇̃r(H) > f3(r), it follows that

|V(H)| > f4(r) · |V(G)|.

86 18 random intersection graphs and bounded expansion

Intuitively, this states that any class of graphs with bounded expansion is characterized
by two properties:

(i) All sufficiently large members of the class have a small fraction of vertices of large
degree.

(ii) All subgraphs of G ∈ C whose shallow topological minors are sufficiently dense
must necessarily span a large fraction of the vertices of G.

stable r -subdivisions

In order to disprove the existence of an r-shallow topological minor of a certain density
δ, we introduce a stronger topological structure.

Definition 40 (Stable r-subdivision). Given graphs G , H we say that G contains H as
a stable r-subdivision if G contains H as a r

2 -shallow topological minor with model G ′

such that every path in G ′ corresponding to an edge in H has exactly length r + 1 and
is an induced path in G.

A stable r-subdivision is by definition a shallow topological minor, thus the existence
of an r-subdivision of density δ implies that ∇̃r

2
(G) > δ. We prove that the densities

are also related in the other direction.

Lemma 32. A graph G with ∇̃r
2
(G) > δ contains a stable i-subdivision of density at least

δ/(r + 1) for some i ∈ {0, . . . , r}.

Proof. Consider a r
2 -shallow topological minor H of G with density at least δ. Let

H ′ ⊆ G be the model of H and let λ : V (H ′) → V (H) ∪ E(H) be a mapping that
maps nails of the model to vertices of the minor and subdivision vertices of the model
to their respective edge in the model. Consider the preimage λ−1. As a slight abuse
of notation, we can consider λ−1 as a map to (possibly empty) paths of H : indeed, we
can assume that every edge of H is mapped by λ−1 to an induced path in H ′ . If H ′

uses any non-induced paths, we can replace each such path a by a (shorter) induced
path and obtain a (different) model of H with the desired property.

We partition the edges of H by the length of their respective paths in the model:
Define E` = {e ∈ H | |λ−1 (e) | = `} for 0 6 ` 6 r + 1. Since |E(H) | =⋃

06`6r+1 |E` | > δ |V (H) |, there exists at least one set E` such that its size |E` | >
δ |V (H) |/(r + 1). Then the subgraph (V (H) , E`) is a stable `-subdivision of G.

Thus, to show that a graph has no r-shallow minor of density δ, it suffices to prove that
no stable i-subdivision of density δ/(2r + 1) exists for any i ∈ {0, . . . , 2r}. We note
that the other direction would not work, since the existence of a stable i-subdivision
for some i ∈ {0, . . . , 2r} of density δ/(2r + 1) does not imply the existence of an
r-shallow topological minor of density δ.

19
S T R U C T U R A L S PA R S I T Y

In this section we will characterize a clear break in the sparsity of graphs generated
by G(n, m, p), depending on whether α is strictly greater than one. In each case, we
analyze (probabilistically) the degeneracy and expansion of the generated class.

Theorem 11. Fix constants α, β and γ. Let m = βnα and p = γn−(1+α)/2. Let G =

G(n, m, p). Then the following hold w.h.p.

(i) If α < 1, G(n, m, p) is somewhere dense and G has degeneracy Ω(γn(1−α)/2).

(ii) If α = 1, G(n, m, p) is somewhere dense and G has degeneracy Ω(log n
log log n).

(iii) If α > 1, G(n, m, p) has bounded expansion and thus G has degeneracy O(1).

We prove each of the three cases of Theorem 11 separately.

proof of main theorem when α 6 1

When α 6 1, we prove that w.h.p. the random intersection graph model generates
graph classes with unbounded degeneracy by establishing the existence of a high-
degree attribute in the associated bipartite graph (thus lower-bounding the clique
number). The proof is divided into two lemmas, one for α < 1 and one for α = 1, for
which we prove different lower bounds.

Lemma 33. Fix constants α < 1, β and γ. If m = βnα and p = γn−(1+α)/2 , then w.h.p.
G = G(n , m , p) has degeneracy Ω(γn (1−α)/2).

Proof. Let G = G(n , m , p) and B = (V , A , E) be the bipartite graph associated
with G. Define the random variable X i to be the number of nodes in V connected to a
particular attribute a i . Then X i ∼ Binom(n , p) and P [X i < n p − 1] 6 1/2, since the
average of X i lies between bn pc and dn pe. Let S be the event that |X i | < n p − 1 for
all i ∈ [1, m]. Since the number of vertices attached to each attribute is independent,

P [S] =
m

∏
i=1

(1 − P [X i > n p − 1]) 6 [1 − (1 − 1/2)]m = 2−m .

Now, it follows that limn→∞ P [S] = 0 and w.h.p. the graph G contains a clique of
size n p − 1 = γn (1−α)/2 − 1, and thus has degeneracy at least γn (1−α)/2 − 1.

Corollary 5. Fix constants α < 1, β and γ. If m = βnα and p = γn−(1+α)/2 , then w.h.p.
G(n , m , p) is somewhere dense.

88 19 structural sparsity

Proof. The proof of Lemma 33 shows that w.h.p. a clique of size γn (1−α)/2 exists
already as a subgraph (i.e., a 0-subdivision) in every G ∈ G(n , m , p).

The following lemma addresses the case when the attributes grow at the same rate as
the number of nodes. We note that Bloznelis and Kurauskas independently proved
a similar result (using a slightly different random intersection graph model) [32]; we
include a slightly more direct proof here for completeness.

Lemma 34. Fix constants α = 1, β and γ. Then a random graph G = G(n , m , p) has
degeneracy Ω(log n

log log n) w.h.p.

Proof. Let c be any constant greater than one. We will show that for every k 6 log n
log log n ,

a random graph G ∈ G(n , m , p) contains a clique of size k with probability Ω(1 −
n−c). Fix an attribute a. The probability that a has degree at least k in the bipartite
graph is at least the probability that it is exactly k, hence(

n
k

)
pk (1 − p)n−k >

(
n
k

)
pk (1 − p)n >

γk

eγ kk .

We will show that this converges fast enough for γ < 1; the case for γ > 1 works
analogously. Therefore the probability that none of the m = βn attributes has degree
at least k is at most(

1 − γk

eγ kk

)βn

6 e
−βn

(
γk

eγ kk

)
.

We prove that this probability is smaller than n−c by showing that

β

eγ

nγk

kk > c · log n , (19.1)

when k = log n
log log n . Let c ′ = ceγ / β. Then to show Inequality 19.1 holds, it is enough

to show

n
(γ log log n) log n/ log log n

(log n) log n/ log log n = n
(γ log log n) log n/ log log n

2 log log n(log n/ log log n)

= (γ log log n)
log n

log log n > c ′ · log n .

Comparing the functions ex/ log x and xc ′ , we see that for large enough positive x,

x > log c ′ log x + log2 x

and equivalently

ex/ log x > c ′ · x .

19.2 Proof of Main Theorem when α > 1 89

Therefore for large enough n, e log n/ log log n > c ′ · log n, and in particular for n >

e e e/γ
,

(γ log log n)
log n

log log n > c ′ · log n ,

as previously claimed. This shows the probability that no attribute has degree at
least log n/ log log n is at most O(n−c) and the claim follows.

Corollary 6. Fix constants α = 1, β and γ. If m = βnα and p = γn−(1+α)/2, then
w.h.p. G(n, m, p) is somewhere dense.

Proof. Lemma 34 is proven by showing that for a clique of size Ω (log n/(log log n))
it holds w.h.p. that there exists as a subgraph (i.e., a 0-subdivision) in every graph in
G(n, m, p).

proof of main theorem when α > 1

In this section, we focus on the case when α > 1. This is the parameter range in which
the model generates sparse graphs. Before beginning, we note that if G(n , m , p) has
bounded expansion w.h.p., then for any p ′ 6 p and m ′ 6 m it follows that w.h.p.
G(n , m ′ , p ′) also has bounded expansion by a simple coupling argument. Thus we
can assume without loss of generality that both γ and β are greater than one. For the
remainder of this section, we fix the parameters γ , β , α > 1, the resulting number of
attributes m = βnα and the per-edge probability p = γn−(1+α)/2 .

Bounded Attribute-Degrees

As mentioned before, for a random intersection graph to be degenerate, the attributes
of the associated bipartite graph must have bounded degree. We prove that w.h.p.,
this necessary condition is satisfied.

Lemma 35. Let c > 1 be a constant such that 2 α+c
α−1 > βγe. Then the probability that there

exists an attribute in the bipartite graph associated with G(n , m , p) of degree higher than
2 α+c

α−1 is O(n−c).

Proof. Taking the union bound, the probability that some attribute has degree larger
than d is upper bounded by

m
(

n
d

)
pd 6

βed γd

dd · nα+d

n
a+1

2 d
,

where the first fraction is bounded by a constant as soon as d > e βγ. Then we achieve
an upper bound of O(n−c) as soon as α+1

2 d − d − α > c, or equivalently, d > 2 α+c
α−1 ,

proving the claim.

This allows us to assume for the remainder of the proof that the maximum attribute
degree is bounded.

90 19 structural sparsity

Stable-r subdivisions

We now establish the probability of having this structure in the random intersection
graph model, noting that the following structural result is surprisingly useful and
appears to have promising applications beyond this work. We will argue that a dense
subdivision in G implies the existence of a dense subgraph in the associated bipartite
graph. We show this by considering the existence of a stable r-subdivision where all
paths are induced which is generated by a minimal number of attributes. Notice that
if a model of some graph H exists so does a model with these properties. This allows
us to only consider attributes with minimum degree two, since every edge in the path
is generated by a different attribute. This is key to prove the following theorem.

Theorem 12. Let c > 1 be a constant and let φ = (6egβγδr)5δ2r/(α−1). The probability that
G(n, m, p) contains a stable r-subdivision with k nails for r > 1 and of density δ > 1 is at
most

rδk ·
(

φ

n

) α−1
2 k

Proof. Let us first bound the probability that the bipartite graph associated with G =

G(n, m, p) contains a dense subgraph. We will then argue that a dense subdivision in
G implies the existence of such a dense bipartite subgraph.

Let Pdense(κ, ν, λ) be the probability that there exists sets V ′ ⊆ V, A′ ⊆ A, of size κ

and ν respectively, such that there exist at least λ edges between nodes of V ′ and A′.
It is easy to see that this probability is bounded by

Pdense(κ, ν, λ) 6
(

n
κ

)(
m
ν

)
∑

d1,...,dν

ν

∏
i=1

(
κ

di

)
pdi , (19.2)

where d1, . . . , dν represent all possible choices of the degrees of ν attributes such that
∑ν

i=1 di = λ. By Lemma 35, w.h.p. di 6 g and thus w.h.p. there are at most gν terms in
the sum of Equation 19.2. Using this together with Stirling’s approximation allows us
to simplify the bound as follows:

Pdense(κ, ν, λ) 6
(ne

κ

)κ (gme
ν

)ν
(κep)λ =

eκ+ν+λgνβνγλ

νν

κλnαν+κ

κκn
α+1

2 λ
(19.3)

Consider a stable r-subdivision H in G with k nails and density δ. The model of H
uses exactly k + rδk vertices of G. Let AH be a minimal set of attributes that generates
the edges of the model of H in G. There is at least one edge between every nail and
an attribute in AH. Furthermore, since the paths connecting the nails in the model
are induced, every subdivision vertex has at least two edges to the attributes AH. We
conclude that there exists a bipartite subgraph with κ = k + rδk and λ = 2rδk + k.
Since AH is minimal, every attribute of AH generates at least one edge in the model of

19.2 Proof of Main Theorem when α > 1 91

H and therefore |AH | 6 (r + 1)δk. Let δ1 = (rδ + 1) and δ2 = (2rδ + 1). By the bound
in Equation 19.3, the probability of such a structure is at most

rδk

∑
ν=rδk/g

Pdense(δ1k, ν, δ2k)

6
rδk

∑
ν=rδk/g

eδ1k+ν+δ2kgνβνγδ2k

νν(δ2k)δ2k
(δ1k)δ2knαν+δ1k

(δ1k)δ1kn
α+1

2 δ2k

Let ψ be the exponent of 1/n in a term of this sum. Then we have

ψ =

((
α + 1

2

)
δ2k− (αν + δ1k)

)
=

((
α + 1

2

)
(2rδ + 1)k− (αν + (rδ + 1)k)

)
.

Simplifying, we see that

ψ = (α + 1)rδk +
α + 2

2
k− αν− (rδ + 1)k =

α− 1
2

k + α(rδk− ν).

Thus we can rewrite the previous inequality as

rδk

∑
ν=rδk/g

Pdense(δ1k, ν, δ2k)

6
rδk

∑
ν=rδk/g

eδ1k+ν+δ2kgνβνγδ2kδ1
δ2k

δ1
δ1k

kδ2k

ννkδ1knα(rδk−ν)

1

n
α−1

2 k

6

(
eδ1+rδ+δ2 grδβrδγδ2 δ1

δ2

δ1
δ1

)k rδk

∑
ν=rδk/g

kδ2k

ννkδ1knα(rδk−ν)

1

n
α−1

2 k

6

(
eδ1+rδ+δ2 g2rδβrδγδ2 δ1

δ2

δ1
δ1

)k rδk

∑
ν=rδk/g

kδ2k

(rδk)νkδ1kkα(rδk−ν)

1

n
α−1

2 k

6
(

eδ1+rδ+δ2 g2rδβrδγδ2 δ1
δ2
)k rδk

∑
ν=rδk/g

kδ2k

kνkδ1kkα(rδk−ν)

1

n
α−1

2 k

Let ψ′ be the exponent of k in a term of this sum. Then we have

ψ′ = δ2k− ν− δ1k− α(rδk) + αν

= (1− α)(rδk) + (α− 1)ν

6 0.

92 19 structural sparsity

Using φ as defined, we arrive at the following inequality.

rδk

∑
ν=rδk/g

Pdense(δ1k, ν, δ2k) 6 φ
(α−1)

2 k
rδk

∑
ν=rδk/g

1

n
α−1

2 k
6 rδk ·

(
φ

n

) α−1
2 k

This completes our proof.

Density

Before turning to our main result, we need two more lemmas that establish the proba-
bility of graphs generated using G(n, m, p) have special types of dense subgraphs.

We note that it is perhaps surprising that ρ disappears in the upper bound given
in the following theorem. Since we are assuming that the degree of the attributes is
bounded by g, the number of attributes u must be at least ρ/(g

2). Thus the ρ reappears
upon expansion. Since we can bound the degree of the attributes w.h.p. when α > 1
this theorem is generally applicable to sparse random intersection graphs.

Theorem 13. Let c > 1 be a constant and let g = 2 α+c
α−1 . For u 6 m, k 6 n, the probability

that the bipartite graph associated with G(n, m, p) contains u attributes of degree 6 g that
generate at least ρ > u edges between k fixed vertices is at most(

eg+1γggβ

u/k

)u (k
n

)u

.

Proof. The probability that u attributes of maximal degree g generate at least ρ > u
edges between k fixed vertices can be upper bounded by(

m
u

)
∑

d1,...,du

u

∏
i=1

(
k
di

)
pdi ,

where d1, . . . , du represent all possible choices of the degrees of u attributes such that
∑u

i=1 (
di
2) > ρ, i.e., the degrees of the chosen attributes can generate enough edges. Let

D = ∑u
i=1 di. The following bound follows from Stirling’s inequality:(
m
u

)
∑

d1,...,du

u

∏
i=1

(
k
di

)
pdi 6

(eβnα)u

uu ∑
d1,...,du

u

∏
i=1

(ek)di

ddi
i

(
γ

n(α+1)/2

)di

=
(eβ)unαu

uu ∑
d1,...,du

eDkD

∏u
i=1 ddi

i

γD

n
α+1

2 D

6
(eβ)u(eγ)gunαu

uu ∑
d1,...,du

kD

n
α+1

2 D

19.2 Proof of Main Theorem when α > 1 93

Since each di is smaller or equal to g, we can upper bound this term by(
m
u

)
∑

d1,...,du

u

∏
i=1

(
k
di

)
pdi 6

(eg+1γgβ)unαu

uu · ∑
d1,...,du

kD

n
α+1

2 D

=

(
eg+1γgβ

u/k

)u

∑
d1,...,du

nαukD−u

n
α+1

2 D
.

We want to show that (nαukD−u)/(n
α+1

2 D) is bounded by (k/n)x for some x > u. We
first look at the following inequality:(

α + 1
2

)
D− αu > D− u⇔ D > 2u

Notice that an attribute of degree one generates no edges, thus we can assume that all
di > 2. It follows that D > 2u and thus the inequality holds. It follows that

(nαukD−u)/(n
α+1

2 D) 6
(

k
n

)D−u

6
(

k
n

)u

The probability of u attributes generating at least ρ edges between k vertices is then at
most (

m
u

)
∑

d1,...,du

(
k
di

)
pdi 6

(
eg+1γgβ

u/k

)u

∑
d1,...,du

(
k
n

)u

.

Finally, since any di can be at most g we can get rid of the sum by multiplying with a
gu factor.(

eg+1γgβ

u/k

)u

∑
d1,...,du

(
k
n

)u

6
(

eg+1γggβ

u/k

)u (k
n

)u

.

The following lemma is a rather straightforward consequence of Theorem 13.

Lemma 36. Let c > 1 be a constant, g = 2 α+c
α−1 , g′ = (g

2) and δ > eg+1γggg′β. Then the
probability that G(n, m, p) contains a subgraph of density δ on k nodes is at most

δk
(

k
n

) δk
g′

.

Proof. By Lemma 35 we can disregard all graphs whose associated bipartite graph
have an attribute of degree greater than g. We can bound the probability as follows:

δk

∑
u= δk

g′

(
m
u

)
∑

d1,...,du

(
k
di

)
pdi (19.4)

94 19 structural sparsity

where d1, . . . , du represent the degrees of the u attributes such ∑u
i=1 (

di
2) > δk (i.e., the

degrees of the u attributes that generate all direct edges).
Using Theorem 13, the right hand side of Equation (19.4) is bounded by

δk

∑
u= δk

g′

(
eg+1γggβ

u/k

)u (k
n

)u

6
δk

∑
u= δk

g′

(
eg+1γggg′β

δ

)u (k
n

)u

,

using the fact that u/k > δ/g′. Since we set up δ > eg+1γggg′β, we can cancel these
terms and simplify the above to

Pdirect 6
δk

∑
u= δk

g′

(
k
n

)u

6 δk
(

k
n

) δk
g′

using the fact that k/n is smaller than one.

Main Result

We finally have all the necessary tools to prove the main theorem of this section.

Theorem 14. Fix positive constants α > 1, β and γ. Then w.h.p. the class of random intersec-
tion graphs G(n, m, p) defined by these constants has bounded expansion.

Proof. We show the two conditions of Proposition 7 are satisfied in Lemma 37 and
Lemma 38, respectively.

Lemma 37. Let c > 1 be a constant, g = 2 α+c
α−1 g′ = (g

2) and λ be a constant bigger
than max{2eg+2γggβ, c}. For G = G(n, m, p) and for all ε > 0 it holds with probability
O(n−c) that

1
|V(G)| ·

∣∣∣∣{v ∈ V(G) : deg(v) >
2λg′

ε

}∣∣∣∣ 6 ε.

Proof. By Lemma 35 we can disregard all bipartite graphs that have an attribute of
degree greater than g. Suppose that for some ε there exists a vertex set S of size
greater than εn in which all vertices have degree at least 2λg′/ε. This implies that
there exists a set F of edges of size at least εn

2
2λg′

ε = λg′ · n whose members each have
at least one endpoint in S. Further, since every attribute has degree at most g and thus
it generates at most g′ edges, there exists a set F′ ⊆ F such that

(i) |F′| > |F|/g′ = λn,

(ii) and every e ∈ F′ is generated by at least one attribute that generates no other
edge in F′.

19.2 Proof of Main Theorem when α > 1 95

The existence of F′ follows from a simple greedy procedure: Pick any edge from F and
a corresponding attribute, then discard at most g′ edges generated by this attribute.
Repeat.

We now bound the probability that there exists such a set F′: Since F′ is generated by
exactly |F′| = λn attributes, we can apply Theorem 13 to obtain the following bound:

n

∑
k=1

(
n
k

)(
eg+1γggβ · k

λn

)λn (k
n

)λn

6
n

∑
k=1

(
eg+1γggβ

λ

)λn nkek

kk
k2λn

n2λn

6
(

eg+2γggβ

λ

)λn n

∑
k=1

(
k
n

)2λn−k

By the choice of λ, this expression is bounded by

1
2λn

n

∑
k=1

(
k
n

)2λn−k

6
n

2λn

since every element of the sum is smaller than one and the statement follows. Note
that n/2λn < 1/nc since λ > c, i.e., this probability converges faster than the one
proven in Lemma 35.

Lemma 38. Let c > 1 be a constant, g = 2 α+c
α−1 , g′ = (g

2), φ be defined as in Theorem 12 and
δr > (2r + 1) ·max{eg+1γggg′β, (c + 1)g′}. Then for every r ∈ N+, for every 0 < ε < e−2

and for every H ⊆ G = G(n, m, p) with |V(H)| < εn it holds with probability O(n−c) that
∇̃r(H) > δr.

Proof. By Lemma 32 if G contains an r-shallow topological minor of density δr then
for some i ∈ {0, . . . , 2r} there exists a stable i-subdivision of density δr/(2r + 1). We
can then bound the probability of a r-shallow topological minor by bounding the
probability of a stable i-subdivision of density δr/(2r + 1).

From Lemma 36 we know that the probability of an 0-shallow topological minor on
k nails is bounded by(

n
k

)
δk
(

k
n

) δk
g′

.

By Theorem 12, the density for an i-subdivision of density δr/(2r+ 1) for i ∈{1, . . . , 2r}
is bounded by

rδk ·
(

φ

n

) α−1
2 k

.

Taking the union bound of these two events gives us a total bound of(
n
k

)
δk
(

k
n

) δk
g′

+ (2r + 1)rδk ·
(

φ

n

) α−1
2 k

(19.5)

96 19 structural sparsity

for the probability of a dense subgraph or subdivision on k vertices to appear. Taking
the union bound over all k we obtain for the first summand that

εn

∑
k=1

(
n
k

)
δk
(

k
n

) δk
g′

6 δr

εn

∑
k=1

nkek

kk
k(c+1)k+1

n(c+1)k
.

Since δr is a constant, it suffices that the term

εn

∑
k=1

nkek

kk
k(c+1)k+1

n(c+1)k

is in O(n−c). We will show this is bounded by a geometric sum by considering the
ratio of two consecutive summands:

ek+1(k + 1)c(k+1)+1

nc(k+1)
· nck

ekkck+1 = e
(k(1 + 1/k))c(k+1)+1

nckck+1 6 e2 kc

nc 6 e2εc.

Since this is smaller than one when ε < e−2 and c > 1, the summands decrease
geometrically. Hence its largest element (i.e., the summand for k = 1) dominates the
total value of the sum, more precisely, there exists a constant ξ (depending on α and
c) such that

εn

∑
k=1

ekkck+1

nck 6 ξ
e

nc = O(n−c). (19.6)

We now turn to the second summand. It is easy to see by the same methods as
before that this sum is also geometric for n > φ(α+1)/2 and as such there exists a
constant ξ ′ which multiplied with the first element bounds the sum. An r-shallow
topological minor of density δr has at least 2δr nails, thus we can assume k > 2δr.
Since δr > (c + 1)g′ > c/(α− 1), we have:

εn

∑
k=2δr

(2r + 1)rδk ·
(

φ

n

) α−1
2 k

6
ξ ′(2r + 1)φδr

n(α−1)δr
6

ξ ′(2r + 1)φδr

nc = O(n−c). (19.7)

Combining Equations 19.6 and 19.7, Equation 19.5 is bounded by O(n−c).

20
E X P E R I M E N TA L E VA L U AT I O N

Our theoretical results provide insight into asymptotic properties of the grad and
degeneracy of random intersection graphs. To sharpen our understanding of how
these statistics behave in realistic parameter ranges, we designed four experiments to
relate our theoretical predictions to concrete measurements.

We used the NetworkX python package [114] to generate our random intersection
graphs (using the uniform_random_intersection_graph method) and the SageMath
software system [69] to compute the degeneracy [21, 202] and diameter [60, 59, 174,
224] of the generated graphs. The measurements of the p-centered coloring number
(presented below) were executed using the implementation which is a part of CON-
CUSS [197]. In the first three experiments, we generated random intersection graphs
using parameters α ∈ {0.3, 0.5, 0.7, 0.9, 1.0, 1.2} and fixed β = γ = 1.2. Each data point
represents an average over 20 random instances of a given size n (increasing from a
few thousand to several hundred thousand, with finer granularity at smaller sizes to
capture boundary effects). The last experiment, which concerns the structural sparse-
ness of the model G(n, m, p) when α > 1, fixes parameters α = 1.5, β = 0.1 and γ = 5
(due to computational constraints) and averages over ten instances of each size.

Our first experiment is designed to estimate the constants involved in the asymptotic
bounds provided by Theorem 11. To that end, we fit the three functions for the respec-
tive regimes of α by computing a multiplicative scaling τ using least-square fitting via
the scipy [135] implementation of the Levenberg–Marquardt algorithm [163, 177].

Both the data and the fitted functions are plotted in Figure 20.1, the function param-
eters and scaling factors can be found in Table 20.1. Already for graphs of moderate
size we see that the degeneracy closely follows the predicted functions. We further
note that for the series α = 1.2, the observed degeneracy is around 5, which is very far
from the massive upper bound given by setting r = 0 in Lemma 38 (value not shown
in plot). It would be interesting to see whether bounds with tighter constants can be
obtained by different proof techniques. For the value α = 1.0 we see that the asymp-
totic lower bound Ω(log n/loglog n) fits the observed degeneracy very well with only
a small scaling factor of 1.57. We put forward the conjecture that the degeneracy actu-
ally follows Θ(log n/loglog n) in this regime. Finally, for α < 1 we see some increase
of the scaling factor τ as α tends to one. The lower bound γn(1−α)/2 therefore seems
to miss some slight dependency on α, but otherwise matches the degeneracy observed
very well.

A second experiment measures the structural sparseness of G(n, m, p) in the regime
α > 1. Since our bounds on the degeneracy—which can be understood as the most
“local” grad ∇̃0—are far away from what we observed in the first experiment, it is
reasonably to presume that the bounds on higher grads are even worse. Since bounded

98 20 experimental evaluation

Figure 20.1: Degeneracy of G(n, m, p) for different values of α and increasing n. The param-
eters β = γ = 1.2 were fixed; all data points are an average over 20 graphs.
Error bars show one standard deviation. The lower figure contains the same plots
for α > 1 in a different scale. The continuous lines are functions listed in Table 20.1
fitted to the data.

Table 20.1: Functions corresponding to the degen-
eracy upper- and lower bounds from
Theorem 11 fitted to the degeneracy
data displayed in Figure 20.1. The co-
efficients τ were determined by least-
square fitting.

α Function τ

0.3 τ · 1.2n0.35
1.24

0.5 τ · 1.2n0.25
1.63

0.7 τ · 1.2n0.15
2.49

0.9 τ · 1.2n0.05
4.34

1.0 τ · log n
loglog n 1.57

1.2 τ 4.92

99

Figure 20.2: Median number of colors in a p-low treedepth coloring for G(n, m, p) with pa-
rameters α = 1.5, β = 0.1 and γ = 5 (taken over ten random instances). Error
bars denote one standard deviation (for p 6 4 hardly visible). Lines represent a
smoothed versions of the series and are included as a visual guide.

expansion has large potential to be exploited algorithmically in practice, we want to
obtain a better understanding of the orders of magnitudes involved.

The asymptotic bounds provided by Lemma 38 are incredibly pessimistic: For pa-
rameters α = 1.5, γ = 5 and β = 0.1 (selected to be relatively realistic and enable easy
generation) the bound on ∇̃r provided by this lemma is at least 1013 (independent of
r) even if we only insist on an error probability of O(n−1). Since all tools for classes
of bounded expansion depend heavily on the behavior of the expansion function and
the expansion function given by Nešetřil and Ossona de Mendez’s framework [189]
will depend on δr, this upper bound is not enough to show practical applicability. Our
experiment provides empirical evidence that the upper bound is not tight, improv-
ing the prospects for these associated tools. Specifically, we calculate p-low treedepth
colorings, which can be used to characterize classes of bounded expansion (see Propo-
sition 6 in Section 3) and have immediate algorithmic applications.

We implemented a simple version of the linear time coloring algorithm and ran
it on ten random intersection graphs for each (n ∈ {500, 1000, . . . , 6000, 7000,. . . ,
10000, 15000, 20000, 25000}) with parameters α = 1.5, γ = 5 and β = 0.1 for each
p ∈ {2, 3, 4, 5}. Figure 20.2 shows the median number of colors used by the algorithm.
Our theoretical results predict a horizontal asymptote for every p. We can see a sur-
prisingly small bound for p ∈ {2, 3, 4}. Even for p = 5 the plot starts flattening within
the experimental range. It should be noted that the colorings given by this simple

100 20 experimental evaluation

approximation algorithm are very likely to be far from optimal (that is, they may use
many unnecessary colors).

This result indicates that the graphs modeled by random intersection are amenable
to algorithms based on low treedepth colorings (which usually perform dynamic pro-
gramming computations that depend exponentially on the number of colors). Further,
by the known relation between p-low treedepth colorings and the expansion func-
tion, this indicates this graphs have much more reasonable expansion bounds than
Lemma 38 would suggest.

21
C O U N T I N G G R A P H L E T S A N D S U B G R A P H S

The tool of choice for applying a counting algorithm designed for bounded-treedepth
graphs to a class of bounded expansion is low treedepth colorings: to compute the
frequency of a given pattern of size k, we compute a (k + 1)-low treedepth coloring of
the input graph in linear time as per Proposition 6. We can then enumerate all possible
choices of i < k colors and count the frequency of the pattern graph in the graph
induced by those color classes. As this induced subgraph has bounded treedepth, we
can focus on counting a fixed subgraph inside a target graph of treedepth at most k.
We can then compute the frequency in the original graph using inclusion-exclusion on
the color classes.

Central to the dynamic programming we will use to count isomorphisms is the fol-
lowing notion of a k-pattern which is very similar to the well-known notion of bound-
aried graphs. In the following we let [i] = {1, . . . , i} for any i > 1.

Definition 41 (k-pattern). A k-pattern of a graph H is a triple M = (W, X, π) where
X ⊆W ⊆ V(H), |X| 6 k, such that W \ X has no edge into V(H) \W, and π : X → [k]
is an injective function. We will call the set X the boundary of M. For a given k-pattern
M we denote the underlying graph by H[M] = H[W], the vertex set by V(M) = W,
the boundary by bd(M) = X and the mapping by πM.

We denote by Pk(H) the set of all k-patterns of H. Note that every k-pattern (W, X, π)

is also a (k + 1)-pattern. In the following we denote by |H| = |V(H)|.

Lemma 39. Let H be a graph. Then |Pk(H)| 6 3|H| · k|H|.

Proof. The vertices of H can be partitioned in 3|H| possible ways into boundary ver-
tices, pattern vertices and remainder. The number of ways an injective mapping for a
boundary of size b 6 |H| into [k] can be chosen is bounded by k|H|. In total the size of
Pk(H) is always less than 3|H| · k|H|.

The following definition show how k-patterns will be used structurally, namely by
gluing them together or by demoting a boundary-vertex to a simple vertex. These
operations will later be used in a dynamic programming algorithm.

Definition 42 (k-pattern join). Let H be a graph and let both M1 = (W1, X1, π1) and
M2 = (W2, X2, π2) be k-patterns of H. Then the two patterns are compatible if W1 ∩
W2 = X1 = X2 and for all v ∈ X1 it holds that π1(v) = π2(v). Their join is defined as
the k-pattern M1 ⊕M2 = (W1 ∪W2, X1, π1).

102 21 counting graphlets and subgraphs

Definition 43 (k-pattern forget). Let H be a graph, let M = (W, X, π) be a k-pattern of
H and i ∈ [k]. Then the forget operation is the k-pattern

M	 i =


(W, X \ π−1(i), π|X\π−1(i)) if π−1(i) 6= ∅ and NH(π

−1(i)) ⊆W

⊥ if π−1(i) 6= ∅ and NH(π
−1(i)) 6⊆W

(W, X, π) otherwise

Structurally, the k-pattern’s boundaries will represent vertices from the path of the root
vertex to the currently considered vertex in the treedepth decomposition, while the
remaining vertices of the pattern represent vertices somewhere below it. The following
notation helps expressing these properties.

Definition 44 (Root path). The root path of x is the unique path Qx from the root r
to x in T. We let Qx[i] denote the ith vertex of the path (starting at the root), so that
Qx[1] = r and Qx[|Qx|] = x, where |Qx| is the number of nodes on the path.

We can now state the main lemma. The proof contains the description of the dynamic
programming which works bottom-up on the vertices of the given treedepth decompo-
sition (i.e., starting at the leaves and working towards the root of the decomposition).

Lemma 40. Let H be a fixed graph on h vertices. Given a graph G on n vertices and a treedepth
decomposition T of height d, one can compute the number of isomorphisms from H to induced
subgraphs of G in time O(6h · dh · h2 · n) and space O(3h · dh · hd · log n).

Proof. We provide the following induction that easily lends itself to dynamic program-
ming over T. Denote by MH = (V(H), ∅, ε) the trivial d-pattern of H, where ε : ∅→ ∅
denotes the null function. Consider a set of vertices v1, v2, . . . , v` ∈ G with a common
parent v in T with respective subtrees Tvi and root paths Qvi for 1 6 i 6 `. Note
that the root paths Qv1 , . . . , Qv` all have the same length k and share the path Qv as a
common prefix.

Let M be a fixed k-pattern of H. We define the mapping ψM
v : bd(M) → V(Qv)

via ψM
v (v′) = Qv[πM(v′)] for v′ ∈ bd(M), which takes the pattern’s boundary and

maps it to the vertices of the root-path. We denote by f [v1, . . . , v`][M] the number of
isomorphisms φ : V(M)→ V(G) such that the following properties hold:

1. φ|bd(M) = ψM
v

2. φ(V(M) \ bd(M)) ⊆ G[V(Tv1) ∪ · · · ∪V(Tv`)]

In other words we charge subgraphs to patterns whose boundaries lie on the shared
root-path Qv such that the labeling of the boundary coincides with the numbering
induced by Qv while the rest of the pattern is contained entirely in the subtrees
Tv1 , . . . , Tv` . Note that v cannot be part of the boundary. If r is the root of the treedepth

103

decomposition, f [r][MH] counts exactly the number of isomorphisms of H into sub-
graphs of G.

We will show now how we can compute f [r][MH] recursively. For a leaf v ∈ T and
a d-pattern M1 = (W1, X1, π1) ∈ Pd(H) we compute f [v][M1] as follows: Define the
function pv(M) to be 1 if the function ψ : V(M)→ V(Qv) defined as ψ(w) = Qv[π1[w]]

is an isomorphism from H[V(M)] to G[ψ(V(M))] and 0 otherwise. In particular,
pv(M) will be zero if V(M) 6= bd(M) or |V(M)| > |Qv|. Then for the leaf v we
set f [v][M1] = pv(M1).

The following recursive definitions show how f [·][M1] can be computed for all inner
vertices of T. Let v1, . . . , v` be the children of an internal vertex v such that f [vi][M′]
are correctly set for all vi ∈ {v1, . . . , v`} and M ∈ Pd(H). We define the following
operations:

f [v1, . . . , vj−1, vj][M1] = ∑
M2⊕M3=M1

f [v1, . . . , vj−1][M2] · f [vj][M3] (join)

f [v][M1] = ∑
M2	|Qv|=M1

f [v1, . . . , v`][M2] (forget)

where M2, M3 ∈ Pd(H). It is clear then that we can iteratively, for increasing values
of j, compute f [v1, . . . , vj−1, vj][M1] until j = ` and then compute the forget. Since we
can start at the leaves, we can compute the value f [r][MH] this way.

We need to prove that the table f correctly reflects the number of isomorphisms to
subgraphs satisfying Properties 1 and 2. We will prove this by induction.

Consider the join-case first: Fix a pattern M1 ∈ Pd(H). By induction, the entries
f [v1, . . . , vj−1][·] and f [vj][·] correspond to the number of isomorphisms to subgraphs
that satisfy Properties 1 and 2 on these node sets, respectively. We will show that
f [v1, . . . , vj][M1] as defined gives the number of isomorphisms from H[M1] to sub-
graphs of G where φ1|bd(M1) = ψM1

v and φ1(V(M1) \ bd(M1)) ⊆ G[V(Tv1 ∪ · · · ∪ Tvj)].
Consider the set Φ1 of all isomorphisms from H[M1] to subgraphs of G satisfy-

ing Properties 1 and 2 for the vertex tuple v1, . . . , vj. For any vertex subset R ⊆
V(M1) \ bd(M1), define the slice Φ1(R) ⊆ Φ1 as those isomorphisms φ that satisfy
φ−1(φ(V(H)) ∩ Tvj) = R. Let L = (V(M1) \ bd(M1)) \ R and define the patterns
ML = (L ∪ bd(M1), bd(M1), πM1) and MR = (R ∪ bd(M1), bd(M1), πM1). Then by in-
duction |Φ1(R)| = f [v1, . . . , vj−1][ML] · f [vj][MR], since M1 = ML ⊕ MR and clearly
ML, MR ∈ Pd(H), the sum computes exactly ∑R⊆V(M1)\bd(M1) |φ1(R)| = |φ1|.

Next, consider the forget-case. Again, fix M1 ∈ Pd(H) and let u be the parent of
v in T. Let Φ1 be the set of those isomorphisms φ1 from H[M1] to subgraphs of G
for which φ1|bd(M1) = ψM1

u and φ1(V(M1) \ bd(M1)) ⊆ G[V(Tv)]. We partition Φ1 into
Φ1 = Φ1,v ∪ Φ1,v̄ where Φ1,v contains those isomorphisms φ for which φ−1(v) 6= ∅
and Φ1,v̄ the rest. Since |Φ1,v̄| = f [v1, . . . , v`][M1] we focus on Φ1,v in the following.
For w ∈ V(M1) \ bd(M1), define Φ1,v(w) as the set of those isomorphisms φ for which
φ(w) = v. Clearly, {Φ1,v(w) | w ∈ V(M1) \ bd(M1)} is a partition of Φ1,v. Define

104 21 counting graphlets and subgraphs

the pattern Mw = (V(M1), bd(M1) ∪ {w}, πM1
w) where πM1

w is πM1 augmented with
the value πM1

w (v) = |Qv|. Note that by construction M1 = Mw 	 |Qv|. By induction,
|Φ1,v(w)| = f [v1, . . . , v`][Mw] and therefore

|Φ1| = |Φ1,v̄|+ ∑
w∈V(M1)\bd(M1)

|Φ1,v(w)| = ∑
M2	|Qv|

f [v1, . . . , v`][M2]

It remains to be proven that this can be done in the claimed running time. Initialization
of f for a leaf takes time O(|Pd(H)|h2) since we need to test whether the function ψ

defined above is an isomorphism for each pattern in Pd(H).
For the other vertices, a forget operation can be achieved in time O(|Pd(H)|) per

vertex by enumerating all d-patterns, performing the forget operation and looking up
the count of the resulting pattern in the previous table.

A join operation needs time O(|Pd(H)| · h · 2h) per vertex, since for a given pattern
M1 those patterns M2, M3 with M1 = M2 ⊕M3 are uniquely determined by partitions
of the set V(M1) \ bd(M1).

In total the running time of the whole algorithm is O(|Pd(H)|2hh2 · n) and thus by
Lemma 39 O(6h · dh · h2 · n). Note that we only have to keep at most O(d) tables in
memory, each of which contains the occurrence of up to |Pd(H)| patterns stored in
numbers up to nh. Thus in total the space complexity is O(|Pd(H)| · d · log(nh)) =

O(|Pd(H)| · hd · log n).

To count the occurrences of H as an induced subgraph instead the number of subgraph
isomorphisms, one can simply determine the number of automorphisms of H in time
two to the power of O(

√
h log h) [17, 180] and divide the total count by this value

(since this preprocessing time is dominated by our running time we will not mention
it in the following). Counting isomorphism to non-induced subgraphs can be done
in the same time and space by changing the initialization on the leaves, such that
it checks for an subgraph instead of an induced subgraph. Dividing again by the
number of automorphisms gives the number of subgraphs. By allowing the mapping
of the patterns to map several nodes to the same value, we can use them to represent
homomorphisms. Testing the leaves accordingly, the same algorithm can be used to
count the number of homomorphisms from H to subgraphs of G. By keeping all tables
in memory, thus sacrificing the logarithmic space complexity, and using backtracking
we can label every node with the number of times it appears as a certain vertex of H.
From these observations and Lemma 39 we arrive at the following theorem:

Theorem 15. Given a graph H on h vertices, a graph G on n vertices and a treedepth decom-
position of G of height d, one can compute the number of isomorphisms from H to subgraphs
of G, homomorphisms from H to subgraphs of G, or (induced) subgraphs of G isomorphic to H
in time O(6h · dh · h2 · n) and space O(3h · dh · hd · log n).

105

Note that for graphs of unbounded treedepth the running time of the algorithm degen-

erates to O(6h · h2 · nh+1), which is comparable to the running time of 2O(
√

h log h) · nh

of the trivial counting algorithm.
By Proposition 6, we can immediately use this result to achieve the following theo-

rem about graph classes of bounded expansion.

Theorem 16. Given a graph H and a a graph G belonging to a class of bounded expansion,
there exists an algorithm to count the appearances of H as a subgraph of G in time

O
((

f (h)
h

)
· 6h · hh+2 · n

)
where f is a function depending only on the graph class.

This immediately extends to nowhere dense classes, which for any ε > 0 have low
treedepth-colorings with at most nε colors (for sufficiently large graphs) [193]. Choos-
ing the graphs large enough and setting ε′ = ε/h, we can bound the term (f (h)

h) by
nε′·h = nε.

Theorem 17. Let G be a nowhere-dense class and let H be a graph. For every ε > 0 there
exists Nε ∈ N, such that for any graph G ∈ G, |G| > Nε there exists an algorithm to count
the appearances of H as a subgraph of G in time

O
(

6h · hh+2n1+ε
)

.

22
C O N C L U S I O N

In this part we have determined the conditions under which random intersection
graphs exhibit a type of algorithmically useful structure. More specifically, we proved
graphs in G(n, m, p) are structurally sparse (have bounded expansion) precisely when
the number of attributes in the associated bipartite graph grows faster than the num-
ber of nodes (α > 1). Moreover, we showed that when the generated graphs are not
structurally sparse, they fail to achieve even much weaker notions of sparsity (in fact,
w.h.p. they contain large cliques). We furthermore showed how assuming a graph
has bounded expansion is exploitable for motif counting and computing the graphlet
degree distribution.

A question that naturally arises from these results is if structural sparsity should be
an expected characteristic of practically relevant random graph models. Our contri-
bution solidifies this idea and supports previous results for different random graph
models [65, 207]. We further ask whether the grad is small enough to enable prac-
tical algorithmic application—our empirical evaluation using p-centered colorings of
random intersection graphs with α > 1 indicate the answer is affirmative.

Part V

T R E E W I D T H F R O M T R E E D E P T H

23
S TA RT I N G F R O M T R E E D E P T H

In this part we will present a new idea to develop heuristics for treewidth, which
is based on computing a treedepth decomposition of the graph to then manipulate
it. This idea is related to the the notion of the elimination height of a chordal graph,
which we discussed in Section 1. Here we will further draw a connection between a
treedepth decomposition of a graph and an elimination order of a graph, which is the
key concept in almost every treewidth heuristic. We will show how computing a good
treedepth decomposition to then manipulate can lead to reasonably good heuristics
for treewidth. In some cases, such a scheme even outperforms the thirteen other
heuristics to which we compare our approach. We will not only present this idea as
leading to further well-performing heuristic for treewidth, but also discuss how the
general scheme on which it is based could be exploited in future work to implement
meta-heuristics that apply different heuristics to different parts of the input graph.

In Section 1, while discussing elimination trees, we introduced the notion of the
perfect elimination ordering of a chordal graph: Every chordal graph has at least one
ordering of the nodes called a perfect elimination, such that for every node all neigh-
bors that come later in the ordering form a clique. We also mentioned that computing
the treewidth of a graph is equivalent to finding a triangulation with smallest clique
size [12]. Almost every treewidth heuristic is based on attempting to find a so called
elimination order of the graph, which is an order of the nodes which is assumed to be a
perfect elimination of the optimal triangulation of the graph. The triangulation is then
derived by adding all the missing edges from this order to be a perfect elimination.
We will refer to the edges that are added as the fill-in.

The fundamental idea behind the heuristic is that, given a treedepth decomposition
T of a graph, the maximal distance in T between any two nodes connected by an edge
of the graph is an upper bound for the treewidth of the graph. We will call this distance
the stretch of T. The heuristic thus computes a treedepth decomposition of the graph
and then manipulates it in an attempt to minimize the stretch. Then an elimination
order is derived by recursively taking leaves of the treedepth decomposition.

We will compute the treedepth decomposition in three ways: First by just taking a
the tree with results from a depth first visit of all nodes in the graph, which is, as dis-
cussed in Section 3.1, a valid treedepth decomposition of the graph. This will cover the
cases where the structure of the graph is rather simple. We also construct treedepth de-
compositions by recursively finding separators which either attempt to maximize the
number of remaining components when removed, or minimize the size of the biggest
remaining component. The separators are found by starting with a trivial separator
and then greedily exchanging some nodes of the separator with neighbors of the node

110 23 starting from treedepth

as long as it improves the measure. Finally, we create a treedepth decomposition by
finding separators via eigenvectors [205]. The nodes of the treedepth decomposition
are weighted by the stretch of its incident edges using a “spring-like” function. We
then try to move the node on which the strongest resulting force acts via simple re-
structuring of the treedepth decomposition in an attempt to decrease the acting force.
We do this for some small amount of time, since this process tends to quickly stop
decreasing the stretch. The details of the heuristic will be provided in Section 24.

We will run these four heuristics and compare them to thirteen other heuristics
on 371 graphs which have been used as test-beds for treewidth heuristics previously.
When looking at the results in Section 25, we will see that in 6.5% of these graphs,
one of these four heuristics achieves a better result than the other thirteen and that in
41.0% one of these achieves a result which equals or is better than the best result of
the other thirteen heuristics.

Since there is a clear way to derive an elimination tree from an elimination order,
we also let the second step of the heuristics, which attempts to minimize the stretch,
run on treedepth decompositions generated from the elimination orders given by the
other heuristics. It manages to improve 7.01% of these elimination orders beyond the
previous best result and in 26.68% of the cases it takes a previously suboptimal one
and derives a width equal or better than the previous best one between all heuristics.

24
H E U R I S T I C

The proposed heuristics are divided in two steps. The first one computes a treedepth
decomposition. The second one takes this treedepth decomposition and manipulates
it trying to create a treedepth decomposition whose corresponding elimination order
has low treewidth.

stretch

We start by giving a formal definition of the stretch of a treedepth decomposition.

Definition 45 (Stretch). Given a treedepth decomposition T of a graph G, the stretch
of T is maxuv∈E(G) dT(u, v). The stretch of an edge uv ∈ E(G) is the distance of u and
v in T.

As mentioned before, the second step of the heuristics will attempt to minimize the
stretch of a given treedepth decomposition. The theoretical foundation for this is given
by the following lemma.

Lemma 41. Given a treedepth decomposition T of a graph G with stretch s it follows that
tw(G) 6 s.

Proof. Let π = v1 . . . vn be an elimination order of G achieved by recursively removing
leaves of T. We can compute the fill edges of this elimination order by recursively tak-
ing the nodes of G in the order given by π, making the neighborhood of the currently
selected node vi a clique and deleting vi. Notice that the cliques we create in this
manner will be the maximal cliques of the triangulation. Thus the size of the biggest
neighborhood of a node vi during this elimination process will be the treewidth given
by the elimination order π. The theorem follows from the fact that the stretch in T
of any edge added by this process cannot be greater than the stretch of T and that
the maximal stretch of edges incident to a node is an upper bound on the size of its
neighborhood.

The treedepth decomposition of minimum depth and the one of minimum stretch can
look very different. A simple example would be a graph which is just a path. The
treedepth decomposition with the lowest depth has depth and stretch log n. The one
with the lowest stretch is the path itself, having depth n but stretch 1, which is precisely
its treewidth.

112 24 heuristic

computing a treedepth decomposition

Tobias Oelschlägel implemented as part of his bachelor thesis four different ways to
compute a treedepth decomposition. The simplest one of these works by taking the
tree given by a depth first search of the graph as the decomposition. This is valid
treedepth decomposition as mentioned in Section 3.1. This cannot not be expected to
compute a treedepth decomposition of low depth in general, but, as we will see later,
it helps exploiting the structure of the graph when it has low treewidth.

The other three ways are all based on recursively finding minimal separators of the
graph.

Definition 46 (Minimal separator). A set S is a separator of G if there exist two nodes
u, v /∈ S which lie in different components of G[V(G) \ S]. A set S′ is a minimal separator
of G if it is a separator and no proper subset of it is a separator.

In Section 1 we already discussed how a natural way of interpreting a treedepth de-
composition is as a process of iteratively removing separators. When a separator is
removed it becomes a path of nodes in the decomposition, such that all nodes except
the deepest one have only one child. We can actually assume that all these separators
are minimal: Let the separator path of a treedepth decomposition T be the nodes in a
path from a root of T to the nearest node u with degree greater than two or V(G) if no
such node u exists. Note u can be the root itself. The separator set S of T is then the set
of sets of nodes of T we get by recursively adding all separator paths of T to S. It is
easy to see that given just the separator set S and G, we could reconstruct T. We now
state a result by Manne rephrased for our current context.

Proposition 8 ([175]). Let G be a graph with treedepth d. There exists a treedepth decompo-
sition T of G of depth d such that every set A in the separator set of T is either a minimal
separator of G or G[A] does not have any separators.

It follows that we can attempt to construct a treedepth decomposition of minimal
depth by finding the correct minimal separators. Three ways to find separators were
implemented, two based on enumerating separators, the third one based on finding
separators via eigenvectors.

It is possible to enumerate all separators of a graph using O(n3) operations per
separator [25]. The basis of this algorithm is the following proposition.

Proposition 9 ([25]). If S ⊆ V(G) is a minimal separator of a graph G and x ∈ S, then
N(C) is also a minimal separator for each component C of G[V(G) \ (S ∪ N(x))].

We start the process by finding a close separator.

Definition 47 (Close separator). A minimal separator S of graph G is called close to
vertex x if S ⊆ NG(x).

24.3 Improving the Treedepth Decomposition 113

A separator S close to x can be found easily by computing the graph G′ = G[V(G) \
({x} ∪ N(x))]. Then, for each component of G′, the set N(C) is a minimal separator
close to x. Since most graphs will have too many separators to enumerate them all, the
enumeration algorithm was transformed into a kind of local search which greedily at-
tempts to minimize some function over the separator: Let NS(G) be the set of minimal
separators that can be constructed from a minimal separator S by applying Proposi-
tion 9. First the algorithm finds some minimal separator S which is close to some
node. Then it enumerates every element of NS(G), takes the set S′ ∈ NS(G) which
minimizes a given function c and repeats this process on S′ as long as c(S′) < c(S).
The following functions were used in the experiments:

max c(S) = size of the greatest component of G[V(G) \ S]

num c(S) = |V(G)| − number of components of G[V(G) \ S]

Finally the last version of the heuristic finds separators using the method proposed by
Pothen, Simon and Liu [205]:

1. Compute the second eigenvalue λ2 of the laplacian matrix corresponding to G (see
Chung [57]) and its corresponding eigenvector y.

2. Partition the graph into A = {vi ∈ V(G) | yi > 0} and B = V(G) \ A.

3. Compute a minimal separator S by finding a minimum vertex cover of the graph
induced on the edges incident to one node in A and one node in B. This can be
done in polynomial time since this graph is bipartite [222].

improving the treedepth decomposition

The methods discussed above to compute a treedepth decomposition do not attempt
to minimize the stretch directly. The ones that are based in finding separators actually
attempt to minimize the height of the decomposition. We will describe now a way to
try to minimize the stretch of a given treedepth decomposition.

We start by calculating the acting force on every node v, choosing the force induced
by an edge to grow quadratically with its stretch.

f∆(v) = ∑
uv∈E(G)

hT(u)> hT(v)

(hT(u)− hT(v))2 − ∑
uv∈E(G)

hT(u)< hT(v)

(hT(v)− hT(u))2

Over all nodes incident to an edge with maximum stretch we choose the one with the
greatest acting force. Let this node be u which is incident to an edge uv. If the acting
force is positive we want to move the node up, down otherwise. To move the node u
down towards v we will actually move the nodes between them up, which also has the
effect of decreasing the stretch of the edge. Thus we actually only need to know how to

114 24 heuristic

move nodes upward for both operations. We do this by exchanging the position of the
node x to be moved up with its parent p and then changing the parent of all children
of x to be p. We then make the treedepth decomposition nice (see Definition 18) since
this can only decrease the stretch of edges. This can be done thanks to a union-find
structure in O(n + m · α(m)) amortized time, where α is the inverse of the Ackermann
function [93, 98, 198]. All other operations described can be implemented in linear
time. This operation is repeated until some given time limit is reached.

25
E X P E R I M E N T S

We compare our heuristics against thirteen other heuristics which are part of the
INDDGO software package [16, 108]. A short description of these heuristics follows.

mind Min-degree generates an elimination ordering by always choosing the next
node to be one of minimum degree in the remaining graph [100].

mult Multiple min-degree generates an elimination ordering by always choosing
the next node to be one of minimum degree in the remaining graph and
finding a set of nodes which can be safely eliminated simultaneously [166].

amd Approximate minimum degree generates an elimination ordering by using ap-
proximate bounds for the minimum degree instead of the exact bounds, for
the sake of efficiency [11].

minf Min-fill generates an elimination ordering by iteratively choosing a node
whose elimination introduces the least number of edges [18].

beta In the beta heuristic all nodes with minimum fill-in are added to the order-
ing simultaneously at every step [16, 108].

bmf The batched min-fill heuristic generates an elimination ordering by attempt-
ing to find a set of nodes which have together a small fill-in [16, 108].

mmd The minimum maximum degree heuristic generates the elimination ordering
by choosing nodes such that the maximum degree of the triangulated graph
remains as small as possible after every step [16, 108].

lexm LEX-M is a heuristic derived from the lexicographic breadth-first search
(LEX-BFS) algorithm, which can recognize chordal graphs efficiently [213].

mcs A heuristic derived from maximum cardinality search, which is itself an im-
provement of LEX-BFS for faster chordal graph recognition [24].

mcsm MCS-M is another heuristic derived from maximum cardinality search [24].

metm The METIS implementation of the multiple min-degree heuristic [140, 139].

metn Uses the METIS package to compute an elimination ordering via nested
dissection [140, 139].

parm Uses the ParMETIS package to compute an elimination ordering via nested
dissection, with an implementation that can run in parallel [140, 139].

116 25 experiments

The nested dissection algorithm mentioned for metn and parm also works by construct-
ing a treedepth decomposition. The key difference between these heuristics and the
ones proposed here is that these implementation attempt to minimize the fill produced
by the elimination order from the treedepth decomposition while constructing it. The
heuristics presented here start by constructing a treedepth decomposition without re-
gard for the fill they would produce. In other words, the metn and parm heuristics are
trying to find a good elimination order directly, while the new heuristics start by first
representing the structure of the graph by a treedepth decomposition and only then
trying to find a good elimination order.

To test the heuristic we chose the dimacs data set for graph coloring [1, 134], graphs
from Bodlaender’s libtw library [229] and the graphs from the PACE16 challenge [2].
These sets have all been previously used to test treewidth heuristics [2, 152, 229]. Some
graphs are repeated between data sets. We considered two graphs to be the same
graph if it had the same name (when cleaned up from prefixes like “dimacs_”) and
had the same number of nodes and edges.

In 24/371 (6.5%) instances one of the treedepth based heuristics is better than all
other heuristics and for 152/371 (41.0%) of them the result is better or equal. For
statistics divided by heuristic refer to Table 25.1. For a complete listing of all results
see Table B.1 in Section B of the Appendix. As is to be expected, starting with a dfs
gives an optimal results on all graphs which are trees, i.e. graphs of treewidth one.
It is also rather effective on graphs of low treewidth. Unexpectedly, it provides the
best result for some graphs that do not seem to have low treewidth, such as some
of the “le450”, “mulsol” and “queen” graphs; and the “Cosette”, “HallJanko” and
“Heawood” graphs. Clearly, the worst performing version of the heuristic is the one
based on finding separators via eigenvectors. It only manages to achieve the best result
over all heuristics and beat all other treedepth based heuristic once (the “Markstroem”
graph). The other two heuristics sometimes achieve rather similar results most of the
times, but are also often quite far apart. How we compute the treedepth decomposition
has for many instances a big influence on the result. This is not surprising, since the
improvement step does not restructure the treedepth decomposition too heavily.

As can be seen by the time statistics in Table 25.1, finding a treedepth via separators
is quite slow. Nevertheless, the metn heuristic is also based on finding separators and
it is the fastest of them all, so it should be possible to implement this more efficiently.
The improvement step was run for three seconds on all instances except the ones with
more than 500 nodes, for which it was run for 30 seconds. In almost every case the
improvements stopped after less than five seconds.

As mentioned before there is a sensible way to derive a treedepth decomposition
from an elimination order: Start taking nodes from the end of the elimination order
until the nodes taken become a separator. Set this set as a path starting from the root
in the decomposition, then recurse into the remaining components. Thus we can take

117

Heuristic Best Worst Avg. rank Worst time Avg. time

mind 58.49% 3.23% 3.71 50.11 0.47

mult 58.49% 2.43% 3.58 65.30 0.51

amd 44.47% 3.23% 5.99 1.69 0.05

minf 72.51% 4.04% 2.35 > 300 2.79

beta 22.91% 29.38% 10.51 9.39 0.11

bmf 72.78% 4.04% 2.37 > 300 3.57

mmd 59.30% 2.96% 3.81 > 300 4.76

lexm 29.92% 14.56% 8.82 > 300 1.02

mcs 19.41% 24.80% 11.03 > 300 0.41

mcsm 28.03% 21.83% 9.30 > 300 0.66

metm 47.71% 5.66% 4.49 1.86 0.05

metn 26.15% 11.59% 7.38 1.85 0.05

parm 23.72% 11.59% 7.49 2.03 0.05

dfs 21.02% 13.75% 9.18 75.60 2.60

max 17.25% 18.06% 9.77 > 300 1.69

num 23.99% 8.09% 7.32 > 300 1.67

ev 7.55% 32.35% 12.52 47.32 0.89

td-all 40.97% 3.23% 4.98 — —

Table 25.1: Overall results of all heuristics. The “td-all” row represents taking
the best result over all treedepth based heuristics. Percentages are
over all instances. All times are given in seconds. The average time
was only computed over the instances for which the heuristics
terminated in less than 5 minutes. For a complete table of all
results see Table B.1 in Section B of the Appendix.

the results of the INDDGO heuristics, compute a treedepth decomposition for each
one and run the improvement step on it.

In 26/371 (7.01%) instances, starting from the elimination tree given by the elimi-
nation order of one of the INDDGO heuristics, one of the treedepth based heuristics
manages to get a better result than all other heuristics and for 99/371 (26.68%) of them
an equally good result is achieved by improving a previously non-optimal one. For a
complete listing of all these results see Table B.2 in Section B of the appendix.

26
C O N C L U S I O N

We have seen that we can derive a competitive heuristic for treewidth by starting with
the computation of a treedepth decomposition which is then manipulated to minimize
its stretch. We implemented simple algorithms to both construct treedepth decompo-
sitions in different ways and to minimize the stretch. In our experimental results we
have seen that despite the simplicity of the ideas behind the implementations, the re-
sults are good. What we have presented here is furthermore quite a flexible idea. Fur-
ther work could attempt to improve how the treedepth decomposition is constructed
and how it is manipulated.

A lot of effort has been put into figuring out how to find small separators effi-
ciently and in parallel for the purpose of computing elimination trees for Cholesky
factorization [55, 119, 140, 141, 161]. In this context though, the algorithms do not
try to decrease the height of the treedepth decomposition but immediately try to find
one whose corresponding elimination order has a small fill-in. It should be neverthe-
less possible to adapt these techniques to find treedepth decomposition of low height.
Since many of these programs are open-source, it might even be possible to start with
one of these implementations.

The manipulation presented here, making the treedepth decomposition nice after
pushing nodes upwards to decrease distances, is not very involved. There are some
known non-trivial manipulations of treedepth decompositions [113, 167, 169, 176] from
which it might be possible to derive some further manipulations that decrease the
stretch of a treedepth decomposition.

Finally, reordering or manipulating the treedepth decomposition is not the only way
to get a better treewidth. It would be possible to throw away a part of the decomposi-
tion and compute a new treedepth decomposition for this part of the graph. This can
be done also by using heuristics which compute an elimination order and then taking
the corresponding treedepth decomposition. This suggests a straightforward way of
using different heuristics on different parts of the graph.

Part VI

C O N C L U S I O N

27
C O N S I D E R T R E E D E P T H

At the beginning of this thesis we pointed out that treedepth or equivalent concepts
have been (re)discovered again and again in different contexts. We also pointed out
how in some cases it is the right tool to characterize some fundamental dichotomies.
If one thinks of it as a measure of how easy it is to decompose a graph via separators,
it might not seem too surprising that this turns out to be an important property for
certain analyses.

We have presented here the asymptotically fastest exact parameterized algorithm to
compute the treedepth of a graph to date, with a running time of 2O(d2) · n. An obvious
open question is if a faster algorithm exists, especially if there is a single-exponential al-
gorithm. If such an algorithm would use the same basic approach of the one presented
here, i.e. doing dynamic programming on a tree decomposition, we would seemingly
need to figure out how to compute an exact solution without our tables consisting
of partially labeled trees. Recent work has parameterized calculating the treedepth
of a graph by the vertex cover number [151], which allowed for a polynomial kernel.
Maybe further sensible parameter besides the natural one exist.

A fundamental part of achieving this result was using a single-exponential linear-
time fpt constant factor approximation for treewidth [38]. No such approximation
is yet known for treedepth. It seems like the approach for treedepth would have
to be fundamentally different than the approach for treewidth, since the treewidth
approximation heavily relies on the last property of treewidth as an S-function (See
Section 1 Definition 3), which as mentioned does not hold for treedepth.

In the next part, we investigated the treewidth and treedepth with relation to dy-
namic programming and space consumption. We proved that the space consumption
of the current best algorithms for 3-Coloring, Vertex Cover and Dominating Set

parameterized by treewidth cannot be beaten by any standard dynamic programming
algorithm, by which we mean an algorithm whose running time does not depend on
any other property of the tree decomposition besides its width and size, is not allowed
to manipulate the provided tree decomposition and can only read every bag once in
the normal order. As mentioned in Part iii, there exist very few algorithms exploit-
ing tree decompositions that do any of these things and to the best of our knowledge
most of these exceptions are for problems which are (assumed to be) not NP-hard. It
might be nevertheless interesting to strengthen these results such that they apply for
algorithms that are allowed to compute their own tree decomposition or manipulate
a decomposition given as input. A way to achieve this would be to develop gadgets
that allow the construction of Myhill–Nerode families such that the treedepth/path-
width/treewidth decomposition of the elements of the family is basically unique.

121

We propose that investigating algorithmic paradigms in general is interesting and
might be a fruitful endeavor. Several other abstractions of common algorithm design
pattern have been proposed in the past, including for dynamic programming and
branching [7, 118]. More recently Drucker, Nederlof and Santhanam showed among
other things that Independent Set is unlikely to have a fast fpt branching algorithm
on graphs of bounded pathwidth [73].

A fundamental property of treedepth seems to be to permit algorithms with low
space consumption. This is not only indicated by our results but also by the previ-
ously mentioned work by Pilipczuk and Wrochna [201]. We also mentioned that the
techniques used to branch on a treedepth decomposition for Dominating Set can
be extended [199] to the framework of Telle and Proskurowski for graph partitioning
problems [225]. As a consequence of the work of Lampis this cannot be extended to
MSO [156]. Is there a better way to characterize which problems are solvable with
space polynomial in the treedepth and logarithmic in the input size?

An open question proposed by Michał Pilipczuk during GROW 2015 that, to the best
of our knowledge, has not been resolved yet is if Dominating Set can be solved in
time (3− ε)d · poly(n) for an ε > 0 or if this would contradict the (strong) exponential
time hypothesis. By our lower bounds, if such an algorithm exists it cannot be a
straightforward dynamic programming algorithm.

We have also connected treedepth via bounded expansion to random graph models
designed to mimic real-world networks. We then provided an algorithm for motif
counting which exploits low-treedepth colorings. It would be helpful to develop fur-
ther algorithms for problems arising from practical applications for complex networks.
For an in-depth elucidation of this program see the conclusion to Reidl’s thesis [207].

We presented a treewidth heuristic which starts by attempting to compute a tree-
depth decomposition of low height or by taking a depth first search tree as a treedepth
decomposition. It then takes the treedepth decomposition and tries to minimize its
stretch, i.e. the maximal distance in the decomposition between nodes connected by
an edge of the graph. In Section 26 we proposed several ways in which this heuristic
could be improved and used to derive a meta-heuristic that applies different heuristics
for different parts of the graph.

That this heuristic works as well as it does might be an indication that a treedepth
decomposition says something fundamental about the graph. A decomposition of the
graph might be of use as a preprocessing step outside of the framework of param-
eterized complexity, i.e. it might be possible to improve the running time of some
processes by first representing the graph as a treedepth decomposition. In the field of
routing it is common to build hierarchies of separators to improve the running time
of shortest path searches [120, 231]. It could be argued that by doing this they are
constructing something resembling a treedepth decomposition.

Recently there has been an increased interest in parameterizing by structural param-
eters problems which are in P [3, 22, 89, 92, 103, 181]. For an overview of previous

122 27 consider treedepth

Graph Nodes Edges td

karate 34 78 8

dolphins 62 159 20

lesmiserables 77 254 15

polbooks 105 441 28

word_adjacencies 112 425 40

football 115 613 67

airlines 235 1297 56

sp_data_school_day_2 238 5539 162

celegans 306 2148 118

hex 331 930 75

codeminer 724 1017 27

cpan-authors 840 2222 45

diseasome 1419 2738 23

polblogs 1490 16718 433

netscience 1589 2742 22

yeast 2361 7182 343

cpan-distributions 2724 5018 58

twittercrawl 3656 154824 1564

power 4941 6594 112

as20000102 6474 13895 173

hep-th 8361 15751 736

p2p-Gnutella04 10876 39994 3377

cond-mat 16726 47594 1696

CA-CondMat 23133 93497 3469

Table 27.1: Upper bounds on the treedepth of some real-world networks. For an explanation
of the networks please refer to previous work [65].

results in this direction please refer to Fomin et al. [92]. We can see by the very pre-
liminary results in Table 27.1 that the treedepth of real-world networks, while being
too big for an exponential dependency might be small enough in sufficient cases for
a polynomial one. Since it could be argued that treedepth captures something more
fundamental about the graph than other measures it might be useful as a parameter
for polynomial-time algorithms.

Furthermore, in the literature about elimination trees, elimination height and Cho-
lesky factorization the elimination tree is not only measured by its depth, but also by
how small its fill-in is. Since, as we can see by the results in Table 25.1 of Section 25,
heuristically minimizing the fill-in is also a good heuristic to find a tree decomposition
with low width, this could be seen as attempting to find a balance between the depth of

123

the elimination tree and the treewidth give by the elimination tree’s elimination order.
We have furthermore presented an algorithm in Section 15.1 that interleaves branching
and dynamic programming. It is not difficult to see that the dynamic part of the algo-
rithm could be parameterized by the stretch of the treedepth decomposition instead
of its depth. To minimize the stretch in our heuristic we might increase the height
of the treedepth decomposition. It is nevertheless so that the stretch is close in many
instances to the treewidth given the elimination order of the treedepth decomposition.
It might be sensible to design algorithms that work on a treedepth decompositions
parameterized by both its depth and stretch. Recently, Roden introduced the concept
of spanheight [211]. Taken as a parameter, it is equivalent to parameterizing just by the
stretch of a treedepth decomposition.

A further avenue of research are which problems that are hard when parameter-
ized by treewidth admit fpt algorithms when parameterized by treedepth. We al-
ready mentioned how this proved to be possible for the Mixed Chinese Postman

Problem and the Firefighter Problem. It has been stated as an open question
whether the Minimum Shared Edges Problem is fpt parameterized by treedepth [90].
Other such candidate problems are problems that are NP-hard on paths, such as
Rainbow Matching or MinCC Graph Motif, problems that are NP-hard on trees
such as Bandwidth, Empire Coloring, The Traveling Repairman Problem, Achro-
matic Number, Integral k-Multicommodity flow, Capacitated Vehicle Routing,
Minimum Latency, Call scheduling, and Connected Motifs in Vertex-Colored

Graphs; and problems that are W[1]-hard when parameterized by treewidth, such as
k-Capacitated Dominating Set, [σ, ρ]-Dominating Set, Equitable Coloring, Gen-
eral Factor, Minimum Maximum Outdegree, List Hamilton Path and Bounded-
Degree Vertex Deletion. All these problems would be candidates to investigate
whether treedepth is a suitable parameter. It should be noted that some problems
such as List Coloring and Precoloring Extension remain W[1]-hard when param-
eterized by treedepth [49]. It might also be of interest to check if other reconfiguration
problems besides the one investigated by Wrochna [233] are fpt when parameterized
by treedepth. Double- and triple-exponential lower bounds have been proven for cer-
tain choosability problems when parameterized by treewidth [178]. Do these bounds
persist when parameterizing by treedepth?

In Cholesky factorization the possibility of parallelization is one of the main uses of
a treedepth decomposition. Nevertheless, we have not touched the topic of paralleliza-
tion in this work, nor have we discussed any work on it besides Cholesky factorization.
Recent work by Bannach and Tantau has investigated the parallelization of MSO on
treewidth and treedepth via circuit complexity [19]. Further work into treedepth and
parallelization might be of interest.

In the context of studying the isomorphism problem the concept of generalized
treedepth has been proposed [46]. This characterization works by relaxing the cops-and-
robbers games that is equivalent to treedepth. Bulian points out that treedepth and this

124 27 consider treedepth

generalization of treedepth are both special cases of the concept of elimination distance
to class C which he introduces [49]. In this characterization the class for treedepth is
the edgeless graphs and for generalized treedepth the class contains graphs of degree
at most two. A relaxation of vertex ranking, which only forces paths of length at most
` to contain a node of higher rank (cf. Definition 5), was recently introduced [138]. A
restriction of treedepth called starwidth was also recently proposed [230]. How do this
generalizations/restrictions of treedepth fit into the landscape?

Previous work has computed tree decompositions of a real-world networks not to
necessarily exploit them algorithmically, but because they provided information about
the deep structure of the network [4]. Since a treedepth decomposition of a network
might be understood to represent a certain hierarchy of the network one might wonder
if it works as a centrality measure. An indication that this might work out is that
centrality measures are sometimes used to find good separators [120, 231].

Part VII

B I B L I O G R A P H Y

B I B L I O G R A P H Y

[1] Graph Coloring Instances. http://mat.gsia.cmu.edu/COLOR/instances.html.
Accessed: 2017-05-10.

[2] PACE 2016 — Track A: Tree Width — The Parameterized Algorithms and Com-
putational Experiments Challenge. https://pacechallenge.wordpress.com/

pace-2016/track-a-treewidth/. Accessed: 2017-05-10.

[3] A. Abboud, V. V. Williams, and J. Wang. Approximation and fixed parameter
subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings
of the twenty-seventh annual ACM-SIAM symposium on Discrete Algorithms, pages
377–391, 2016.

[4] A. B. Adcock, B. D. Sullivan, and M. W. Mahoney. Tree decompositions and
social graphs. Internet Mathematics, 12(5):315–361, 2016.

[5] A. Adiga, R. Chitnis, and S. Saurabh. Parameterized algorithms for boxicity.
Algorithms and Computation, pages 366–377, 2010.

[6] I. Albert and R. Albert. Conserved network motifs allow protein-protein interac-
tion prediction. Bioinformatics, 20(18):3346–3352, 2004.

[7] M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R. Impagliazzo, A. Magen,
and T. Pitassi. Toward a model for backtracking and dynamic programming.
computational complexity, 20(4):679–740, 2011.

[8] N. Alon and S. Gutner. Linear time algorithms for finding a dominating set of
fixed size in degenerated graphs. Algorithmica, 54(4):544, 2009.

[9] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. k-core decom-
position of internet graphs: hierarchies, self-similarity and measurement biases.
arXiv e-prints, 2005, arXiv:cs/0511007.

[10] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. Large scale net-
works fingerprinting and visualization using the k-core decomposition. Advances
in neural information processing systems, 18:41, 2006.

[11] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree
ordering algorithm. SIAM Journal on Matrix Analysis and Applications, 17(4):886–
905, 1996.

http://mat.gsia.cmu.edu/COLOR/instances.html
https://pacechallenge.wordpress.com/pace-2016/track-a-treewidth/
https://pacechallenge.wordpress.com/pace-2016/track-a-treewidth/

Bibliography 127

[12] E. Amir. Efficient approximation for triangulation of minimum treewidth. In Pro-
ceedings of the Seventeenth conference on Uncertainty in artificial intelligence, pages
7–15, 2001.

[13] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12(2):308–340, 1991.

[14] B. Aspvall and P. Heggernes. Finding minimum height elimination trees for
interval graphs in polynomial time. BIT Numerical Mathematics, 34(4):484–509,
1994.

[15] L. F. Avila, A. Garcıa, M. J. Serna, and D. M. Thilikos. Parameterized prob-
lems in bioinformatics. Technical report, Departament de Lenguatges i Sistemes
Informàtics, Universitat Politècnica de Catalunya, 2006.

[16] B. D. Sullivan et al. Integrated network decompositions and dynamic pro-
gramming for graph optimization (INDDGO). http://github.com/bdsullivan/
inddgo.

[17] L. Babai, W. M. Kantor, and E. M. Luks. Computational complexity and the
classification of finite simple groups. In Foundations of Computer Science, 1983.,
24th Annual Symposium on, pages 162–171, 1983.

[18] E. H. Bachoore and H. L. Bodlaender. New upper bound heuristics for treewidth.
In Experimental and Efficient Algorithms: 4th International Workshop, WEA 2005,
Santorini Island, Greece, May 10-13, 2005. Proceedings, pages 216–227, 2005.

[19] M. Bannach and T. Tantau. Parallel multivariate meta-theorems. In 11th Interna-
tional Symposium on Parameterized and Exact Computation (IPEC 2016), volume 63,
2017.

[20] M. J. Bannister, S. Cabello, and D. Eppstein. Parameterized complexity of 1-
planarity. In Algorithms and Data Structures: 13th International Symposium, WADS
2013, London, ON, Canada, August 12-14, 2013. Proceedings, pages 97–108, 2013.

[21] V. Batagelj and M. Zaversnik. An O(m) algorithm for cores decomposition of
networks. arXiv e-prints, 2003, arXiv:cs/0310049.

[22] M. Bentert, T. Fluschnik, A. Nichterlein, and R. Niedermeier. Parameterized
aspects of triangle enumeration. arXiv e-prints, 2017, arXiv:1702.06548.

[23] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear-time computation of optimal
subgraphs of decomposable graphs. Journal of Algorithms, 8(2):216–235, 1987.

[24] A. Berry, J. R. Blair, P. Heggernes, and B. W. Peyton. Maximum cardinality
search for computing minimal triangulations of graphs. Algorithmica, 39(4):287–
298, 2004.

http://github.com/bdsullivan/inddgo
http://github.com/bdsullivan/inddgo

128 Bibliography

[25] A. Berry, J.-P. Bordat, and O. Cogis. Generating all the minimal separators of
a graph. International Journal of Foundations of Computer Science, 11(03):397–403,
2000.

[26] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, Inc.,
1972.

[27] U. Bertele and F. Brioschi. On non-serial dynamic programming. Journal of
Combinatorial Theory, Series A, 14(2):137–148, 1973.

[28] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets möbius: Fast
subset convolution. In Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pages 67–74, 2007.

[29] J. R. S. Blair and B. Peyton. An introduction to chordal graphs and clique trees.
In Graph theory and sparse matrix computation, pages 1–29. 1993.

[30] M. Bloznelis. Degree and clustering coefficient in sparse random intersection
graphs. Annals of Applied Probability, 23:1254–1289, 2013.

[31] M. Bloznelis, J. Jaworski, and V. Kurauskas. Assortativity and clustering of
sparse random intersection graphs. Electronic Journal of Probability, 18:1–24, 2013.

[32] M. Bloznelis and V. Kurauskas. Large cliques in sparse random intersection
graphs. arXiv e-prints, 2013, arXiv:1302.4627.

[33] H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth.
In Automata, Languages and Programming: 15th International Colloquium Tampere,
Finland, July 11–15, 1988 Proceedings, pages 105–118, 1988.

[34] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–21,
1993.

[35] H. L. Bodlaender. Treewidth: Algorithmic techniques and results. Mathematical
Foundations of Computer Science 1997, pages 19–36, 1997.

[36] H. L. Bodlaender. Fixed-parameter tractability of treewidth and pathwidth. In
The Multivariate Algorithmic Revolution and Beyond, pages 196–227, 2012.

[37] H. L. Bodlaender, J. S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller, and
Z. Tuza. Rankings of graphs. SIAM Journal of Discrete Mathematics, 11(1):168–181,
1998.

[38] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and
M. Pilipczuk. A O(ckn) 5-approximation algorithm for treewidth. SIAM Journal
on Computing, 45(2):317–378, 2016.

Bibliography 129

[39] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algo-
rithms, 18(2):238–255, 1995.

[40] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. Journal of Algorithms, 21(2):358–402, 1996.

[41] H. L. Bodlaender and D. Kratsch. Personal communication, 2014.

[42] R. Borie, R. Parker, and C. Tovey. Automatic generation of linear-time algorithms
from predicate calculus descriptions of problems on recursively constructed
graph families. Algorithmica, 7(1-6):555–581, 1992.

[43] R. Borie, R. Parker, and C. Tovey. Solving problems on recursively constructed
graphs. ACM Computing Surveys, 41(1):4, 2008.

[44] G. Borradaile and H. Le. Optimal dynamic program for r-domination problems
over tree decompositions. arXiv e-prints, 2015, arXiv:1502.00716.

[45] M. Bougeret and I. Sau. How much does a treedepth modulator help to obtain
polynomial kernels beyond sparse graphs? arXiv e-prints, 2016, arXiv:1609.08095.

[46] A. Bouland, A. Dawar, and E. Kopczyński. On tractable parameterizations of
graph isomorphism. In Parameterized and Exact Computation: 7th International
Symposium, IPEC 2012, Ljubljana, Slovenia, September 12-14, 2012. Proceedings,
pages 218–230, 2012.

[47] F. Branin. A sparse matrix modification of Kron’s method of piecewise analysis.
In Proceedings of the IEEE International Symposium on Circuits and Systems, pages
383–386, 1975.

[48] J. Bu, C. Chen, X. Liu, M. Song, L. Zhang, and Q. Zhao. Probabilistic graphlet
transfer for photo cropping. Transactions on Image Processing, 22(2):802–815, 2013.

[49] J. Bulian. Parameterized complexity of distances to sparse graph classes. Tech-
nical report, Computer Laboratory, University of Cambridge, 2017.

[50] J. Buresh-Oppenheim, S. Davis, and R. Impagliazzo. A stronger model of dy-
namic programming algorithms. Algorithmica, 60(4):938–968, 2011.

[51] C. Calabro, R. Impagliazzo, and R. Paturi. The complexity of satisfiability of
small depth circuits. In Parameterized and Exact Computation: 4th International
Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Se-
lected Papers, pages 75–85, 2009.

130 Bibliography

[52] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir. A model of inter-
net topology using k-shell decomposition. Proceedings of the National Academy of
Sciences, 104(27):11150–11154, 2007.

[53] C. Chekuri and J. Chuzhoy. Polynomial bounds for the grid-minor theorem.
Journal of the ACM, 63(5):40, 2016.

[54] H. Chen and M. Müller. One hierarchy spawns another: graph deconstructions
and the complexity classification of conjunctive queries. In Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), page 32, 2014.

[55] C. Chevalier and F. Pellegrini. PT-Scotch: A tool for efficient parallel graph
ordering. Parallel computing, 34(6):318–331, 2008.

[56] L. Chua and L.-K. Chen. Diakoptic and generalized hybrid analysis. IEEE Trans-
actions on Circuits and Systems, 23(12):694–705, 1976.

[57] F. R. Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

[58] B. Courcelle. The monadic second-order theory of graphs. I. Recognizable sets
of finite graphs. Information and Computation, 85:12–75, 1990.

[59] P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, and A. Marino. On computing the
diameter of real-world undirected graphs. Theoretical Computer Science, 514:84–
95, 2013.

[60] P. Crescenzi, R. Grossi, C. Imbrenda, L. Lanzi, and A. Marino. Finding the
diameter in real-world graphs. In Algorithms – ESA 2010: 18th Annual European
Symposium, Liverpool, UK, September 6-8, 2010. Proceedings, Part I, pages 302–313.
2010.

[61] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Pa-
turi, S. Saurabh, and M. Wahlström. On problems as hard as CNF-SAT. ACM
Transactions on Algorithms, 12(3):41, 2016.

[62] M. Cygan, S. Kratsch, and J. Nederlof. Fast hamiltonicity checking via bases
of perfect matchings. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 301–310. ACM, 2013.

[63] P. de la Torre, R. Greenlaw, and A. A. Schäffer. Optimal edge ranking of trees in
polynomial time. Algorithmica, 13(6):592–618, 1995.

[64] M. Deijfen and W. Kets. Random intersection graphs with tunable distribution
and clustering. Probability in the Engineering and Informational Sciences, 23:661–674,
2009.

Bibliography 131

[65] E. D. Demaine, F. Reidl, P. Rossmanith, F. Sánchez Villaamil, S. Sikdar, and
B. D. Sullivan. Structural sparsity of complex networks: Bounded expansion in
random models and real-world graphs. arXiv e-prints, 2014, arXiv:1406.2587.

[66] J. S. Deogun, T. Kloks, D. Kratsch, and H. Müller. On vertex ranking for per-
mutation and other graphs. In 11th Annual Symposium on Theoretical Aspects of
Computer Science Caen, France, February 24-26, 1994 Proceedings, pages 747–758.
Springer, 1994.

[67] J. S. Deogun, T. Kloks, D. Kratsch, and H. Müller. On the vertex ranking prob-
lem for trapezoid, circular-arc and other graphs. Discrete Applied Mathematics,
98(1):39–63, 1999.

[68] D. Dereniowski and A. Nadolski. Vertex rankings of chordal graphs and
weighted trees. Information Processing Letters, 98(3):96–100, 2006.

[69] T. S. Developers. SageMath, the Sage Mathematics Software System (Version 7.1.0),
2016. http://www.sagemath.org.

[70] J. Diaz, O. Pottonen, M. Serna, and E. J. van Leeuwen. Complexity of metric
dimension on planar graphs. Journal of Computer and System Sciences, 83(1):132–
158, 2017.

[71] G. Ding. Subgraphs and well-quasi-ordering. Journal of Graph Theory, 16(5):489–
502, 1992.

[72] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
1999.

[73] A. Drucker, J. Nederlof, and R. Santhanam. Exponential time paradigms through
the polynomial time lens. In 24th Annual European Symposium on Algorithms (ESA
2016), volume 57, 2016.

[74] I. Duff. A multifrontal approach for solving sparse linear equations. In Numerical
Methods, pages 87–98. 1983.

[75] I. S. Duff. Full matrix techniques in sparse gaussian elimination. In Numerical
Analysis, pages 71–84. 1982.

[76] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric
linear. ACM Transactions on Mathematical Software, 9(3):302–325, 1983.

[77] Z. Dvořák, A. C. Giannopoulou, and D. M. Thilikos. Forbidden graphs for tree-
depth. European Journal of Combinatorics, 33(5):969–979, 2012.

[78] Z. Dvořák, D. Král’, and R. Thomas. Testing first-order properties for subclasses
of sparse graphs. Journal of the ACM, 60(5):36, 2013.

http://www.sagemath.org

132 Bibliography

[79] L. C. Eggan et al. Transition graphs and the star-height of regular events. The
Michigan mathematical journal, 10(4):385–397, 1963.

[80] K. Eickmeyer, M. Elberfeld, and F. Harwath. Expressivity and succinctness of
order-invariant logics on depth-bounded structures. In Mathematical Foundations
of Computer Science 2014: 39th International Symposium, MFCS 2014, Budapest, Hun-
gary, August 25-29, 2014. Proceedings, Part I, pages 256–266, 2014.

[81] M. Elberfeld. Space and Circuit Complexity of Monadic Second-order Definable Prob-
lemes on Tree-decomposable Structures. PhD thesis, Zentrale Hochschulbibliothek
Lübeck, 2012.

[82] M. Elberfeld, M. Grohe, and T. Tantau. Where first-order and monadic second-
order logic coincide. ACM Transactions on Computational Logic, 17(4):25, 2016.

[83] M. Elberfeld, A. Jakoby, and T. Tantau. Algorithmic meta theorems for circuit
classes of constant and logarithmic depth. In Proceedings of the 29th Symposium
on Theoretical Aspects of Computer Science, volume 14, pages 66–77, 2012.

[84] J. A. Ellis, I. H. Sudborough, and J. S. Turner. The vertex separation and search
number of a graph. Information and Computation, 113(1):50–79, 1994.

[85] M. R. Fellows, B. M. Jansen, and F. Rosamond. Towards fully multivariate algo-
rithmics: Parameter ecology and the deconstruction of computational complex-
ity. European Journal of Combinatorics, 34(3):541–566, 2013.

[86] M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, and S. Saurabh. Graph
layout problems parameterized by vertex cover. In International Symposium on
Algorithms and Computation, pages 294–305. Springer, 2008.

[87] S. Finbow, A. King, G. MacGillivray, and R. Rizzi. The firefighter problem for
graphs of maximum degree three. Discrete Mathematics, 307(16):2094–2105, 2007.

[88] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.

[89] T. Fluschnik, C. Komusiewicz, G. B. Mertzios, A. Nichterlein, R. Niedermeier,
and N. Talmon. When can graph hyperbolicity be computed in linear time?
arXiv e-prints, 2017, arXiv:1702.06503.

[90] T. Fluschnik, S. Kratsch, R. Niedermeier, and M. Sorge. The parameter-
ized complexity of the minimum shared edges problem. arXiv e-prints, 2016,
arXiv:1602.01739.

[91] F. V. Fomin, A. C. Giannopoulou, and M. Pilipczuk. Computing tree-depth faster
than 2n. In Parameterized and Exact Computation, volume 8246 of Lecture Notes in
Computer Science, pages 137–149. 2013.

Bibliography 133

[92] F. V. Fomin, D. Lokshtanov, M. Pilipczuk, S. Saurabh, and M. Wrochna. Fully
polynomial-time parameterized computations for graphs and matrices of low
treewidth. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1419–1432, 2017.

[93] M. Fredman and M. Saks. The cell probe complexity of dynamic data structures.
In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 345–354, 1989.

[94] M. Frick and M. Grohe. The complexity of first-order and monadic second-order
logic revisited. Annals of Pure and Applied Logic, 130(1–3):3–31, 2004.

[95] M. Fürer and H. Yu. Space saving by dynamic algebraization based on tree-
depth. Theory of Computing Systems, pages 1–22, 2017.

[96] J. Gajarsky and P. Hliněný. Faster deciding MSO properties of trees of fixed
height, and some consequences. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2012), volume 18,
2012.

[97] J. Gajarskỳ, P. Hliněnỳ, J. Obdržálek, S. Ordyniak, F. Reidl, P. Rossmanith,
F. Sánchez Villaamil, and S. Sikdar. Kernelization using structural parameters on
sparse graph classes. Journal of Computer and System Sciences, 84:219–242, 2017.

[98] B. A. Galler and M. J. Fisher. An improved equivalence algorithm. Communica-
tions of the ACM, 7(5):301–303, 1964.

[99] R. Ganian, P. Hliněný, J. Kneis, A. Langer, J. Obdržálek, and P. Rossmanith.
Digraph width measures in parameterized algorithmics. Discrete Applied Mathe-
matics, 168:88–107, 2014.

[100] A. George and J. W. Liu. The evolution of the minimum degree ordering algo-
rithm. Siam review, 31(1):1–19, 1989.

[101] A. C. Giannopoulou, P. Hunter, and D. M. Thilikos. LIFO-search: A min-max
theorem and a searching game for cycle-rank and tree-depth. Discrete Applied
Mathematics, 160(15):2089–2097, 2012.

[102] A. C. Giannopoulou, B. M. Jansen, D. Lokshtanov, and S. Saurabh. Uniform
kernelization complexity of hitting forbidden minors. In Automata, Languages,
and Programming: 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July
6-10, 2015, Proceedings, Part I, pages 629–641, 2015.

[103] A. C. Giannopoulou, G. B. Mertzios, and R. Niedermeier. Polynomial fixed-
parameter algorithms: A case study for longest path on interval graphs. arXiv
e-prints, 2015, arXiv:1506.01652.

134 Bibliography

[104] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. Evaluating cooperation in
communities with the k-core structure. In Advances in Social Networks Analysis
and Mining (ASONAM), 2011 International Conference on, pages 87–93, 2011.

[105] E. Godehardt, J. Jarowski, and K. Rybarczyk. Clustering coefficients of random
intersection graphs. In Challenges at the Interface of Data Analysis, Computer Science
and Optimization: Proceedings of the 34th Annual Conference of the Gesellschaft für
Klassifikation e. V., Karlsruhe, July 21 - 23, 2010, pages 243–253. 2012.

[106] P. Golovach, P. Heggernes, D. Kratsch, D. Lokshtanov, D. Meister, and S. Saurabh.
Bandwidth on AT-free graphs. Algorithms and Computation, pages 573–582, 2009.

[107] M. C. Golumbic. Trivially perfect graphs. Discrete Mathematics, 24(1):105–107,
1978.

[108] C. Groër, B. D. Sullivan, and D. Weerapurage. INDDGO: Integrated network
decomposition & dynamic programming for graph optimization. ORNL/TM-
2012/176, 2012.

[109] H. Gruber and M. Holzer. Finite automata, digraph connectivity, and regular
expression size. Automata, Languages and Programming, pages 39–50, 2008.

[110] H. Gruber and M. Holzer. Provably shorter regular expressions from finite au-
tomata. International Journal of Foundations of Computer Science, 24(08):1255–1279,
2013.

[111] S. Gulan. On the relative descriptional complexity of regular expressions and finite
automata. PhD thesis, Universität Trier, 2011.

[112] G. Gutin, M. Jones, and M. Wahlström. Structural parameterizations of the
mixed chinese postman problem. In Algorithms – ESA 2015: 23rd Annual Euro-
pean Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 668–679.
2015.

[113] H. Hafsteinsson. Parallel sparse Cholesky factorization. Technical report, Cornell
University, 1988.

[114] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dy-
namics, and function using NetworkX. In Proceedings of the 7th Python in Science
Conference, pages 11–15, Aug. 2008.

[115] R. Halin. Zur Klassifikation der endlichen Graphen nach H. Hadwiger und K.
Wagner. Mathematische Annalen, 172(1):46–78, 1967.

[116] R. Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171–186, 1976.

Bibliography 135

[117] W. Hayes, K. Sun, and N. Pržulj. Graphlet-based measures are suitable for bio-
logical network comparison. Bioinformatics, 29(4):483–491, 2013.

[118] P. Helman. A common schema for dynamic programming and branch and
bound algorithms. Journal of the ACM, 36(1):97–128, 1989.

[119] B. Hendrickson et al. Effective sparse matrix ordering: Just around the bend. In
Proceedings of 8th SIAM Conference on Parallel Processing for Scientific Computing,
1997.

[120] M. Holzer, F. Schulz, and D. Wagner. Engineering multilevel overlay graphs for
shortest-path queries. Journal of Experimental Algorithmics, 13:5, 2009.

[121] P. Hunter. LIFO-search on digraphs: A searching game for cycle-rank. In Fun-
damentals of Computation Theory: 18th International Symposium, FCT 2011, Oslo,
Norway, August 22-25, 2011. Proceedings, pages 217–228, 2011.

[122] R. Impagliazzo and R. Paturi. Complexity of k-SAT. In Computational Complexity,
1999. Proceedings. Fourteenth Annual IEEE Conference on, pages 237–240, 1999.

[123] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponen-
tial complexity? In Foundations of Computer Science, 1998. Proceedings. 39th Annual
Symposium on, pages 653–662, 1998.

[124] S. Itzkovitz, R. Levitt, N. Kashtan, R. Milo, M. Itzkovitz, and U. Alon.
Coarse-graining and self-dissimilarity of complex networks. Physical Review E,
71(1):016127, 2005.

[125] A. V. Iyer, H. D. Ratliff, and G. Vijayan. On a node ranking problem of trees and
graphs. Technical report, DTIC Document, 1986.

[126] A. V. Iyer, H. D. Ratliff, and G. Vijayan. Optimal node ranking of trees. Informa-
tion Processing Letters, 28(5):225–229, 1988.

[127] A. V. Iyer, H. D. Ratliff, and G. Vijayan. On an edge ranking problem of trees
and graphs. Discrete Applied Mathematics, 30(1):43–52, 1991.

[128] L. Jaffke and B. M. Jansen. Fine-grained parameterized complexity analysis of
graph coloring problems. arXiv e-prints, 2017, arXiv:1701.06985.

[129] B. M. Jansen. The power of data reduction: Kernels for Fundamental Graph Problems.
PhD thesis, Utrecht University, 2013.

[130] K. Jasik. Treewidth on Fire. Bachelor’s thesis, RWTH Aachen University, Ger-
many, 2015.

136 Bibliography

[131] J. Jaworski, M. Karoński, and D. Stark. The degree of a typical vertex in gener-
alized random intersection graph models. Discrete Mathematics, 306:2152–2165,
2006.

[132] J. A. G. Jess and H. G. M. Kees. A data structure for the parallel L\U-
decomposition. THE-afdeling Electrotechniek.

[133] J. A. G. Jess and H. G. M. Kees. A data structure for parallel L/U decomposition.
IEEE Transactions on Computers, 31(3):231–239, 1982.

[134] D. S. Johnson and M. A. Trick. Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, October 11-13, 1993, volume 26. American Mathematical
Soc., 1996.

[135] E. Jones, T. Oliphant, and P. Peterson. SciPy: open source scientific tools for Python,
2014.

[136] M. Karoński and K. Singer-Cohen. On random intersection graphs: the subgraph
problem. Combinatorics, Probability and Computing, 8:131–159, 1999.

[137] R. M. Karp and M. Held. Finite-state processes and dynamic programming.
SIAM Journal on Applied Mathematics, 15(3):693–718, 1967.

[138] I. Karpas, O. Neiman, and S. Smorodinsky. On vertex rankings of graphs and its
relatives. Discrete Mathematics, 338(8):1460–1467, 2015.

[139] G. Karypis and V. Kumar. MeTis: Unstructured graph partitioning and sparse
matrix ordering system, version 4.0. http://www.cs.umn.edu/~metis.

[140] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-
titioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392,
1998.

[141] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering. Journal of Parallel and Distributed Computing, 48(1):71–
95, 1998.

[142] M. Katchalski, W. McCuaig, and S. Seager. Ordered colourings. Discrete Mathe-
matics, 142(1–3):141–154, 1995.

[143] I. Katsikarelis, M. Lampis, and V. T. Paschos. Structural parameters,
tight bounds, and approximation for (k, r)-center. arXiv e-prints, 2017,
arXiv:1704.08868.

[144] K. Kawarabayashi and B. Rossman. A polynomial excluded-minor approxi-
mation of treedepth. http://www.math.toronto.edu/rossman/treedepth.pdf,
2017.

http://www.cs.umn.edu/~metis
http://www.math.toronto.edu/rossman/treedepth.pdf

Bibliography 137

[145] H. G. M. Kees. The organization of circuit analysis on array architectures. PhD thesis,
Dept. of Electrical Engineering, Eindhoven University of Technology, 1982.

[146] A. Kevorkian and J. Snoek. Decomposition in large scale systems: Theory and
applications in solving large sets of nonlinear simultaneous equations. Decompo-
sition of Large Scale Problems. North Holland Publ. Comp, pages 146–160, 1973.

[147] N. G. Kinnersley. The vertex separation number of a graph equals its path-width.
Information Processing Letters, 42(6):345–350, 1992.

[148] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and
H. A. Makse. Identification of influential spreaders in complex networks. Nature
physics, 6(11):888–893, 2010.

[149] T. Kloks. Treewidth: computations and approximations, volume 842. Springer Sci-
ence & Business Media, 1994.

[150] J. Kneis and A. Langer. A practical approach to Courcelle’s Theorem. In Pro-
ceedings of the 4th Doctoral Workshop on Mathematical and Engineering Methods in
Computer Science (MEMICS), pages 99–106. Z. Novotný, 2008.

[151] Y. Kobayashi and H. Tamaki. Treedepth parameterized by vertex cover num-
ber. In 11th International Symposium on Parameterized and Exact Computation (IPEC
2016), volume 63, 2017.

[152] A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. V. Hoesel. Treewidth: Com-
putational experiments. Electronic Notes in Discrete Mathematics, 8:54–57, 2001.

[153] G. Kron. A set of principles to interconnect the solutions of physical systems.
Journal of Applied Physics, 24(8):965–980, 1953.

[154] O. Kuchaiev, T. Milenković, V. Memišević, W. Hayes, and N. Pržulj. Topological
network alignment uncovers biological function and phylogeny. Journal of The
Royal Society Interface, 7(50):1341–1354, 2010.

[155] T. W. Lam and F. L. Yue. Edge ranking of graphs is hard. Discrete Applied
Mathematics, 85(1):71–86, 1998.

[156] M. Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorith-
mica, 64(1):19–37, 2012.

[157] A. Langer. Fast algorithms for decomposable graphs. PhD thesis, RWTH Aachen
University, 2013.

[158] A. Langer, F. Reidl, P. Rossmanith, and S. Sikdar. Evaluation of an MSO-solver.
In D. A. Bader and P. Mutzel, editors, Proceedings of ALENEX’12, pages 55–63.
Society for Industrial and Applied Mathematics, 2012.

138 Bibliography

[159] A. Langer, F. Reidl, P. Rossmanith, and S. Sikdar. Sequoia homepage. http:

//sequoia.informatik.rwth-aachen.de/sequoia/, 2012. Visited 2012-09-16.

[160] A. Langer, F. Reidl, P. Rossmanith, and S. Sikdar. Practical algorithms for MSO
model-checking on tree-decomposable graphs. Computer Science Review, 13:39–
74, 2014.

[161] D. LaSalle and G. Karypis. Efficient nested dissection for multicore architectures.
In Euro-Par 2015: Parallel Processing: 21st International Conference on Parallel and
Distributed Computing, Vienna, Austria, August 24-28, 2015, Proceedings, pages 467–
478, 2015.

[162] C. E. Leiserson. Area-efficient graph layouts. In Foundations of Computer Science,
1980., 21st Annual Symposium on, pages 270–281, 1980.

[163] K. Levenberg. A method for the solution of certain non–linear problems in least
squares. Quarterly of Applied Mathematics, 2(2):164–168, 1944.

[164] T. Ligotti and M. Cardin. Born to Fear: Interviews With Thomas Ligotti. Subter-
ranean, 2014.

[165] S. Lindell. A logspace algorithm for tree canonization. In Proceedings of the twenty-
fourth annual ACM symposium on Theory of computing, pages 400–404, 1992.

[166] J. W. Liu. Modification of the minimum-degree algorithm by multiple elimina-
tion. ACM Transactions on Mathematical Software, 11(2):141–153, 1985.

[167] J. W. Liu. Equivalent sparse matrix reordering by elimination tree rotations.
SIAM Journal on Scientific and Statistical Computing, 9(3):424–444, 1988.

[168] J. W. Liu. A graph partitioning algorithm by node separators. ACM Transactions
on Mathematical Software, 15(3):198–219, 1989.

[169] J. W. Liu. Reordering sparse matrices for parallel elimination. Parallel computing,
11(1):73–91, 1989.

[170] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM Journal
on Matrix Analysis and Applications, 11(1):134–172, 1990.

[171] D. C. Llewellyn, C. Tovey, and M. Trick. Local optimization on graphs. Discrete
Applied Mathematics, 23(2):157–178, 1989.

[172] D. Lokshtanov, D. Marx, and S. Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. In Proceedings of the twenty-second an-
nual ACM-SIAM symposium on Discrete algorithms, pages 777–789, 2011.

http://sequoia.informatik.rwth-aachen.de/sequoia/
http://sequoia.informatik.rwth-aachen.de/sequoia/

Bibliography 139

[173] D. Lokshtanov and J. Nederlof. Saving space by algebraization. In Proceedings of
the forty-second ACM symposium on Theory of computing, pages 321–330, 2010.

[174] C. Magnien, M. Latapy, and M. Habib. Fast computation of empirically tight
bounds for the diameter of massive graphs. Journal of Experimental Algorithmics,
13:10, 2009.

[175] F. Manne. An algorithm for computing an elimination tree of minimum height
for a tree. Technical report, University of Bergen, Norway, 1991.

[176] F. Manne. Reducing the height of an elimination tree through local reorderings. Uni-
versity of Bergen. Department of Informatics, 1991.

[177] D. Marquardt. An algorithm for least-squares estimation of nonlinear param-
eters. Journal of the society for Industrial and Applied Mathematics, 11(2):431–441,
1963.

[178] D. Marx and V. Mitsou. Double-exponential and triple-exponential bounds for
choosability problems parameterized by treewidth. In 43rd International Collo-
quium on Automata, Languages, and Programming (ICALP 2016), volume 55, 2016.

[179] A. Masoudi-Nejad, F. Schreiber, and Z. R. M. Kashani. Building blocks of bio-
logical networks: a review on major network motif discovery algorithms. IET
Systems Biology, 6:164–174, 2012.

[180] R. Mathon. A note on the graph isomorphism counting problem. Information
Processing Letters, 8(3):131–136, 1979.

[181] G. B. Mertzios, A. Nichterlein, and R. Niedermeier. Fine-grained algorithm de-
sign for matching. arXiv e-prints, 2016, arXiv:1609.08879.

[182] T. Milenković, V. Memišević, A. K. Ganesan, and N. Pržulj. Systems-level can-
cer gene identification from protein interaction network topology applied to
melanogenesis-related functional genomics data. Journal of The Royal Society In-
terface, 7(44):423–437, 2010.

[183] T. Milenković and N. Pržulj. Uncovering biological network function via
graphlet degree signatures. Cancer informatics, 6(6):257, 2008.

[184] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Net-
work motifs: simple building blocks of complex networks. Science, 298(5594):824–
827, 2002.

[185] J. Nederlof. Space and time efficient structural improvements of dynamic programming
algorithms. PhD thesis, University of Bergen, 2011.

140 Bibliography

[186] J. Nešetřil and P. Ossona de Mendez. Tree-depth, subgraph coloring and homo-
morphism bounds. European Journal of Combinatorics, 27(6):1022–1041, 2006.

[187] J. Nešetřil and P. Ossona de Mendez. On low tree-depth decompositions. Graphs
and Combinatorics, 31(6):1941–1963, 2015.

[188] J. Nešetřil and S. Shelah. On the order of countable graphs. European Journal of
Combinatorics, 24(6):649–663, 2003.

[189] J. Nešetřil and P. Ossona de Mendez. Grad and classes with bounded expansion
I. and II. European Journal of Combinatorics, 29(3):760–791, 2008.

[190] J. Nešetřil and P. Ossona de Mendez. Grad and classes with bounded expansion
I. Decompositions. European Journal of Combinatorics, 29(3):760–776, 2008.

[191] J. Nešetřil and P. Ossona de Mendez. First order properties on nowhere dense
structures. The Journal of Symbolic Logic, 75(3):868–887, 2010.

[192] J. Nešetřil and P. Ossona de Mendez. On nowhere dense graphs. European Journal
of Combinatorics, 32(4):600–617, 2011.

[193] J. Nešetřil and P. Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms,
volume 28 of Algorithms and Combinatorics. Springer, 2012.

[194] J. Nešetřil, P. Ossona de Mendez, and D. R. Wood. Characterisations and exam-
ples of graph classes with bounded expansion. European Journal of Combinatorics,
33(3):350–373, 2012.

[195] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary
degree distributions and their applications. Physical Review E, 64(2), 2001.

[196] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press,
2006.

[197] M. P. O’Brien et al. CONCUSS: Version 1.0, Sept. 2015. 10.5281/zenodo.30281.

[198] T. Oelschlägel. Treewidth from Treedepth. Bachelor’s thesis, RWTH Aachen
University, Germany, 2014.

[199] T. Oelschlägel. Graph Partitioning Problems on Graphs of Bounded Treedepth.
Master’s thesis, RWTH Aachen University, Germany, 2016.

[200] J. T. M. Pieck. Formele definitie van een e-tree. Technical report, Technische
Hogeschool Eindhoven, 1980.

[201] M. Pilipczuk and M. Wrochna. On space efficiency of algorithms working on
structural decompositions of graphs. In 33rd Symposium on Theoretical Aspects of
Computer Science, pages 57:1–57:15, 2016.

Bibliography 141

[202] B. Pittel, J. Spencer, and N. Wormald. Sudden emergence of a giant k-core in a
random graph. Journal of Combinatorial Theory, Series B, 67(1):111–151, 1996.

[203] P. Pongpaibool, S. Pukkawanna, and V. Visoottiviseth. Lightweight detection of
DoS attacks. In 2007 15th IEEE International Conference on Networks, pages 77–82,
2007.

[204] A. Pothen. The complexity of optimal elimination trees. Technical report, Penn-
sylvannia State University, 1988.

[205] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigen-
vectors of graphs. SIAM Journal of Matrix Analysis and Applications, 11(3):430–452,
1990.

[206] N. Pržulj. Biological network comparison using graphlet degree distribution.
Bioinformatics, 23(2):177–183, 2007.

[207] F. Reidl. Structural sparseness and complex networks. PhD thesis, RWTH Aachen,
Aachen, 2016.

[208] F. Reidl, P. Rossmanith, F. Sánchez Villaamil, and S. Sikdar. A faster parame-
terized algorithm for treedepth. In Automata, Languages, and Programming: 41st
International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Pro-
ceedings, Part I, pages 931–942, 2014.

[209] P. Ribeiro, F. Silva, and M. Kaiser. Strategies for network motifs discovery. In
Fifth IEEE International Conference on e-Science, pages 80–87, 2009.

[210] N. Robertson and P. D. Seymour. Graph minors XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63:65–110, 1995.

[211] N. v. Roden. Spanheight, a natural extension of bandwidth and treedepth. Mas-
ter’s thesis, 2015.

[212] J. V. Rooij, H. L. Bodlaender, and P. Rossmanith. Dynamic programming on tree
decompositions using generalised fast subset convolution. In Algorithms – ESA
2009: 17th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009.
Proceedings, number 5193 in LNCS, pages 566–577. Springer, 2009.

[213] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimina-
tion on graphs. SIAM Journal on computing, 5(2):266–283, 1976.

[214] K. Rybarczyk. The coupling method for inhomogeneous random intersection
graphs. The Electronic Journal of Combinatorics, 24(2):P2–10, 2017.

142 Bibliography

[215] A. Sangiovanni-Vincentelli. A graph theoretical interpretation of nonsymmetric
permutation on sparse matrices. International Journal of Circuit Theory and Appli-
cations, 5(2):139–147, 1977.

[216] A. A. Schäffer. Optimal node ranking of trees in linear time. Information Process-
ing Letters, 33(2):91–96, 1989.

[217] P. Scheffler. Dynamic programming algorithms for tree-decomposition problems. Insti-
tut für Mathematik, Akademie der Wissenschaft der DDR, 1986.

[218] R. Schreiber. A new implementation of sparse gaussian elimination. ACM Trans-
actions on Mathematical Software, 8(3):256–276, 1982.

[219] P. D. Seymour and R. Thomas. Graph searching and a min-max theorem for
tree-width. Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993.

[220] K. Singer-Cohen. Random Intersection Graphs. PhD thesis, Department of Mathe-
matical Sciences, The Johns Hopkins University, 1995.

[221] O. Sporns and R. Kötter. Motifs in brain networks. PLoS Biology, 2(11):369, 2004.

[222] J. A. Storer. An introduction to data structures and algorithms. Springer Science &
Business Media, 2012.

[223] A. Takahashi, S. Ueno, and Y. Kajitani. Minimal acyclic forbidden minors for the
family of graphs with bounded path-width. Discrete Mathematics, 127(1-3):293–
304, 1994.

[224] F. W. Takes and W. A. Kosters. Computing the eccentricity distribution of large
graphs. Algorithms, 6(1):100, 2013.

[225] J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on
partial k-trees. SIAM Journal on Discrete Mathematics, 10(4):529–550, 1997.

[226] S. Teso, J. Staiano, B. Lepri, A. Passerini, and F. Pianesi. Ego-centric graphlets
for personality and affective states recognition. In Social Computing (SocialCom),
2013 International Conference on, pages 874–877, 2013.

[227] J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph frequencies: Mapping the
empirical and extremal geography of large graph collections. In Proceedings of
the 22nd international conference on World Wide Web, pages 1307–1318, 2013.

[228] J. D. Ullman. Computational aspects of VLSI. Computer Science Press, 1984.

[229] T. van Dijk, J.-P. van den Heuvel, and W. Slob. Computing treewidth with LibTW.
http://www.treewidth.com/treewidth/docs/LibTW.pdf, 2006.

http://www.treewidth.com/treewidth/docs/LibTW.pdf

Bibliography 143

[230] M. van Ee. Some notes on bounded starwidth graphs. Information Processing
Letters, 125:9—14, 2017.

[231] D. Wagner and T. Willhalm. Speed-up techniques for shortest-path computa-
tions. In STACS 2007: 24th Annual Symposium on Theoretical Aspects of Computer
Science, Aachen, Germany, February 22-24, 2007. Proceeding, pages 23–36, 2007.

[232] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393:440–442, 1998.

[233] M. Wrochna. Reconfiguration in bounded bandwidth and treedepth. arXiv e-
prints, 2014, arXiv:1405.0847.

[234] B. Yang. Strong-mixed searching and pathwidth. Journal of Combinatorial Opti-
mization, 13(1):47–59, 2007.

Part VIII

A P P E N D I X

A
P R O B L E M S

Input: A graph G and an integer q.

Problem: Is there a function f : V(G)→ {1, . . . , q} such that for every uv ∈
E(G) it holds that f (u) 6= f (v)?

q-Coloring

Input: A graph G and an integer k.

Problem: Is there a subset X ⊆ V(G) with at least k vertices such that G \X
is edgeless?

Vertex Cover

Input: A graph G and an integer k.

Problem: Is there a subset X ⊆ V(G) with at least k vertices such that G[X]

is edgeless?

Independent Set

Input: A graph G and an integer k.

Problem: Is there a subset X ⊆ V(G) with at most k vertices such that the
closed neighborhood of X is V(G)?

Dominating Set

Input: A Boolean formula φ in conjunctive normal form such that every
clause has size at most k.

Problem: Is there a satisfying assignment for φ?

k-SAT

B
E X P E R I M E N TA L R E S U LT O F T R E E W I D T H H E U R I S T I C S

This part of the appendix contains all the results of the experiments which were de-
scribed in Section 25. The first table contains the results for running the improvement
heuristic for the stretch starting from a treedepth decomposition which was not com-
puted from an elimination ordering; the overall statistics for these results can be found
in Table 25.1 in Section 25. The second table contains the result for the improvement
of the stretch starting from a treedepth decomposition generated from the elimination
order given by a different treewidth heuristic.

The graphs are ordered alphabetically, since this automatically clusters graphs which
have been generated in a similar way or arise from the same practical context. The
first two column give the number of nodes and edges of the graph. An empty en-
try in the table signifies that the experiment did not finish in five minutes. For a
description of the graphs please refer to the datasets used and their corresponding
sources [1, 2, 134, 229].

148 B experimental result of treewidth heuristics

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

df
s

m
ax

nu
m

ev
re

su
lt

fa
ct

or
#

4
x1

2
_t

or
us

G
ri

d
4
8

9
6

11
11

8
8

24
8

11
10

24
10

11
12

12
10

24
9

11
7

1
.1

2
2

/5

6
s1

0
.g

ai
fm

an
3
3
9
0
0

9
4
2
9
9

87
8

73
0

83
2

27
22

77
2

57
0

63
5

19
97

19
97

19
97

7
3

.5
0

7
/7

6
s1

1
-o

pt
.g

ai
fm

an
3
3
2
7
6

9
2
8
3
2

82
7

97
8

86
4

30
44

77
8

59
2

66
1

24
57

24
57

24
57

7
4

.1
5

7
/7

6
s1

2
.g

ai
fm

an
3
4
0
3
3

9
4
6
9
5

81
2

84
9

71
4

27
15

74
0

72
2

56
9

21
64

21
64

21
64

7
3

.8
0

7
/7

8
x6

_t
or

us
G

ri
d

4
8

9
6

14
14

14
12

12
12

14
12

12
12

14
15

14
12

12
13

13
=

1
.0

0
1

/3

ae
s_

3
2

_3
_k

ey
fin

d_
1

.g
ai

fm
an

7
0
8

2
2
9
2

82
78

85
77

13
5

77
82

12
9

15
8

14
2

82
90

75
13

7
11

4
16

0
20

6
7

1
.5

2
7
/1

0

ae
s_

6
4

_1
_k

ey
fin

d_
1

.g
ai

fm
an

5
9
6

2
0
9
2

79
63

71
55

81
55

79
99

84
80

79
69

67
13

4
10

8
91

15
5

7
1

.6
5

1
0

/1
0

A
hr

en
sS

ze
ke

re
sG

en
er

al
iz

ed
Q

ua
dr

an
gl

eG
ra

ph
_3

2
7

1
3
5

20
20

20
20

21
20

17
17

22
17

20
20

17
19

17
17

19
=

1
.0

0
1

/4

al
ar

m
3
7

6
5

4
4

4
4

5
4

4
4

5
4

4
5

5
5

5
5

5
7

1
.2

5
2

/2

an
na

1
1
0

2
5
9

8
8

8
8

9
8

8
9

11
9

8
9

9
11

8
10

17
=

1
.0

0
1

/3

an
na

1
3
4

4
2
3

12
12

13
12

15
12

12
15

14
17

12
13

13
19

16
18

22
7

1
.3

3
5

/5

an
na

1
3
8

4
9
3

12
12

13
12

13
12

12
14

14
13

12
13

13
21

16
13

22
7

1
.0

8
2

/3

an
na

-p
p

2
2

1
4
8

12
12

13
12

13
12

12
13

16
13

12
14

14
13

13
14

14
7

1
.0

8
2

/4

A
Pr

oV
E0

7
-0

1
.g

ai
fm

an
7
5
0
2

3
9
4
6
8
7

10
66

10
19

10
56

11
77

11
53

10
55

85
3

85
5

16
37

16
37

16
37

7
1

.9
2

A
Pr

oV
E0

7
-0

3
.g

ai
fm

an
3
1
1
4

1
7
5
5
3

25
7

24
1

26
5

22
6

48
0

22
6

25
7

43
4

56
7

22
9

24
6

25
0

31
0

44
3

31
0

10
03

7
1

.3
7

8
/1

0

Ba
la

nc
ed

Tr
ee

_3
,5

3
6
4

3
6
3

1
1

1
3

81
3

3
1

1
1

4
4

4
1

1
27

10
=

1
.0

0
1

/4

ba
rl

ey
4
8

1
2
6

8
7

8
7

10
7

8
9

11
7

9
8

8
10

8
8

11
7

1
.1

4
2

/5

ba
rl

ey
-p

p
2
6

7
8

7
7

7
7

9
7

7
8

10
7

7
9

9
8

9
7

8
=

1
.0

0
1

/4

Bi
gg

sS
m

it
hG

ra
ph

1
0
2

1
5
3

25
24

24
22

30
23

22
24

28
24

24
22

21
28

24
24

25
7

1
.1

4
4

/7

Bl
an

us
aS

ec
on

dS
na

rk
G

ra
ph

1
8

2
7

5
5

5
5

6
5

5
6

7
6

5
5

5
5

6
6

5
=

1
.0

0
1

/3

Br
in

km
an

nG
ra

ph
2
1

4
2

9
9

9
9

9
9

10
9

11
9

9
10

9
8

9
9

10
3

0
.8

9
1

/3

Br
ou

w
er

H
ae

m
er

sG
ra

ph
8
1

8
1
0

62
61

61
54

70
54

54
63

75
63

61
64

61
61

54
64

63
=

1
.0

0
1

/7

Bu
bb

le
So

rt
G

ra
ph

_5
1
2
0

2
4
0

31
31

31
29

48
29

31
23

36
23

31
28

28
31

36
31

35
7

1
.3

5
4

/6

C
am

er
on

G
ra

ph
2
3
1

3
4
6
5

19
1

18
8

19
3

17
7

18
6

17
7

18
6

17
5

18
7

17
5

19
0

18
4

18
4

18
6

18
7

18
2

18
7

7
1

.0
4

3
/9

ce
la

r0
2

1
0
0

3
1
1

10
10

11
10

19
10

10
10

13
10

10
13

13
21

11
12

16
7

1
.1

0
2

/4

ce
la

r0
7

2
0
0

8
1
7

18
16

18
16

29
16

18
28

21
19

18
24

24
44

25
22

29
7

1
.3

8
5

/7

C
el

l1
2
0

6
0
0

1
2
0
0

12
4

12
6

11
0

11
9

23
7

11
4

12
5

78
11

2
78

11
8

94
93

13
2

12
8

89
14

6
7

1
.1

4
2
/1

2

C
hv

at
al

G
ra

ph
1
2

2
4

6
6

6
6

7
6

6
6

7
6

6
6

6
6

6
6

6
=

1
.0

0
1

/2

C
le

bs
ch

G
ra

ph
1
6

4
0

10
8

8
8

10
8

10
8

10
8

8
8

8
9

8
8

10
=

1
.0

0
1

/2

co
nt

ik
i_

ca
lc

_i
np

ut
_t

o_
op

er
an

d1
3
1

3
3

2
2

2
2

3
2

2
2

2
2

2
3

3
2

3
3

3
=

1
.0

0
1

/2

Ta
bl

e
B.

1
:[

1
/1

3
]

Fo
r

a
lis

t
of

w
ha

t
th

e
IN

D
D

G
O

he
ur

is
ti

cs
ar

e,
se

e
pa

ge
1

1
5

.
Fo

r
th

e
he

ur
is

ti
cs

de
ri

ve
d

fr
om

st
ar

ti
ng

fr
om

a
tr

ee
de

pt
h

de
co

m
po

si
ti

on
,t

he
tr

ee
de

pt
h

de
co

m
po

si
ti

on
is

co
m

pu
te

d
vi

a
a

(d
fs

)
de

pt
h

fir
st

se
ar

ch
;fi

nd
in

g
se

pa
ra

to
rs

m
in

im
iz

in
g

th
e

(m
ax

)
si

ze
of

th
e

bi
gg

es
t

co
m

po
ne

nt
,(

nu
m

)
m

ax
im

iz
in

g
th

e
nu

m
be

r
of

co
m

po
ne

nt
s

or
(e

v)
vi

a
ei

ge
nv

ec
to

rs
.T

he
re

su
lt

sh
ow

s
if

th
e

be
st

va
lu

e
d

of
th

e
tr

ee
de

pt
h

he
ur

is
ti

c
w

as
be

tt
er

,e
qu

al
or

w
or

se
th

an
th

e
be

st
of

va
lu

e
io

f
th

e
IN

D
D

G
O

he
ur

is
ti

cs
an

d
fa

ct
or

is
d/

i.
Th

e
la

st
co

lu
m

n
sh

ow
s

in
w

hi
ch

po
si

ti
on

d
w

ou
ld

be
in

a
or

de
re

d
lis

t
of

th
e

IN
D

D
G

O
va

lu
es

ou
t

of
ho

w
m

an
y

di
ff

er
en

t
IN

D
D

G
O

va
lu

es
th

er
e

ar
e.

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

df
s

m
ax

nu
m

ev
re

su
lt

fa
ct

or
#

co
nt

ik
i_

co
lle

ct
_e

nq
ue

ue
_d

um
m

y_
pa

ck
et

4
6

4
6

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

3
=

1
.0

0
1

/1

co
nt

ik
i_

co
lle

ct
_r

ec
ei

ve
d_

an
no

un
ce

m
en

t
5
2

5
9

2
2

2
2

3
2

2
2

3
2

3
3

3
4

3
4

5
7

1
.5

0
2

/2

co
nt

ik
i_

co
lle

ct
_s

en
d_

ac
k

5
3

5
2

1
1

1
2

2
2

1
1

1
1

2
2

2
1

2
2

2
=

1
.0

0
1

/2

co
nt

ik
i_

co
lle

ct
_s

en
d_

ne
xt

_p
ac

ke
t

2
6

2
5

1
1

1
2

2
2

1
1

1
1

2
2

2
1

2
2

2
=

1
.0

0
1

/2

co
nt

ik
i_

co
lle

ct
_s

en
d_

qu
eu

ed
_p

ac
ke

t
9
5

9
9

2
2

2
2

3
2

2
3

3
3

2
3

3
3

3
3

6
7

1
.5

0
2

/2

co
nt

ik
i_

co
nt

ik
im

ac
_i

np
ut

_p
ac

ke
t

1
1
6

1
2
7

3
3

3
3

5
4

3
4

5
4

3
3

3
4

5
3

8
=

1
.0

0
1

/3

co
nt

ik
i_

co
nt

ik
im

ac
_p

ow
er

cy
cl

e
1
6
6

1
9
4

5
5

5
5

10
5

5
7

11
10

5
6

6
11

9
6

13
7

1
.2

0
2

/5

co
nt

ik
i_

ct
k_

ct
k_

m
en

u_
ad

d
2
5

2
7

2
2

2
2

3
2

2
3

3
3

2
3

3
3

3
2

3
=

1
.0

0
1

/2

co
nt

ik
i_

cx
m

ac
_i

np
ut

_p
ac

ke
t

9
0

9
7

3
3

3
3

4
3

3
4

4
4

3
3

3
4

5
4

6
7

1
.3

3
2

/2

co
nt

ik
i_

dh
cp

c_
dh

cp
c_

in
it

3
4

3
4

2
2

2
2

2
2

2
2

2
2

2
2

2
2

3
2

3
=

1
.0

0
1

/1

co
nt

ik
i_

dh
cp

c_
dh

cp
c_

re
qu

es
t

2
7

2
7

2
2

2
2

2
2

2
2

2
2

2
2

2
2

3
2

3
=

1
.0

0
1

/1

co
nt

ik
i_

dh
cp

c_
ha

nd
le

_d
hc

p
2
7
6

3
1
3

6
6

6
6

14
6

6
17

11
17

6
7

9
13

15
15

15
7

2
.1

7
5

/6

co
nt

ik
i_

ht
tp

d-
cf

s_
se

nd
_fi

le
4
4

4
8

3
3

3
3

4
3

3
4

5
5

4
5

5
5

6
4

4
7

1
.3

3
2

/3

co
nt

ik
i_

ht
tp

d-
cf

s_
se

nd
_h

ea
de

rs
1
0
6

1
1
6

3
3

3
3

5
3

3
7

5
10

3
4

4
5

5
4

10
7

1
.3

3
2

/5

co
nt

ik
i_

iff
t_

iff
t

1
7
2

1
8
0

2
2

2
2

4
2

2
3

3
3

2
5

4
3

4
3

8
7

1
.5

0
2

/4

co
nt

ik
i_

ir
cc

_h
an

dl
e_

co
nn

ec
ti

on
1
3
8

1
6
1

6
5

6
7

9
6

7
13

12
13

6
6

6
12

14
12

13
7

2
.4

0
5

/6

co
nt

ik
i_

ir
cc

_l
is

t_
ch

an
ne

l
7
0

7
6

3
3

3
3

6
3

3
6

4
6

3
5

5
5

5
4

4
7

1
.3

3
2

/4

co
nt

ik
i_

lp
p_

du
ty

cy
cl

e
1
0
2

1
1
4

5
5

5
6

6
5

5
6

7
6

5
6

6
6

8
7

10
7

1
.2

0
2

/3

co
nt

ik
i_

lp
p_

in
it

2
2

2
1

1
1

1
2

2
2

1
1

1
1

2
2

2
1

2
2

2
=

1
.0

0
1

/2

co
nt

ik
i_

lp
p_

se
nd

_p
ac

ke
t

1
1
6

1
2
0

2
2

2
3

2
2

2
4

4
4

2
3

3
4

3
2

3
=

1
.0

0
1

/3

co
nt

ik
i_

lp
p_

se
nd

_p
ro

be
9
2

9
4

2
2

2
2

2
2

2
3

3
3

2
3

3
3

3
3

4
7

1
.5

0
2

/2

co
nt

ik
i_

nu
llr

dc
_p

ac
ke

t_
in

pu
t

2
8

3
0

3
3

3
3

3
3

3
3

3
3

3
3

3
4

4
3

3
=

1
.0

0
1

/1

co
nt

ik
i_

po
lit

e-
an

no
un

ce
m

en
t_

se
nd

_t
im

er
3
1

3
1

2
2

2
2

2
2

2
2

2
2

2
2

2
2

3
2

2
=

1
.0

0
1

/1

co
nt

ik
i_

po
w

er
tr

ac
e_

ad
d_

st
at

s
4
6

4
7

2
2

2
2

2
2

2
2

2
2

2
3

3
3

3
3

4
7

1
.5

0
2

/2

co
nt

ik
i_

po
w

er
tr

ac
e_

po
w

er
tr

ac
e_

pr
in

t
3
2
3

3
2
3

2
2

2
2

2
2

2
2

2
2

2
3

3
2

3
2

3
=

1
.0

0
1

/2

co
nt

ik
i_

pr
oc

es
s_

ex
it

_p
ro

ce
ss

7
2

8
2

3
3

3
3

7
3

3
5

4
3

3
5

5
3

5
4

5
=

1
.0

0
1

/4

co
nt

ik
i_

pr
ofi

le
_p

ro
fil

e_
ep

is
od

e_
st

ar
t

3
1

3
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

3
=

1
.0

0
1

/1

co
nt

ik
i_

ps
oc

k_
ps

oc
k_

ge
ne

ra
to

r_
se

nd
6
1

6
8

4
4

4
4

7
4

4
5

6
5

4
5

5
6

4
6

6
=

1
.0

0
1

/4

co
nt

ik
i_

ps
oc

k_
ps

oc
k_

re
ad

to
5
6

6
1

4
3

4
3

4
3

4
4

6
4

4
4

4
6

6
5

6
7

1
.6

7
3

/3

co
nt

ik
i_

ri
ng

bu
f_

ri
ng

bu
f_

pu
t

2
9

2
9

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

3
=

1
.0

0
1

/1

[2
/1

3
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

df
s

m
ax

nu
m

ev
re

su
lt

fa
ct

or
#

co
nt

ik
i_

ro
ut

e-
di

sc
ov

er
y_

ro
ut

e_
di

sc
ov

er
y_

di
sc

ov
er

2
0

2
0

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
=

1
.0

0
1

/1

co
nt

ik
i_

ru
do

lp
h1

_r
ud

ol
ph

1
_o

pe
n

2
7

2
6

1
1

1
2

2
2

1
1

1
1

2
2

2
1

2
2

2
=

1
.0

0
1

/2

co
nt

ik
i_

ru
do

lp
h1

_w
ri

te
_d

at
a

3
5

3
6

2
2

2
2

2
2

2
2

2
2

2
3

3
2

3
3

4
=

1
.0

0
1

/2

co
nt

ik
i_

se
ri

al
-l

in
e_

pr
oc

es
s_

th
re

ad
_s

er
ia

l_
lin

e_
pr

o-
ce

ss
7
2

8
1

4
4

4
4

6
4

4
5

6
6

4
4

4
7

7
5

6
7

1
.2

5
2

/3

co
nt

ik
i_

sh
el

l-
ba

se
6
4

_b
as

e6
4
_a

dd
_c

ha
r

7
0

7
4

2
2

2
2

3
2

2
5

3
5

3
3

3
3

3
3

6
7

1
.5

0
2

/3

co
nt

ik
i_

sh
el

l-
co

lle
ct

-v
ie

w
_p

ro
ce

ss
_t

hr
ea

d
6
1

6
2

2
2

2
2

2
2

2
3

3
3

2
3

3
3

2
3

3
=

1
.0

0
1

/2

co
nt

ik
i_

sh
el

l-
ne

tp
er

f_
m

em
cp

y_
m

is
al

ig
ne

d
3
0

3
2

2
2

2
2

3
2

2
3

3
3

2
3

3
4

3
3

3
7

1
.5

0
2

/2

co
nt

ik
i_

sh
el

l-
ps

_p
ro

ce
ss

_t
hr

ea
d_

sh
el

l_
ps

_p
ro

ce
ss

4
5

4
6

2
2

2
2

2
2

2
3

3
3

2
4

4
3

3
3

4
7

1
.5

0
2

/3

co
nt

ik
i_

sh
el

l-
ri

m
e-

de
bu

g_
re

cv
_b

ro
ad

ca
st

2
4

2
3

1
1

1
2

2
2

1
1

1
1

2
2

2
1

2
2

2
=

1
.0

0
1

/2

co
nt

ik
i_

sh
el

l-
ri

m
e-

pi
ng

_r
ec

v_
m

es
h

4
7

4
7

2
2

2
2

2
2

2
2

2
2

2
2

2
2

3
2

3
=

1
.0

0
1

/1

co
nt

ik
i_

sh
el

l-
ri

m
e_

pr
oc

es
s_

th
re

ad
_s

he
ll_

se
nd

_p
ro

-
ce

ss
8
9

9
5

3
3

3
3

4
4

3
3

5
4

3
4

4
5

4
4

6
7

1
.3

3
2

/3

co
nt

ik
i_

sh
el

l-
ri

m
e_

re
cv

_c
ol

le
ct

6
2

6
4

2
2

2
2

2
2

2
2

2
2

3
4

3
3

5
3

4
7

1
.5

0
2

/3

co
nt

ik
i_

sh
el

l-
se

nd
te

st
_r

ea
d_

ch
un

k
3
0

3
2

2
2

2
2

2
2

2
2

2
2

2
3

3
2

3
3

4
=

1
.0

0
1

/2

co
nt

ik
i_

sh
el

l-
te

xt
_p

ro
ce

ss
_t

hr
ea

d_
sh

el
l_

ec
ho

_p
ro

ce
ss

2
5

2
5

2
2

2
2

2
2

2
2

2
2

2
3

3
2

3
3

3
=

1
.0

0
1

/2

co
nt

ik
i_

sh
el

l_
pr

oc
es

s_
th

re
ad

_s
he

ll_
se

rv
er

_p
ro

ce
ss

7
6

8
5

3
3

3
3

6
3

3
4

4
4

3
4

4
4

6
4

5
7

1
.3

3
2

/3

co
nt

ik
i_

sh
el

l_
sh

el
l_

re
gi

st
er

_c
om

m
an

d
4
2

4
5

2
2

2
2

4
2

2
3

3
3

3
3

3
3

4
3

4
7

1
.5

0
2

/3

co
nt

ik
i_

tc
pi

p_
ev

en
th

an
dl

er
9
8

1
1
2

2
2

2
2

4
2

2
6

4
6

3
5

4
6

6
4

10
7

2
.0

0
3

/5

co
nt

ik
i_

ui
p-

ne
ig

hb
or

_u
ip

_n
ei

gh
bo

r_
ad

d
6
7

7
1

3
3

3
3

4
3

3
4

4
4

3
3

3
5

4
4

4
7

1
.3

3
2

/2

co
nt

ik
i_

ui
p-

ne
ig

hb
or

_u
ip

_n
ei

gh
bo

r_
pe

ri
od

ic
2
0

2
1

2
2

2
2

2
2

2
2

2
2

2
3

3
2

3
3

3
=

1
.0

0
1

/2

co
nt

ik
i_

ui
p-

ov
er

-m
es

h_
re

cv
_d

at
a

8
5

8
8

2
2

2
2

2
2

2
2

3
2

2
3

3
3

4
4

4
7

1
.5

0
2

/2

co
nt

ik
i_

ui
p_

ui
p_

co
nn

ec
t

1
1
1

1
2
0

3
3

3
3

5
3

3
3

4
3

3
4

4
4

4
4

7
7

1
.3

3
2

/3

co
nt

ik
i_

ui
p_

ui
p_

in
it

2
6

2
7

2
2

2
2

2
2

2
2

2
2

3
3

3
2

3
2

3
=

1
.0

0
1

/2

co
nt

ik
i_

ui
p_

ui
p_

un
lis

te
n

1
9

2
0

2
2

2
2

3
2

2
3

3
3

2
3

3
3

3
3

3
7

1
.5

0
2

/2

co
nt

ik
i_

w
eb

cl
ie

nt
_s

en
dd

at
a

1
0
8

1
0
9

2
2

2
2

2
2

2
3

3
3

2
2

2
3

3
2

3
=

1
.0

0
1

/2

co
nt

ik
i_

w
eb

cl
ie

nt
_w

eb
cl

ie
nt

_a
pp

ca
ll

9
8

1
1
1

3
3

3
3

4
3

3
5

3
5

3
3

3
4

4
6

7
7

1
.3

3
2

/3

C
yc

le
G

ra
ph

_1
0
0

1
0
0

1
0
0

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
=

1
.0

0
1

/1

da
vi

d
8
7

4
0
6

13
14

14
13

15
13

13
17

16
17

14
13

14
24

19
15

27
7

1
.1

5
3

/5

da
vi

d-
pp

2
9

1
9
1

13
14

14
13

14
13

13
16

14
16

13
14

14
17

20
13

15
=

1
.0

0
1

/3

D
ej

te
rG

ra
ph

1
1
2

3
3
6

48
42

42
42

52
42

41
39

50
39

43
41

42
40

49
42

46
7

1
.0

3
2

/7

D
es

ar
gu

es
G

ra
ph

2
0

3
0

7
6

7
6

10
6

7
8

8
8

6
6

6
7

6
6

6
=

1
.0

0
1

/4

[3
/1

3
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

df
s

m
ax

nu
m

ev
re

su
lt

fa
ct

or
#

D
od

ec
ah

ed
ra

lG
ra

ph
2
0

3
0

7
6

6
6

7
6

6
6

6
6

6
6

6
6

6
6

6
=

1
.0

0
1

/2

D
or

og
ov

ts
ev

G
ol

ts
ev

M
en

de
sG

ra
ph

3
2
8
2

6
5
6
1

2
2

2
2

2
2

2
2

2
2

2
3

4
2

2
18

4
=

1
.0

0
1

/3

D
ou

bl
eS

ta
rS

na
rk

3
0

4
5

8
8

7
7

9
8

7
7

8
7

8
7

7
8

8
7

9
=

1
.0

0
1

/3

D
SJ

C
1
2
5
.9

1
2
5

6
9
6
1

12
0

12
0

12
1

11
9

12
2

11
9

12
0

12
0

12
1

12
1

12
0

12
1

12
0

12
1

12
1

12
0

12
1

7
1

.0
1

2
/4

D
SJ

R
5
0
0
.1

c
2
2
1

2
3
5
1
2

21
5

21
2

21
7

21
3

21
6

21
3

21
5

21
4

21
8

21
3

21
4

21
2

21
3

21
6

21
4

21
4

21
6

7
1

.0
1

3
/7

D
yc

kG
ra

ph
3
2

4
8

9
9

9
9

10
9

9
9

10
9

9
9

8
9

10
9

12
7

1
.1

2
2

/3

ei
l5

1
.ts

p
5
1

1
4
0

10
11

10
10

18
10

10
12

9
13

11
10

10
16

17
13

15
7

1
.4

4
5

/6

Er
re

ra
G

ra
ph

1
7

4
5

7
7

7
7

7
7

7
7

6
8

7
7

7
8

7
7

7
7

1
.1

7
2

/3

Fi
bo

na
cc

iT
re

e_
1
0

1
4
3

1
4
2

1
1

1
2

3
2

2
1

1
1

3
3

3
1

3
5

5
=

1
.0

0
1

/3

Fl
ow

er
Sn

ar
k

2
0

3
0

7
7

7
6

8
6

6
7

7
7

7
6

6
7

6
7

6
=

1
.0

0
1

/3

Fo
ld

ed
C

ub
eG

ra
ph

_7
6
4

2
2
4

30
30

32
33

42
31

31
31

48
31

31
32

34
34

33
33

34
7

1
.1

0
4

/7

Fo
lk

m
an

G
ra

ph
2
0

4
0

7
7

7
7

10
6

9
8

10
8

7
7

7
8

6
7

8
=

1
.0

0
1

/5

Fo
st

er
G

ra
ph

9
0

1
3
5

22
23

22
21

23
22

22
24

23
24

24
20

22
22

24
22

27
7

1
.1

0
3

/5

fp
so

l2
.i.

1
-p

p
1
9
1

4
4
1
8

72
72

77
72

71
72

72
16

3
76

16
3

72
58

63
96

96
60

85
7

1
.0

3
2

/7

fp
so

l2
.i.

3
-p

p
1
9
3

2
7
2
1

28
28

38
28

38
28

28
13

4
46

13
4

28
35

35
70

31
36

64
7

1
.1

1
2

/5

fp
so

l2
.i.

3
2
0
6

2
6
4
5

32
32

30
28

39
28

32
16

1
40

16
1

31
41

34
58

95
40

64
7

1
.4

3
7

/9

fp
so

l2
.i.

1
2
1
0

5
4
8
9

50
50

73
50

55
50

50
14

7
70

14
1

50
56

56
11

0
81

59
75

7
1

.1
8

4
/7

fp
so

l2
.i.

1
-p

p
2
3
3

1
0
7
8
3

66
66

84
66

70
66

66
21

6
66

66
66

66
66

72
11

5
75

10
4

7
1

.0
9

3
/4

fp
so

l2
.i.

1
2
6
9

1
1
6
5
4

66
66

84
66

66
66

66
21

6
66

23
8

66
66

66
72

14
0

68
11

5
7

1
.0

3
2

/4

fp
so

l2
.i.

3
3
6
3

8
6
8
8

31
31

52
31

41
31

31
69

42
33

2
31

38
38

35
17

8
44

81
7

1
.1

3
2

/7

fp
so

l2
.i.

2
3
6
3

8
6
9
1

31
31

52
31

41
31

31
69

42
33

2
31

38
35

35
17

8
44

74
7

1
.1

3
2

/8

Fr
ie

nd
sh

ip
G

ra
ph

_1
0

2
1

3
0

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
=

1
.0

0
1

/1

fu
zi

x_
ab

or
t_

ab
or

t
2
1

2
0

1
1

1
2

2
2

1
1

1
1

2
2

2
1

2
2

2
=

1
.0

0
1

/2

fu
zi

x_
ba

nk
fix

e_
pa

ge
m

ap
_a

llo
c

2
1

2
2

2
2

2
2

2
2

2
2

2
2

2
3

3
2

4
3

2
=

1
.0

0
1

/2

fu
zi

x_
cl

oc
k_

ge
tt

im
e_

cl
oc

k_
ge

tt
im

e
3
9

4
0

2
2

2
2

2
2

2
3

3
3

2
3

3
3

3
2

3
=

1
.0

0
1

/2

fu
zi

x_
cl

oc
k_

ge
tt

im
e_

di
v1

0
qu

ic
km

3
0

2
9

1
1

1
2

2
2

1
1

1
1

2
2

2
1

2
2

2
=

1
.0

0
1

/2

fu
zi

x_
cl

oc
k_

se
tt

im
e_

cl
oc

k_
se

tt
im

e
2
0

2
1

2
2

2
2

2
2

2
3

3
3

2
2

2
3

2
2

3
=

1
.0

0
1

/2

fu
zi

x_
de

vf
_f

d_
tr

an
sf

er
1
1
9

1
2
9

3
3

3
3

5
3

3
6

6
6

3
4

5
5

4
5

6
7

1
.3

3
2

/4

fu
zi

x_
de

vi
o_

bfi
nd

2
7

2
9

3
3

3
3

3
3

3
3

3
3

3
3

3
4

3
3

4
=

1
.0

0
1

/1

fu
zi

x_
de

vi
o_

kp
ri

nt
f

6
9

7
8

3
3

3
3

4
3

3
5

4
7

3
4

4
4

4
5

6
7

1
.3

3
2

/4

[4
/1

3
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

df
s

m
ax

nu
m

ev
re

su
lt

fa
ct

or
#

fu
zi

x_
di

ff
ti

m
e_

di
ff

ti
m

e
7
4

7
3

1
1

1
2

2
2

1
1

1
1

2
2

2
1

2
2

2
=

1
.0

0
1

/2

fu
zi

x_
fg

et
s_

fg
et

s
5
3

5
8

3
3

3
3

4
3

3
3

5
3

3
5

6
5

5
4

4
7

1
.3

3
2

/4

fu
zi

x_
fil

es
ys

_fi
le

na
m

e
4
5

4
8

3
3

3
3

3
3

3
4

4
4

3
3

3
4

3
3

4
=

1
.0

0
1

/2

fu
zi

x_
fil

es
ys

_g
et

in
od

e
5
2

5
7

3
3

3
3

3
3

3
3

5
3

3
3

3
5

3
3

3
=

1
.0

0
1

/2

fu
zi

x_
fil

es
ys

_i
_o

pe
n

1
2
9

1
4
3

3
3

3
3

5
4

3
7

5
7

3
6

5
6

5
5

10
7

1
.6

7
3

/5

fu
zi

x_
fil

es
ys

_n
ew

fs
ta

b
2
0

2
1

2
2

2
2

3
2

2
2

3
3

2
3

3
3

3
2

2
=

1
.0

0
1

/2

fu
zi

x_
fil

es
ys

_s
rc

h_
m

t
3
1

3
3

3
3

3
3

3
3

3
3

3
3

3
4

3
3

3
3

4
=

1
.0

0
1

/2

fu
zi

x_
ge

th
os

tn
am

e_
ge

th
os

tn
am

e
3
0

3
1

2
2

2
2

2
2

2
3

3
3

2
3

3
3

3
2

4
=

1
.0

0
1

/2

fu
zi

x_
ge

tp
as

s_
_g

et
s

3
1

3
5

3
3

3
3

4
3

3
3

4
3

3
4

4
4

4
4

6
7

1
.3

3
2

/2

fu
zi

x_
in

od
e_

rw
se

tu
p

7
7

8
3

2
2

2
2

3
2

2
3

3
3

3
4

4
5

3
3

4
7

1
.5

0
2

/3

fu
zi

x_
m

al
lo

c_
__

in
se

rt
_c

hu
nk

1
0
4

1
1
6

3
3

3
3

6
3

3
6

4
6

3
3

5
5

4
5

5
7

1
.3

3
2

/4

fu
zi

x_
na

no
sl

ee
p_

cl
oc

k_
na

no
sl

ee
p

1
1
0

1
2
1

3
3

3
3

4
3

3
5

5
5

3
4

4
4

4
4

9
7

1
.3

3
2

/3

fu
zi

x_
pr

oc
es

s_
ge

tp
ro

c
3
2

3
5

2
2

2
2

3
2

2
3

3
3

2
3

3
3

3
3

3
7

1
.5

0
2

/2

fu
zi

x_
qs

or
t_

_l
qs

or
t

8
9

9
4

3
3

3
3

5
3

3
4

4
3

3
4

4
4

4
3

4
=

1
.0

0
1

/3

fu
zi

x_
ra

n_
ra

nd
4
6

4
8

2
2

2
2

2
2

2
2

2
2

2
2

2
2

3
2

2
=

1
.0

0
1

/1

fu
zi

x_
re

ad
di

r_
re

ad
di

r
6
0

6
5

3
3

3
3

4
3

3
4

4
4

3
4

4
5

4
4

5
7

1
.3

3
2

/2

fu
zi

x_
re

ge
xp

_r
eg

co
m

p
1
1
8

1
2
9

2
2

2
3

4
3

2
6

4
6

3
3

3
5

4
4

7
7

2
.0

0
3

/4

fu
zi

x_
se

_y
co

m
p

8
3

9
6

3
3

3
3

6
4

3
5

5
5

3
4

4
6

3
4

4
=

1
.0

0
1

/4

fu
zi

x_
se

tb
uf

fe
r_

se
tb

uf
fe

r
4
3

4
4

2
2

2
2

2
2

2
2

2
2

2
3

3
2

2
3

4
=

1
.0

0
1

/2

fu
zi

x_
se

te
nv

_s
et

en
v

1
2
2

1
3
1

3
3

3
3

3
3

3
4

4
6

3
5

5
5

4
5

6
7

1
.3

3
2

/4

fu
zi

x_
st

at
_s

ta
tfi

x
5
2

5
1

1
1

1
2

2
2

1
1

1
1

2
2

2
1

2
2

2
=

1
.0

0
1

/2

fu
zi

x_
sy

sc
al

l_
fs

2
__

fc
hd

ir
2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

3
=

1
.0

0
1

/1

fu
zi

x_
sy

sc
al

l_
fs

2
_c

ho
w

n_
op

2
7

2
8

2
2

2
2

3
2

2
2

3
2

2
3

3
3

3
3

3
7

1
.5

0
2

/2

fu
zi

x_
sy

sc
al

l_
pr

oc
__

ti
m

e
4
8

4
9

2
2

2
2

2
2

2
3

3
3

2
3

3
3

3
2

3
=

1
.0

0
1

/2

fu
zi

x_
sy

sc
on

f_
sy

sc
on

f
1
4
2

1
6
2

3
3

3
3

3
3

3
20

8
20

3
3

3
16

11
3

8
=

1
.0

0
1

/3

fu
zi

x_
tt

y_
tt

y_
re

ad
1
2
3

1
3
7

4
4

4
4

8
4

4
6

6
7

4
5

5
9

5
5

7
7

1
.2

5
2

/5

fu
zi

x_
us

er
m

em
_u

ge
ts

2
4

2
5

2
2

2
2

2
2

2
2

2
2

2
3

3
2

2
2

3
=

1
.0

0
1

/2

fu
zi

x_
vf

sc
an

f_
vf

sc
an

f
5
8
7

6
6
8

6
7

6
6

8
6

6
22

13
22

6
8

9
12

11
10

29
7

1
.6

7
5

/6

ga
m

es
1
2
0

1
1
9

4
2
3

29
28

28
25

37
25

29
33

33
34

28
31

31
32

30
32

32
7

1
.2

0
4

/7

ga
m

es
1
2
0

1
2
0

6
3
8

46
46

46
39

62
39

46
51

42
41

45
46

46
43

48
40

49
7

1
.0

3
2

/7

[5
/1

3
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

df
s

m
ax

nu
m

ev
re

su
lt

fa
ct

or
#

G
en

er
al

iz
ed

Pe
te

rs
en

G
ra

ph
_1

0
_4

2
0

3
0

6
6

6
6

10
6

6
6

8
6

6
6

7
6

6
7

8
=

1
.0

0
1

/4

G
N

P_
2
0

_1
0
_0

2
0

2
8

4
5

5
4

4
4

4
5

5
5

4
5

4
5

4
4

6
=

1
.0

0
1

/2

G
N

P_
2
0

_1
0
_1

1
8

2
3

3
3

3
3

4
3

3
3

3
3

3
4

4
4

4
4

4
7

1
.3

3
2

/2

G
N

P_
2
0

_2
0
_0

2
0

4
6

6
6

6
6

6
6

6
6

7
7

6
7

7
6

8
7

7
=

1
.0

0
1

/2

G
N

P_
2
0

_2
0
_1

2
0

4
8

7
7

7
7

8
7

7
8

9
9

7
8

8
8

8
8

8
7

1
.1

4
2

/3

G
N

P_
2
0

_3
0
_0

2
0

5
6

9
8

9
8

9
8

9
10

10
11

8
10

10
9

9
9

9
7

1
.1

2
2

/4

G
N

P_
2
0

_3
0
_1

2
0

6
3

8
8

8
8

9
8

8
9

10
10

8
8

9
9

10
9

10
7

1
.1

2
2

/3

G
N

P_
2
0

_4
0
_0

2
0

7
8

10
10

11
10

11
10

10
11

12
13

10
11

11
12

11
11

11
7

1
.1

0
2

/4

G
N

P_
2
0

_4
0
_1

2
0

7
1

8
8

8
8

8
8

8
11

11
11

8
8

8
9

9
9

9
7

1
.1

2
2

/2

G
N

P_
2
0

_5
0
_0

2
0

9
1

10
10

10
10

12
10

10
11

13
14

10
11

13
11

12
11

11
7

1
.1

0
2

/5

G
N

P_
2
0

_5
0
_1

2
0

1
0
6

13
13

14
13

15
13

13
13

14
14

13
13

13
13

14
14

13
=

1
.0

0
1

/3

G
oe

th
al

sS
ei

de
lG

ra
ph

_2
_3

1
6

7
2

11
11

11
11

12
11

11
12

13
12

11
11

11
12

12
11

12
=

1
.0

0
1

/3

G
ol

dn
er

H
ar

ar
yG

ra
ph

1
1

2
7

3
3

3
3

3
3

3
3

3
3

3
3

4
4

3
4

5
=

1
.0

0
1

/2

G
os

se
tG

ra
ph

5
6

7
5
6

44
44

50
44

45
44

44
43

43
43

49
49

44
43

43
44

45
=

1
.0

0
1

/5

gr
ap

h0
9

4
5
8

1
6
6
7

12
3

12
7

12
5

11
8

16
1

11
8

12
2

14
8

13
8

13
7

12
4

12
1

12
4

16
2

15
7

13
6

17
9

7
1

.1
5

8
/1

1

G
ra

yG
ra

ph
5
4

8
1

14
14

14
13

17
12

14
12

15
12

14
14

14
16

14
13

15
7

1
.0

8
2

/5

G
ro

tz
sc

hG
ra

ph
1
1

2
0

5
5

5
5

5
5

5
5

7
6

5
5

5
5

5
5

5
=

1
.0

0
1

/3

H
al

lJ
an

ko
G

ra
ph

1
0
0

1
8
0
0

85
85

88
87

90
87

85
87

93
87

87
87

87
84

85
88

86
3

0
.9

9
1

/5

H
an

oi
To

w
er

G
ra

ph
_4

_3
6
4

1
6
8

16
16

16
16

26
16

16
19

17
18

16
16

16
16

19
19

22
=

1
.0

0
1

/5

H
ar

ar
yG

ra
ph

_6
_1

5
1
5

4
5

6
6

6
6

6
6

6
6

6
6

8
8

8
8

8
7

8
7

1
.1

7
2

/2

H
ar

bo
rt

hG
ra

ph
5
2

1
0
4

5
6

5
5

9
5

7
8

6
8

6
6

6
9

10
6

8
7

1
.2

0
2

/5

H
ar

ri
es

G
ra

ph
7
0

1
0
5

19
19

18
18

25
17

18
19

24
19

18
18

17
17

17
18

20
=

1
.0

0
1

/5

H
ea

w
oo

dG
ra

ph
1
4

2
1

6
6

6
5

6
5

6
5

6
5

6
5

5
5

5
6

6
=

1
.0

0
1

/2

H
ig

m
an

Si
m

sG
ra

ph
1
0
0

1
1
0
0

75
77

78
77

77
77

78
76

90
76

77
77

76
77

72
77

81
3

0
.9

6
1

/5

H
of

fm
an

G
ra

ph
1
6

3
2

7
7

7
7

10
7

6
7

8
7

7
6

6
7

6
7

8
=

1
.0

0
1

/4

H
of

fm
an

Si
ng

le
to

nG
ra

ph
5
0

1
7
5

29
29

29
27

27
27

28
27

34
27

28
29

29
27

27
26

27
3

0
.9

6
1

/4

ho
m

er
4
0
3

1
0
2
9

27
27

28
25

34
25

27
36

30
40

27
31

29
48

36
34

64
7

1
.3

6
7

/9

hu
ck

6
9

2
9
7

10
10

10
10

10
10

10
10

10
10

10
10

10
11

12
10

13
=

1
.0

0
1

/1

H
yp

er
St

ar
G

ra
ph

_1
0
_2

4
5

7
2

8
8

8
8

8
8

8
14

10
8

8
8

8
8

13
8

9
=

1
.0

0
1

/3

Ic
os

ah
ed

ra
lG

ra
ph

1
2

3
0

7
7

7
6

8
6

7
6

6
6

7
7

7
6

6
7

6
=

1
.0

0
1

/3

[6
/1

3
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

df
s

m
ax

nu
m

ev
re

su
lt

fa
ct

or
#

in
it

hx
.i.

3
-p

p
1
9
6

2
1
8
5

29
29

30
26

32
26

29
80

46
80

29
29

29
37

35
35

48
7

1
.3

5
5
/6

in
it

hx
.i.

2
-p

p
2
2
0

4
1
6
5

28
28

36
28

34
28

28
18

5
49

18
1

28
29

29
54

78
31

80
7

1
.1

1
3
/7

in
it

hx
.i.

2
2
9
9

5
1
6
2

28
28

36
28

31
28

28
24

3
50

24
3

28
34

34
53

11
2

34
55

7
1

.2
1

3
/6

in
it

hx
.i.

1
3
0
9

7
5
8
5

58
58

55
50

54
50

58
25

5
60

25
5

56
54

54
78

11
3

54
12

1
7

1
.0

8
2
/7

in
it

hx
.i.

1
-p

p
3
1
7

1
2
7
2
0

56
56

84
56

56
56

56
56

61
56

56
56

56
74

17
6

61
10

2
7

1
.0

9
2
/3

in
it

hx
.i.

2
-p

p
3
6
3

8
8
9
7

35
35

49
31

41
31

35
54

43
44

35
35

35
35

86
35

68
7

1
.1

3
2
/7

in
it

hx
.i.

1
5
1
9

1
8
7
0
7

56
56

89
56

56
56

56
29

5
56

48
8

56
56

58
74

18
9

63
99

7
1

.1
2

3
/5

in
it

hx
.i.

2
5
5
8

1
3
9
7
9

35
35

56
31

35
31

35
24

3
43

52
7

35
39

42
36

18
8

45
90

7
1

.1
6

3
/8

in
it

hx
.i.

3
5
5
9

1
3
9
6
9

35
35

56
31

35
31

35
24

4
43

52
8

35
40

41
36

18
9

43
87

7
1

.1
6

3
/8

je
an

7
0

1
8
4

7
8

8
7

11
7

7
10

9
10

8
10

9
13

9
9

11
7

1
.2

9
3
/5

je
an

7
7

2
5
4

9
9

9
9

9
9

9
11

11
11

9
13

13
13

10
10

12
7

1
.1

1
2
/3

Jo
hn

so
nG

ra
ph

_1
0
_4

2
1
0

2
5
2
0

15
7

15
6

15
3

14
0

17
4

14
0

15
9

11
8

14
7

11
8

15
2

15
8

15
4

12
9

12
6

12
4

13
0

7
1

.0
5

2
/1

1

K
it

te
llG

ra
ph

2
3

6
3

8
8

8
8

8
8

8
10

8
10

8
8

8
10

11
8

10
=

1
.0

0
1
/2

K
ne

se
rG

ra
ph

_1
0

_2
4
5

6
3
0

39
39

41
35

40
35

35
39

42
39

39
39

39
39

39
39

38
7

1
.0

9
2
/5

K
ne

se
rG

ra
ph

_8
_3

5
6

2
8
0

32
32

34
34

38
34

32
35

42
35

32
34

34
30

36
29

32
3

0
.9

1
1
/5

La
dd

er
G

ra
ph

_2
0

4
0

5
8

2
2

2
2

14
2

2
2

2
2

3
4

4
3

4
3

3
7

1
.5

0
2
/4

le
4
5
0

_1
5

a
4
3
4

4
3
1
5

20
6

19
5

19
8

17
8

22
8

17
8

20
6

21
1

20
0

18
9

18
5

19
1

18
4

22
2

20
0

19
2

22
6

7
1

.0
8

6
/1

1

le
4
5
0

_1
5

a
4
5
0

8
1
6
8

30
0

30
5

31
1

29
0

33
3

29
0

30
0

31
4

33
5

31
5

30
2

30
6

31
0

30
0

29
5

29
4

31
5

7
1

.0
1

2
/1

1

le
4
5
0

_1
5

a-
pp

4
3
1

4
2
5
6

18
0

18
2

19
0

17
9

22
6

17
9

18
2

25
9

18
9

18
8

18
6

19
8

18
9

21
1

19
5

19
0

20
1

7
1

.0
6

7
/1

0

le
4
5
0

_1
5

b
4
2
7

5
6
1
5

24
2

23
5

24
2

22
9

25
5

22
9

23
7

26
0

25
8

26
2

23
6

24
6

24
9

23
6

23
4

23
5

25
0

7
1

.0
2

2
/1

1

le
4
5
0

_1
5

b
4
5
0

8
1
6
9

30
4

30
7

31
4

30
1

32
6

30
1

30
4

32
0

32
0

31
4

30
0

30
8

30
7

29
7

30
0

30
3

31
3

3
0

.9
9

1
/8

le
4
5
0

_1
5

c
4
4
5

1
1
7
7
6

30
8

30
8

31
4

30
0

32
2

30
0

30
8

31
9

31
9

31
8

30
8

31
1

31
2

30
2

30
0

29
8

30
8

3
0

.9
9

1
/8

le
4
5
0

_1
5

c
4
5
0

1
6
6
8
0

37
6

38
4

38
5

37
3

40
1

37
3

37
6

38
4

40
0

39
1

38
3

38
6

38
3

37
6

38
0

37
8

38
6

7
1

.0
1

2
/9

le
4
5
0

_1
5

d
4
4
7

9
2
1
8

24
4

23
3

24
0

23
2

30
0

23
2

23
9

23
2

24
4

25
3

24
1

25
1

26
0

27
2

24
3

23
8

24
0

7
1

.0
3

3
/1

0

le
4
5
0

_1
5

d
4
5
0

1
6
7
5
0

37
5

37
9

38
3

37
5

39
7

37
5

37
5

38
5

39
8

38
6

37
9

38
3

38
9

37
9

38
0

37
9

37
7

7
1

.0
1

2
/8

le
4
5
0

_2
5

a
4
2
2

5
5
6
5

20
7

20
7

21
0

19
4

22
4

19
4

20
2

21
1

20
7

20
8

20
3

20
7

20
2

21
3

20
8

20
2

20
8

7
1

.0
4

2
/8

le
4
5
0

_2
5

a
4
5
0

8
2
6
0

26
5

26
4

27
3

25
4

30
1

25
4

26
5

26
7

27
9

27
0

26
5

25
9

26
8

25
2

25
1

24
9

28
1

3
0

.9
8

1
/1

0

le
4
5
0

_2
5

a-
pp

4
1
3

5
5
6
9

20
6

20
4

21
2

19
8

22
5

19
8

20
9

21
1

20
8

20
7

20
2

20
4

20
5

20
4

20
2

20
6

21
3

7
1

.0
2

2
/1

1

le
4
5
0

_2
5

b
4
2
3

4
2
9
5

16
2

16
0

17
0

14
6

23
3

14
6

16
2

18
3

17
3

20
1

16
5

16
2

17
2

18
9

17
7

17
6

20
4

7
1

.2
1

8
/1

0

le
4
5
0

_2
5

b
4
5
0

8
2
6
3

27
3

27
6

28
8

26
7

31
7

26
7

28
1

26
1

29
3

29
1

27
2

26
2

26
6

24
8

24
8

25
8

28
2

3
0

.9
5

1
/1

2

[7
/1

3
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

df
s

m
ax

nu
m

ev
re

su
lt

fa
ct

or
#

le
4
5
0

_2
5

b-
pp

4
1
5

4
2
8
0

15
2

15
6

15
8

15
3

23
7

15
3

15
7

18
3

16
7

20
2

15
2

16
0

16
0

18
3

17
5

16
1

19
8

7
1

.0
6

7
/1

0

le
4
5
0

_2
5

c
4
4
2

9
5
8
9

21
5

22
1

23
1

21
8

30
2

21
8

21
5

22
5

32
0

30
3

22
8

23
7

24
2

25
3

23
2

22
9

25
7

7
1

.0
7

6
/1

1

le
4
5
0

_2
5

c
4
5
0

1
7
3
4
3

36
5

36
2

36
9

36
0

38
3

36
0

36
5

36
8

38
3

36
8

36
3

36
5

37
0

34
6

34
7

34
9

37
0

3
0

.9
6

1
/8

le
4
5
0

_2
5

d
4
4
4

1
2
1
6
9

29
7

29
5

30
3

29
0

31
8

29
0

29
7

30
1

31
8

32
8

29
7

30
9

30
6

28
8

28
6

28
6

30
9

3
0

.9
9

1
/9

le
4
5
0

_2
5

d
4
5
0

1
7
4
2
5

36
7

36
7

37
4

36
3

38
3

36
3

36
7

36
3

38
0

37
7

36
7

37
8

37
2

36
0

36
2

35
7

36
7

3
0

.9
8

1
/8

le
4
5
0

_5
a

4
3
8

3
0
1
8

18
3

18
9

20
8

18
1

22
5

17
7

18
3

23
6

20
6

21
3

19
2

18
2

19
0

21
4

21
2

18
4

20
5

7
1

.0
4

5
/1

2

le
4
5
0

_5
a

4
5
0

5
7
1
4

32
3

31
9

32
6

31
5

35
9

31
5

32
3

32
7

34
8

32
5

32
3

32
4

31
4

30
8

31
5

31
2

31
4

3
0

.9
8

1
/1

0

le
4
5
0

_5
b

4
3
5

2
9
4
9

18
6

19
3

19
1

18
0

22
3

18
0

19
2

24
9

19
8

20
9

19
6

18
9

19
7

20
3

20
2

18
2

21
5

7
1

.0
1

2
/1

2

le
4
5
0

_5
b

4
5
0

5
7
3
4

32
1

32
3

33
0

31
8

35
4

31
8

32
2

32
8

34
1

32
6

32
3

31
4

30
5

32
0

31
1

31
1

31
7

7
1

.0
2

2
/1

1

le
4
5
0

_5
c

4
4
0

5
1
7
7

22
7

21
8

21
8

20
3

25
4

20
3

22
7

27
4

22
8

30
0

21
0

21
4

21
8

24
2

22
5

21
1

24
6

7
1

.0
4

3
/9

le
4
5
0

_5
c

4
5
0

9
8
0
3

34
4

32
8

34
3

31
5

39
1

31
5

34
4

36
7

37
7

36
2

33
6

29
6

30
4

34
1

33
9

33
4

34
7

7
1

.1
3

5
/1

1

le
4
5
0

_5
d

4
4
4

6
8
4
5

27
7

27
2

28
2

25
2

31
0

25
2

27
7

30
7

30
4

29
0

27
2

27
1

25
7

28
7

27
8

27
0

28
8

7
1

.0
7

3
/1

0

le
4
5
0

_5
d

4
5
0

9
7
5
7

32
9

32
5

32
8

29
9

39
6

29
9

32
9

36
5

38
7

36
1

31
6

29
0

30
0

34
0

33
5

31
4

36
1

7
1

.0
8

4
/1

1

Lj
ub

lja
na

G
ra

ph
1
1
2

1
6
8

26
26

28
27

35
26

27
29

34
29

28
26

24
27

29
28

29
7

1
.1

2
3
/7

m
ai

nu
k

4
8

1
9
8

7
7

8
7

12
7

7
7

8
7

7
11

11
10

10
12

13
7

1
.4

3
3
/4

m
ai

nu
k-

pp
9

2
8

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

7
=

1
.0

0
1
/1

M
ar

ks
tr

oe
m

G
ra

ph
2
4

3
6

4
4

4
4

4
4

4
6

7
6

5
5

5
7

7
6

4
=

1
.0

0
1
/4

M
cG

ee
G

ra
ph

2
4

3
6

8
7

7
7

10
8

8
8

9
8

8
7

7
8

7
8

8
=

1
.0

0
1
/4

M
C

ST
es

tG
ra

ph
7

1
1

2
2

2
2

2
2

3
2

2
2

3
3

3
3

3
3

3
7

1
.5

0
2
/2

M
C

ST
es

tG
ra

ph
2

9
1
3

2
2

2
2

2
2

3
2

2
2

3
3

3
3

3
3

4
7

1
.5

0
2
/2

M
er

ed
it

hG
ra

ph
7
0

1
4
0

15
7

7
7

15
7

7
13

13
13

8
7

11
15

8
10

11
7

1
.1

4
2
/5

m
ild

ew
3
5

8
0

4
4

4
4

7
4

4
5

7
5

5
5

5
7

5
6

8
7

1
.2

5
2
/3

m
ile

s1
0
0
0

1
2
8

1
5
9
4

32
32

36
27

63
27

32
46

48
78

34
37

37
65

49
35

55
7

1
.3

0
4
/9

m
ile

s1
0
0
0

1
2
8

3
2
1
6

54
54

58
50

70
50

54
54

70
51

59
78

76
65

57
59

69
7

1
.1

4
4
/8

m
ile

s1
5
0
0

1
2
8

5
1
9
8

83
83

91
77

82
77

83
83

83
83

87
10

4
10

4
78

90
82

83
7

1
.0

1
2
/6

m
ile

s2
5
0

7
7

1
9
6

8
8

8
8

12
8

8
9

9
9

8
8

11
11

8
8

10
=

1
.0

0
1
/4

m
ile

s2
5
0

9
2

3
2
7

9
9

10
9

14
9

9
10

10
13

10
11

11
18

10
10

20
7

1
.1

1
2
/5

m
ile

s5
0
0

1
2
8

1
1
7
0

27
34

29
23

46
23

27
29

37
26

28
36

36
36

37
32

45
7

1
.3

9
6
/9

m
ile

s7
5
0

1
2
5

1
2
5
1

29
29

28
28

43
28

29
36

42
29

29
35

35
53

34
39

40
7

1
.2

1
3
/6

m
ile

s7
5
0

1
2
8

2
1
1
3

43
40

38
40

66
40

43
41

58
45

38
53

53
48

50
50

73
7

1
.2

6
6
/8

[8
/1

3
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

df
s

m
ax

nu
m

ev
re

su
lt

fa
ct

or
#

m
ul

so
l.i

.5
-p

p
7
7

9
7
4

29
29

41
29

30
29

29
42

34
42

29
29

29
31

29
30

33
=

1
.0

0
1

/5

m
ul

so
l.i

.4
-p

p
7
8

1
0
6
2

29
29

43
29

30
29

29
46

39
46

29
30

34
33

30
30

32
7

1
.0

3
2

/6

m
ul

so
l.i

.1
1
0
0

1
7
2
5

43
43

47
43

42
43

43
50

50
54

43
42

42
43

46
42

50
=

1
.0

0
1

/5

m
ul

so
l.i

.2
1
0
1

1
2
3
3

29
29

41
29

30
29

29
50

30
50

29
29

29
32

43
30

34
7

1
.0

3
2

/4

m
ul

so
l.i

.5
1
0
2

1
2
2
4

28
28

39
28

30
28

28
52

29
52

28
28

28
32

36
30

36
7

1
.0

7
3

/5

m
ul

so
l.i

.3
1
0
2

1
2
3
3

29
29

41
29

30
29

29
47

30
47

29
29

29
33

38
30

40
7

1
.0

3
2

/4

m
ul

so
l.i

.5
-p

p
1
1
9

2
5
5
6

31
31

54
31

34
31

31
38

36
38

32
31

31
31

62
31

42
=

1
.0

0
1

/6

m
ul

so
l.i

.1
1
3
8

3
9
2
5

50
50

65
50

50
50

50
70

51
10

7
50

50
50

51
72

52
62

7
1
.0

2
2

/5

m
ul

so
l.i

.2
1
7
3

3
8
8
5

32
32

44
32

32
32

32
77

44
14

2
32

36
36

32
66

44
62

=
1
.0

0
1

/5

m
ul

so
l.i

.3
1
7
4

3
9
1
6

32
32

45
32

32
32

32
77

44
14

3
32

36
36

32
68

44
59

=
1
.0

0
1

/6

m
ul

so
l.i

.4
1
7
5

3
9
4
6

32
32

46
32

32
32

32
77

44
14

4
32

36
36

32
78

44
52

=
1
.0

0
1

/6

m
ul

so
l.i

.5
1
7
6

3
9
7
3

31
31

46
31

31
31

31
77

44
14

5
31

36
36

32
69

45
65

7
1
.0

3
2

/6

m
un

in
1

1
8
9

3
6
6

11
11

13
11

11
11

11
20

27
31

11
12

12
22

28
17

33
7

1
.5

5
4

/6

m
un

in
2

1
0
0
3

1
6
6
2

7
8

7
7

10
7

7
47

12
47

7
10

9
15

22
31

78
7

2
.1

4
6

/6

m
un

in
2

-w
pp

3
1
7

6
7
4

7
8

7
7

9
7

7
10

17
32

8
8

8
16

16
32

61
7

2
.2

9
5

/6

m
un

in
3

1
0
4
4

1
7
4
5

7
7

8
7

8
7

7
52

43
52

7
10

9
15

42
27

89
7

2
.1

4
5

/6

m
un

in
4

1
0
4
1

1
8
4
3

8
8

9
8

9
8

8
29

18
29

8
9

11
17

23
53

87
7

2
.1

2
4

/5

m
yc

ie
l2

5
5

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
=

1
.0

0
1

/1

m
yc

ie
l3

1
1

2
0

5
5

5
5

5
5

5
6

6
6

5
5

5
6

6
5

5
=

1
.0

0
1

/2

m
yc

ie
l4

2
3

7
1

11
11

11
11

10
11

11
15

14
16

11
11

10
10

16
11

11
=

1
.0

0
1

/5

m
yc

ie
l5

4
6

1
3
9

12
14

14
13

15
13

12
22

15
23

14
13

14
17

17
14

19
7

1
.1

7
3

/6

m
yc

ie
l5

4
7

2
3
6

20
20

20
21

21
21

20
34

24
37

20
19

21
28

28
21

24
7

1
.1

1
3

/6

m
yc

ie
l6

9
4

5
5
0

32
29

30
29

32
29

32
60

41
61

29
32

32
39

41
38

44
7

1
.3

1
4

/6

m
yc

ie
l6

9
5

7
5
5

35
35

38
35

36
35

35
76

43
81

35
38

39
51

55
39

45
7

1
.1

1
4

/7

m
yc

ie
l7

1
9
1

2
3
6
0

78
78

72
66

70
66

78
16

1
85

17
1

74
73

79
74

11
3

79
85

7
1
.1

2
5
/1

0

N
au

ru
G

ra
ph

2
4

3
6

8
8

8
7

12
7

7
8

9
8

8
6

6
7

8
8

7
7

1
.1

7
2

/5

N
on

is
ot

ro
pi

cO
rt

ho
go

na
lP

ol
ar

G
ra

ph
_3

_5
1
5

6
0

11
11

11
11

11
11

11
10

10
10

11
11

11
10

10
10

10
=

1
.0

0
1

/2

N
on

is
ot

ro
pi

cU
ni

ta
ry

Po
la

rG
ra

ph
_3

_3
6
3

1
0
0
8

55
55

55
55

56
55

54
54

58
54

55
55

54
55

54
55

55
=

1
.0

0
1

/4

O
dd

G
ra

ph
_4

3
5

7
0

15
13

13
14

18
14

16
12

18
12

13
15

15
14

14
13

14
7

1
.0

8
2

/6

oe
so

ca
+

6
7

2
0
8

11
11

12
11

12
11

11
13

16
13

11
14

11
13

12
14

16
7

1
.0

9
2

/5

[9
/1

3
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

df
s

m
ax

nu
m

ev
re

su
lt

fa
ct

or
#

oe
so

ca
+-

pp
1
4

7
5

11
11

11
11

11
11

11
11

11
11

11
11

13
11

11
11

11
=

1
.0

0
1

/2

oe
so

ca
3
9

6
7

3
3

3
3

3
3

3
3

3
3

4
4

4
4

4
4

10
7

1
.3

3
2

/2

oe
so

ca
4
2

4
2

7
2

3
3

3
3

3
3

3
4

3
4

4
4

4
4

4
4

10
7

1
.3

3
2

/2

Pa
le

yG
ra

ph
_1

7
1
7

6
8

11
11

12
11

13
11

11
11

13
11

11
12

12
12

11
12

12
=

1
.0

0
1

/3

Pa
pp

us
G

ra
ph

1
8

2
7

6
6

6
6

8
6

6
6

7
6

6
6

6
7

6
7

7
=

1
.0

0
1

/3

pa
th

fin
de

r
1
0
9

2
1
1

6
7

6
6

7
6

6
7

8
7

7
7

7
10

8
8

9
7

1
.3

3
3

/3

pa
th

fin
de

r-
pp

1
2

4
3

6
7

8
6

7
6

6
6

7
7

7
7

7
7

7
7

7
7

1
.1

7
2

/3

Po
us

si
nG

ra
ph

1
5

3
9

7
7

7
6

7
6

7
7

6
7

7
7

7
6

7
6

7
=

1
.0

0
1

/2

qu
ee

n1
0

_1
0

1
0
0

1
4
7
0

81
80

84
79

84
79

83
77

90
79

83
83

83
78

77
79

79
=

1
.0

0
1

/7

qu
ee

n1
1

_1
1

1
2
1

1
2
6
5

57
60

64
54

66
54

57
63

58
77

60
59

60
60

68
62

63
7

1
.1

1
5

/9

qu
ee

n1
1

_1
1

1
2
1

1
9
8
0

10
0

10
1

10
3

95
10

4
95

10
1

93
10

5
93

99
10

1
99

95
95

92
96

3
0

.9
9

1
/8

qu
ee

n1
2

_1
2

1
4
4

1
7
5
0

74
71

75
73

82
73

74
73

84
76

71
77

75
82

75
77

76
7

1
.0

6
4

/8

qu
ee

n1
2

_1
2

1
4
4

2
5
9
6

12
0

12
0

12
4

11
7

12
7

11
7

12
2

11
2

13
2

11
4

12
2

12
1

12
3

11
6

11
3

11
4

11
5

7
1

.0
1

2
/1

0

qu
ee

n1
3

_1
3

1
6
9

2
1
6
5

75
75

75
65

81
65

75
69

80
71

72
71

71
82

74
75

75
7

1
.1

4
5

/7

qu
ee

n1
3

_1
3

1
6
9

3
3
2
8

14
5

14
6

14
8

13
7

14
8

13
7

14
7

13
3

15
7

13
1

14
1

13
9

14
6

13
5

13
5

13
1

13
8

=
1

.0
0

1
/1

0

qu
ee

n1
4

_1
4

1
9
6

3
5
2
6

15
1

15
1

15
4

14
2

15
7

14
2

15
1

15
1

16
5

14
1

15
1

15
4

15
5

13
8

14
1

14
1

14
2

3
0

.9
8

1
/7

qu
ee

n1
4

_1
4

1
9
6

4
1
8
6

16
9

16
6

17
3

16
0

17
2

16
0

16
8

15
5

18
2

15
6

16
8

16
7

16
7

15
5

16
0

15
3

15
9

3
0

.9
9

1
/1

0

qu
ee

n1
5

_1
5

2
2
5

3
4
6
7

10
9

11
0

11
0

10
6

12
2

10
6

10
9

10
6

11
0

10
6

11
0

11
4

11
0

10
2

10
9

10
1

11
5

3
0

.9
5

1
/5

qu
ee

n1
5

_1
5

2
2
5

5
1
8
0

18
8

19
3

19
5

18
3

20
0

18
3

19
5

17
8

20
3

17
5

19
0

19
3

19
4

18
2

18
5

17
9

18
6

7
1

.0
2

3
/1

0

qu
ee

n1
6

_1
6

2
5
6

4
3
8
2

14
1

13
9

14
0

13
4

15
2

13
4

14
1

12
8

14
1

13
4

14
2

14
1

13
9

13
2

13
7

13
1

13
5

7
1

.0
2

2
/7

qu
ee

n1
6

_1
6

2
5
6

6
3
2
0

22
8

22
4

22
8

21
8

23
1

21
8

22
6

20
5

24
0

20
4

22
4

21
7

22
1

21
0

21
0

20
3

21
7

3
1

.0
0

1
/1

0

qu
ee

n5
_5

2
5

1
0
6

11
11

12
11

13
11

11
13

13
12

11
12

12
14

12
13

12
7

1
.0

9
2

/3

qu
ee

n5
_5

2
5

1
6
0

18
18

19
18

19
18

18
18

20
18

18
18

18
18

18
18

18
=

1
.0

0
1

/3

qu
ee

n6
_6

3
6

2
1
7

20
20

21
19

21
19

20
20

22
21

20
22

21
19

20
20

20
=

1
.0

0
1

/4

qu
ee

n6
_6

3
6

2
9
0

28
28

28
26

29
26

26
26

30
27

28
26

28
27

27
27

27
7

1
.0

4
2

/5

qu
ee

n7
_7

4
9

3
8
8

31
31

31
30

34
30

31
31

34
31

31
32

32
29

29
30

30
3

0
.9

7
1

/4

qu
ee

n7
_7

4
9

4
7
6

38
38

40
37

41
37

36
36

40
37

38
39

39
37

37
37

37
7

1
.0

3
2

/6

qu
ee

n8
_1

2
9
6

1
2
6
1

71
70

74
68

75
68

71
69

76
75

70
75

74
63

64
63

64
3

0
.9

3
1

/7

qu
ee

n8
_1

2
9
6

1
3
6
8

78
76

79
72

81
72

80
72

83
77

78
79

80
70

71
69

73
3

0
.9

6
1

/8

qu
ee

n8
_8

6
4

7
2
8

50
49

53
48

55
48

50
47

56
49

52
51

50
49

49
48

49
7

1
.0

2
2

/9

[1
0

/1
3

]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

df
s

m
ax

nu
m

ev
re

su
lt

fa
ct

or
#

qu
ee

n9
_9

8
1

9
6
8

59
61

61
57

62
57

59
58

71
62

62
62

61
57

58
57

58
=

1
.0

0
1

/6

qu
ee

n9
_9

8
1

1
0
5
6

63
66

67
65

68
65

63
61

72
62

66
65

66
63

62
61

63
=

1
.0

0
1

/8

ra
nd

om
4

re
g

4
8

9
6

15
14

15
14

18
14

14
18

14
17

15
14

15
18

18
15

17
7

1
.0

7
2

/4

R
an

do
m

Ba
ra

ba
si

A
lb

er
t_

1
0
0
_2

1
0
0

1
9
6

13
12

13
12

15
12

13
22

23
21

12
13

14
17

17
16

22
7

1
.3

3
5

/7

R
an

do
m

Ba
ra

ba
si

A
lb

er
t_

1
0
0
_5

1
0
0

4
7
5

36
36

37
35

42
35

36
49

46
45

36
39

40
42

50
44

44
7

1
.2

0
6

/9

R
an

do
m

Bi
pa

rt
it

e_
1
0

_5
0
_3

6
0

1
3
8

9
9

9
9

9
9

9
13

11
19

9
9

9
12

12
9

12
=

1
.0

0
1

/4

R
an

do
m

Bi
pa

rt
it

e_
2
5

_5
0
_1

6
9

1
1
4

9
10

10
10

12
10

9
18

17
14

10
11

11
14

14
13

17
7

1
.4

4
5

/7

R
an

do
m

Bi
pa

rt
it

e_
2
5

_5
0
_3

7
5

3
6
8

23
23

24
23

27
23

23
37

34
33

23
24

24
29

33
24

25
7

1
.0

4
2

/6

R
an

do
m

Bo
un

de
dT

ol
er

an
ce

G
ra

ph
_6

0
6
0

1
1
6
8

30
30

40
30

39
30

30
43

31
30

38
42

44
39

37
37

36
7

1
.2

0
3

/8

R
an

do
m

Bo
un

de
dT

ol
er

an
ce

G
ra

ph
_8

0
8
0

1
7
1
7

32
32

44
32

46
32

32
37

33
36

36
48

48
51

43
40

40
7

1
.2

5
5

/7

R
an

do
m

G
N

M
_1

0
0
_1

0
0

7
6

9
6

6
6

7
6

9
6

6
9

10
10

7
7

7
9

9
11

11
7

1
.5

0
3

/4

R
an

do
m

G
N

M
_2

5
0
_1

0
0
0

2
5
0

1
0
0
0

10
7

10
8

11
0

10
5

13
0

10
5

10
7

12
1

13
4

11
8

11
0

11
1

11
8

11
4

11
6

11
8

12
0

7
1

.0
9

6
/9

R
an

do
m

G
N

M
_5

0
0
_5

0
0

4
0
0

4
8
3

24
23

24
23

34
24

22
32

38
33

25
24

26
37

37
37

46
7

1
.6

8
9

/9

R
an

do
m

H
ol

m
eK

im
_3

0
0

_2
_2

3
0
0

5
9
6

29
26

26
27

35
27

29
45

38
48

27
32

28
39

50
43

59
7

1
.5

0
8

/9

R
an

do
m

H
ol

m
eK

im
_7

0
0

_2
_2

7
0
0

1
3
9
6

60
60

63
59

76
59

60
11

5
96

12
5

61
61

64
78

96
86

12
3

7
1

.3
2

7
/9

R
an

do
m

N
ew

m
an

W
at

ts
St

ro
ga

tz
_1

0
0

_5
_3

1
0
0

2
6
9

25
26

25
22

34
22

25
30

26
29

25
23

22
32

30
29

30
7

1
.3

2
5

/7

R
an

do
m

N
ew

m
an

W
at

ts
St

ro
ga

tz
_2

5
0

_1
0

_3
2
5
0

1
6
3
6

10
4

11
4

11
4

11
0

15
9

11
0

11
3

12
3

10
7

12
8

11
2

11
4

10
2

11
1

11
1

11
0

12
2

7
1

.0
8

4
/1

0

R
an

do
m

Tr
ia

ng
ul

at
io

n_
8
0
0

8
0
0

2
3
9
4

70
62

60
63

19
6

63
70

57
50

58
60

54
55

91
95

86
19

9
7

1
.7

2
1
0
/1

0

R
in

ge
dT

re
e_

1
0

1
0
2
3

2
0
4
3

22
22

22
21

21
22

25
7

10
6

23
22

24
24

96
15

3
20

6
7

1
.1

4
4

/6

R
in

ge
dT

re
e_

6
6
3

1
2
3

10
11

10
10

19
10

10
17

17
10

10
10

10
10

11
9

11
3

0
.9

0
1

/4

R
in

ge
dT

re
e_

8
2
5
5

5
0
7

17
15

15
16

68
16

17
65

65
32

16
16

16
18

28
30

50
7

1
.2

0
4

/6

R
K

T
_1

0
0
_8

0
_3

0
_0

1
0
0

5
0
7

27
27

28
27

28
27

27
31

39
35

27
28

28
29

33
28

32
7

1
.0

4
2

/5

R
K

T
_1

0
0
_9

0
_3

0
_0

9
8

2
5
4

22
22

22
22

25
22

22
29

30
29

22
25

24
25

29
24

26
7

1
.0

9
2

/5

R
K

T
_2

0
_4

0
_1

0
_0

2
0

8
7

9
9

9
9

9
9

9
12

12
12

9
10

10
10

11
9

10
=

1
.0

0
1

/3

R
K

T
_2

0
_4

0
_1

0
_1

2
0

8
7

10
10

10
10

11
10

10
11

12
12

10
10

10
10

11
10

11
=

1
.0

0
1

/3

R
K

T
_2

0
_5

0
_1

0
_0

2
0

7
3

9
9

9
9

9
9

9
11

9
9

9
9

9
10

9
9

9
=

1
.0

0
1

/2

R
K

T
_2

0
_5

0
_1

0
_1

2
0

7
3

9
9

10
8

11
8

11
8

10
12

9
10

10
9

9
9

10
7

1
.1

2
2

/5

R
K

T
_2

0
_6

0
_1

0
_0

2
0

5
8

7
7

7
7

8
7

7
9

8
9

7
7

7
10

10
7

9
=

1
.0

0
1

/3

R
K

T
_2

0
_6

0
_1

0
_1

2
0

5
8

8
8

8
8

9
8

8
9

12
10

8
8

8
10

9
8

9
=

1
.0

0
1

/4

R
K

T
_2

0
_7

0
_1

0
_0

2
0

4
4

6
6

6
6

7
6

6
6

8
7

6
6

7
7

7
7

8
7

1
.1

7
2

/3

[1
1

/1
3

]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

df
s

m
ax

nu
m

ev
re

su
lt

fa
ct

or
#

R
K

T
_2

0
_7

0
_1

0
_1

2
0

4
4

6
7

7
7

9
7

7
7

10
7

7
7

7
9

7
7

8
7

1
.1

7
2

/4

R
K

T
_2

0
_8

0
_1

0
_0

2
0

2
9

4
4

4
4

4
4

4
4

5
5

4
4

5
6

7
4

6
=

1
.0

0
1

/2

R
K

T
_2

0
_8

0
_1

0
_1

1
7

2
9

5
5

5
5

6
5

5
5

6
5

5
5

5
5

6
6

6
=

1
.0

0
1

/2

R
K

T
_3

0
0

_7
5
_3

0
_0

3
0
0

2
1
3
4

29
29

29
29

29
29

29
13

8
50

91
29

29
29

31
56

29
39

=
1

.0
0

1
/4

R
K

T
_3

0
0

_9
0
_3

0
_0

2
9
3

8
5
4

27
27

27
27

27
27

27
71

38
46

27
27

27
32

37
32

34
7

1
.1

9
2

/4

R
K

T
_5

0
0

_8
0
_3

0
_0

4
9
9

2
9
0
7

29
29

30
29

29
29

29
11

1
46

12
0

29
30

30
37

53
30

42
7

1
.0

3
2

/5

Sc
hl

ae
fli

G
ra

ph
2
7

2
1
6

23
23

23
21

23
21

23
21

21
21

23
22

23
21

21
21

21
=

1
.0

0
1

/3

sc
ho

ol
1

3
7
0

1
0
2
9
0

14
9

15
1

15
3

13
2

22
9

13
2

14
9

15
7

14
4

20
1

14
4

13
9

13
9

19
3

15
9

17
2

16
3

7
1

.2
0

8
/9

sc
ho

ol
1

3
7
7

1
9
0
9
1

24
4

24
6

27
1

22
5

29
5

22
5

24
4

26
6

30
3

31
2

24
4

25
5

25
9

25
9

24
2

25
1

26
1

7
1

.0
8

2
/1

0

sc
ho

ol
1

-p
p

3
5
2

1
2
9
2
9

19
6

19
6

19
8

18
1

23
4

18
1

19
6

27
0

23
6

22
9

20
1

20
8

20
9

19
4

19
2

19
0

20
2

7
1

.0
5

2
/1

0

sc
ho

ol
1

_n
sh

3
3
7

7
6
9
6

10
8

10
8

11
0

90
22

6
90

10
8

12
6

11
9

13
2

10
8

11
0

11
0

15
3

15
4

15
9

18
1

7
1

.7
0

7
/7

sc
ho

ol
1

_n
sh

3
4
4

1
4
6
0
8

21
4

21
4

23
6

20
4

26
3

20
4

21
4

23
7

26
9

26
6

21
8

24
2

23
2

21
2

21
2

22
9

24
1

7
1

.0
4

2
/1

0

sc
ho

ol
1

_n
sh

-p
p

3
2
4

7
3
8
7

99
11

9
11

0
98

20
4

98
99

15
4

12
2

18
0

11
9

10
1

10
8

16
4

16
8

13
4

16
6

7
1

.3
7

8
/1

0

sh
ip

-s
hi

p-
pp

3
0

7
7

8
9

8
9

8
9

8
9

10
13

8
9

9
11

9
9

12
7

1
.1

2
2

/4

Sh
ri

kh
an

de
G

ra
ph

1
6

4
8

9
9

9
9

10
9

9
10

10
10

9
10

10
9

9
9

9
=

1
.0

0
1

/2

Si
er

pi
ns

ki
G

as
ke

tG
ra

ph
_3

1
5

2
7

3
3

3
3

4
3

3
4

3
4

4
4

4
5

5
4

4
7

1
.3

3
2

/2

Si
m

sG
ew

ir
tz

G
ra

ph
5
6

2
8
0

36
36

37
35

40
36

37
36

45
36

35
37

33
34

32
38

37
3

0
.9

7
1

/6

Sq
ua

re
dS

ke
w

H
ad

am
ar

dM
at

ri
xG

ra
ph

_2
4
9

5
8
8

40
41

41
41

44
41

41
41

44
41

40
41

41
41

41
41

41
7

1
.0

2
2

/3

Sq
ua

re
dS

ke
w

H
ad

am
ar

dM
at

ri
xG

ra
ph

_3
1
2
1

3
6
3
0

10
9

11
0

11
2

10
9

11
6

10
9

11
0

10
9

11
7

10
9

10
9

10
9

11
0

11
1

11
0

10
9

11
1

=
1

.0
0

1
/5

St
ar

G
ra

ph
_1

0
0

1
0
1

1
0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
=

1
.0

0
1

/1

st
dl

ib
_g

m
ti

m
e

1
1
7

1
2
3

2
2

2
2

3
2

2
3

5
4

3
3

3
3

4
3

6
7

1
.5

0
2

/4

st
dl

ib
_m

kt
im

e
9
3

9
7

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

4
=

1
.0

0
1

/1

st
dl

ib
_p

ri
nt

_f
or

m
at

5
4
4

6
0
9

4
4

4
4

6
4

4
13

17
18

4
5

5
5

11
6

17
7

1
.2

5
2

/6

st
dl

ib
_s

in
co

sh
f

1
1
0

1
1
7

2
2

2
2

4
2

2
4

4
4

3
3

3
4

5
4

6
7

2
.0

0
3

/3

Sy
lv

es
te

rG
ra

ph
3
6

9
0

17
17

17
17

20
17

16
17

21
17

17
18

17
17

18
17

17
7

1
.0

6
2

/5

Sy
m

pl
ec

ti
cD

ua
lP

ol
ar

G
ra

ph
_4

_4
8
5

8
5
0

64
64

66
64

72
64

64
66

80
66

64
64

64
66

65
64

68
=

1
.0

0
1

/4

Sy
m

pl
ec

ti
cP

ol
ar

G
ra

ph
_4

_4
8
5

8
5
0

64
64

66
64

77
64

65
63

73
63

64
65

65
67

65
64

67
7

1
.0

2
2

/6

Sz
ek

er
es

Sn
ar

kG
ra

ph
5
0

7
5

7
7

8
7

13
7

8
11

11
11

8
7

7
9

13
11

10
7

1
.2

9
3

/4

Ta
yl

or
Tw

og
ra

ph
D

es
ce

nd
an

tS
R

G
_3

2
7

1
3
5

20
17

19
20

20
20

20
17

22
17

17
20

20
19

17
17

19
=

1
.0

0
1

/4

Ta
yl

or
Tw

og
ra

ph
SR

G
_3

2
8

2
1
0

22
22

22
22

22
22

22
22

25
22

22
22

22
23

22
22

22
=

1
.0

0
1

/2

[1
2

/1
3

]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

df
s

m
ax

nu
m

ev
re

su
lt

fa
ct

or
#

To
ro

id
al

6
R

eg
ul

ar
G

ri
d2

dG
ra

ph
_4

_6
2
4

7
2

12
11

11
11

14
11

12
10

10
10

11
11

11
10

9
10

11
3

0
.9

0
1

/4

Tu
tt

e1
2

C
ag

e
1
2
6

1
8
9

29
30

32
29

34
29

30
24

34
24

31
29

29
38

32
28

32
7

1
.1

7
2

/6

w
at

er
3
2

1
2
3

11
11

12
10

13
10

11
10

11
12

11
16

16
11

14
10

12
=

1
.0

0
1

/5

W
he

el
G

ra
ph

_1
0
0

1
0
0

1
9
8

3
3

3
3

3
3

3
3

3
3

3
3

3
49

3
3

44
=

1
.0

0
1

/1

W
or

ld
M

ap
1
5
7

3
1
8

6
5

6
6

11
5

6
12

6
9

6
6

6
13

15
9

28
7

1
.8

0
3

/5

ze
ro

in
.i.

3
-p

p
4
9

6
5
1

36
36

31
29

37
29

36
31

32
31

31
33

33
32

33
30

31
7

1
.0

3
2

/6

ze
ro

in
.i.

3
8
3

9
1
7

29
29

26
24

28
24

29
37

25
37

30
24

24
30

26
28

32
7

1
.0

8
3

/7

ze
ro

in
.i.

2
8
5

9
5
1

29
29

26
24

28
24

29
41

25
41

29
24

26
30

26
28

28
7

1
.0

8
3

/6

ze
ro

in
.i.

1
1
2
6

4
1
0
0

50
50

79
50

50
50

50
96

52
50

50
54

54
52

77
54

61
7

1
.0

4
2

/5

ze
ro

in
.i.

3
1
5
7

3
5
4
0

33
33

44
33

45
33

33
12

3
43

13
3

33
35

35
35

91
34

62
7

1
.0

3
2

/7

ze
ro

in
.i.

2
1
5
7

3
5
4
1

33
33

44
33

45
33

33
12

3
43

13
3

33
35

35
35

91
34

60
7

1
.0

3
2

/7

[1
3

/1
3

]

161

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

re
su

lt
be

st

4
x1

2
_t

or
us

G
ri

d
4
8

9
6

[2
4
→

1
1
]

[2
4
→

9
]

7
8

A
hr

en
sS

ze
ke

re
sG

en
er

al
iz

ed
Q

ua
dr

an
gl

eG
ra

ph
_3

2
7

1
3
5

[2
0
→

1
9

]
[2

0
→

1
9

]
[2

0
→

1
8
]

[2
1
→

1
9
]

[2
0
→

1
8

]
[2

2
→

1
9

]
[2

0
→

1
8
]

[2
0
→

1
9
]

7
1
7

al
ar

m
3
7

6
5

[5
→

4
]

[5
→

4
]

[5
→

4
]

=
4

an
na

1
1
0

2
5
9

[1
1
→

1
0

]
[9
→

8
]

[9
→

8
]

=
8

an
na

1
3
4

4
2
3

[1
5
→

1
4

]
[1

7
→

1
3

]
7

1
2

an
na

-p
p

2
2

1
4
8

[1
6
→

1
4

]
[1

3
→

1
2

]
[1

4
→

1
3
]

[1
4
→

1
3
]

=
1
2

Ba
la

nc
ed

Tr
ee

_3
,5

3
6
4

3
6
3

[3
→

1
]

[8
1
→

2
6
]

[3
→

1
]

=
1

ba
rl

ey
4
8

1
2
6

[1
0
→

8
]

[9
→

8
]

[9
→

8
]

7
7

ba
rl

ey
-p

p
2
6

7
8

[9
→

8
]

[1
0
→

9
]

[9
→

8
]

7
7

Bi
gg

sS
m

it
hG

ra
ph

1
0
2

1
5
3

[3
0
→

2
4
]

[2
8
→

2
6

]
7

2
1

Bl
an

us
aS

ec
on

dS
na

rk
G

ra
ph

1
8

2
7

[7
→

5
]

=
5

Br
in

km
an

nG
ra

ph
2
1

4
2

[1
1
→

1
0

]
7

9

Br
ou

w
er

H
ae

m
er

sG
ra

ph
8
1

8
1
0

[7
0
→

6
2
]

[7
5
→

6
3

]
7

5
4

Bu
bb

le
So

rt
G

ra
ph

_5
1
2
0

2
4
0

[3
1
→

2
8

]
[4

8
→

3
3
]

[3
6
→

3
2

]
7

2
3

C
am

er
on

G
ra

ph
2
3
1

3
4
6
5

[1
9
3
→

1
8
5

]
[1

8
6
→

1
8
5
]

[1
9
0
→

1
8
5
]

[1
8
4
→

1
8
2
]

[1
8
4
→

1
7
9
]

7
1
7
5

ce
la

r0
2

1
0
0

3
1
1

[1
9
→

1
1
]

[1
3
→

1
1
]

7
1
0

ce
la

r0
7

2
0
0

8
1
7

[2
9
→

2
6
]

[2
8
→

2
7

]
[2

4
→

2
3
]

7
1
6

C
el

l1
2
0

6
0
0

1
2
0
0

[2
3
7
→

1
4
1
]

[1
1
2
→

1
0
7

]
[1

1
8
→

1
1
6
]

7
7
8

C
le

bs
ch

G
ra

ph
1
6

4
0

[1
0
→

9
]

[1
0
→

9
]

[1
0
→

9
]

7
8

co
nt

ik
i_

co
lle

ct
_s

en
d_

ac
k

5
3

5
2

[2
→

1
]

[2
→

1
]

=
1

co
nt

ik
i_

co
lle

ct
_s

en
d_

ne
xt

_p
ac

ke
t

2
6

2
5

[2
→

1
]

=
1

co
nt

ik
i_

co
nt

ik
im

ac
_i

np
ut

_p
ac

ke
t

1
1
6

1
2
7

[5
→

4
]

[4
→

3
]

=
3

co
nt

ik
i_

co
nt

ik
im

ac
_p

ow
er

cy
cl

e
1
6
6

1
9
4

[1
0
→

9
]

7
5

co
nt

ik
i_

ct
k_

ct
k_

m
en

u_
ad

d
2
5

2
7

[3
→

2
]

[3
→

2
]

=
2

co
nt

ik
i_

dh
cp

c_
ha

nd
le

_d
hc

p
2
7
6

3
1
3

[1
7
→

1
6

]
[1

7
→

1
6

]
7

6

co
nt

ik
i_

ht
tp

d-
cf

s_
se

nd
_fi

le
4
4

4
8

[5
→

4
]

7
3

co
nt

ik
i_

iff
t_

iff
t

1
7
2

1
8
0

[5
→

3
]

[4
→

3
]

7
2

co
nt

ik
i_

ir
cc

_l
is

t_
ch

an
ne

l
7
0

7
6

[6
→

5
]

7
3

co
nt

ik
i_

lp
p_

du
ty

cy
cl

e
1
0
2

1
1
4

[6
→

5
]

=
5

co
nt

ik
i_

lp
p_

in
it

2
2

2
1

[2
→

1
]

[2
→

1
]

=
1

Ta
bl

e
B.

2
:[

1
/1

0
]

Fo
r

a
lis

t
of

w
ha

t
th

e
IN

D
D

G
O

he
ur

is
ti

cs
ar

e,
se

e
pa

ge
1

1
5

.
Th

e
re

su
lt

co
lu

m
n

sh
ow

s
if

a
no

n-
op

ti
m

al
va

lu
e

co
ul

d
be

im
pr

ov
ed

to
be

eq
ua

lt
o

be
tt

er
th

an
th

e
pr

ev
io

us
be

st
va

lu
e

be
tw

ee
n

al
lh

eu
ri

st
ic

s.
Th

e
la

st
co

lu
m

n
co

nt
ai

ns
th

e
be

st
va

lu
e

fo
un

d
by

an
IN

D
D

G
O

he
ur

is
ti

c.

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

re
su

lt
be

st

co
nt

ik
i_

lp
p_

se
nd

_p
ac

ke
t

1
1
6

1
2
0

[3
→

2
]

=
2

co
nt

ik
i_

pr
oc

es
s_

ex
it

_p
ro

ce
ss

7
2

8
2

[7
→

4
]

[5
→

4
]

[5
→

4
]

7
3

co
nt

ik
i_

ps
oc

k_
ps

oc
k_

ge
ne

ra
to

r_
se

nd
6
1

6
8

[7
→

5
]

7
4

co
nt

ik
i_

ru
do

lp
h1

_r
ud

ol
ph

1
_o

pe
n

2
7

2
6

[2
→

1
]

[2
→

1
]

=
1

co
nt

ik
i_

ru
do

lp
h1

_w
ri

te
_d

at
a

3
5

3
6

[3
→

2
]

[3
→

2
]

=
2

co
nt

ik
i_

se
ri

al
-l

in
e_

pr
oc

es
s_

th
re

ad
_s

er
ia

l_
lin

e_
pr

o-
ce

ss
7
2

8
1

[6
→

5
]

7
4

co
nt

ik
i_

sh
el

l-
ps

_p
ro

ce
ss

_t
hr

ea
d_

sh
el

l_
ps

_p
ro

ce
ss

4
5

4
6

[4
→

3
]

[4
→

3
]

7
2

co
nt

ik
i_

sh
el

l-
ri

m
e-

de
bu

g_
re

cv
_b

ro
ad

ca
st

2
4

2
3

[2
→

1
]

[2
→

1
]

=
1

co
nt

ik
i_

sh
el

l-
te

xt
_p

ro
ce

ss
_t

hr
ea

d_
sh

el
l_

ec
ho

_p
ro

ce
ss

2
5

2
5

[3
→

2
]

=
2

co
nt

ik
i_

sh
el

l_
sh

el
l_

re
gi

st
er

_c
om

m
an

d
4
2

4
5

[4
→

3
]

7
2

co
nt

ik
i_

tc
pi

p_
ev

en
th

an
dl

er
9
8

1
1
2

[5
→

4
]

7
2

co
nt

ik
i_

ui
p_

ui
p_

in
it

2
6

2
7

[3
→

2
]

[3
→

2
]

[3
→

2
]

=
2

co
nt

ik
i_

ui
p_

ui
p_

un
lis

te
n

1
9

2
0

[3
→

2
]

=
2

D
ej

te
rG

ra
ph

1
1
2

3
3
6

[5
2
→

4
8
]

[5
0
→

4
7

]
7

3
9

D
es

ar
gu

es
G

ra
ph

2
0

3
0

[1
0
→

7
]

[8
→

7
]

[8
→

7
]

[8
→

7
]

7
6

D
od

ec
ah

ed
ra

lG
ra

ph
2
0

3
0

[7
→

6
]

=
6

D
ou

bl
eS

ta
rS

na
rk

3
0

4
5

[9
→

8
]

7
7

D
SJ

C
1
2
5

.9
1
2
5

6
9
6
1

[1
2
2
→

1
2
1
]

[1
2
1
→

1
2
0
]

[1
2
1
→

1
2
0
]

7
1
1
9

D
SJ

R
5
0
0

.1
c

2
2
1

2
3
5
1
2

[2
1
7
→

2
1
4

]
[2

1
6
→

2
1
3
]

[2
1
8
→

2
1
6
]

7
2
1
2

ei
l5

1
.ts

p
5
1

1
4
0

[1
8
→

1
5
]

7
9

Fi
bo

na
cc

iT
re

e_
1
0

1
4
3

1
4
2

[3
→

2
]

7
1

Fl
ow

er
Sn

ar
k

2
0

3
0

[8
→

6
]

=
6

Fo
ld

ed
C

ub
eG

ra
ph

_7
6
4

2
2
4

[4
2
→

3
4
]

[4
8
→

3
5

]
7

3
0

Fo
lk

m
an

G
ra

ph
2
0

4
0

[1
0
→

8
]

7
6

Fo
st

er
G

ra
ph

9
0

1
3
5

[2
3
→

2
2
]

7
2
0

fp
so

l2
.i.

1
-p

p
1
9
1

4
4
1
8

[1
6
3
→

7
9

]
[1

6
3
→

9
6

]
7

5
8

fp
so

l2
.i.

3
-p

p
1
9
3

2
7
2
1

[1
3
4
→

8
9

]
[1

3
4
→

8
9

]
7

2
8

fp
so

l2
.i.

3
2
0
6

2
6
4
5

[1
6
1
→

9
8

]
[1

6
1
→

9
7

]
[4

1
→

4
0
]

7
2
8

fp
so

l2
.i.

1
2
1
0

5
4
8
9

[1
4
7
→

1
0
3
]

[1
4
1
→

1
0
0
]

7
5
0

fp
so

l2
.i.

1
-p

p
2
3
3

1
0
7
8
3

[2
1
6
→

8
2

]
7

6
6

[2
/1

0
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

re
su

lt
be

st

fp
so

l2
.i.

1
2
6
9

1
1
6
5
4

[2
1
6
→

9
7

]
[2

3
8
→

1
1
8
]

7
6
6

fp
so

l2
.i.

3
3
6
3

8
6
8
8

[6
9
→

6
4
]

[3
3
2
→

1
7
8
]

7
3
1

fp
so

l2
.i.

2
3
6
3

8
6
9
1

[6
9
→

6
4
]

[3
3
2
→

1
7
8
]

7
3
1

fu
zi

x_
ab

or
t_

ab
or

t
2
1

2
0

[2
→

1
]

[2
→

1
]

=
1

fu
zi

x_
cl

oc
k_

ge
tt

im
e_

cl
oc

k_
ge

tt
im

e
3
9

4
0

[3
→

2
]

=
2

fu
zi

x_
cl

oc
k_

ge
tt

im
e_

di
v1

0
qu

ic
km

3
0

2
9

[2
→

1
]

[2
→

1
]

=
1

fu
zi

x_
de

vf
_f

d_
tr

an
sf

er
1
1
9

1
2
9

[6
→

5
]

[5
→

4
]

7
3

fu
zi

x_
di

ff
ti

m
e_

di
ff

ti
m

e
7
4

7
3

[2
→

1
]

=
1

fu
zi

x_
fg

et
s_

fg
et

s
5
3

5
8

[4
→

3
]

[5
→

3
]

[6
→

3
]

=
3

fu
zi

x_
fil

es
ys

_i
_o

pe
n

1
2
9

1
4
3

[6
→

5
]

7
3

fu
zi

x_
ge

th
os

tn
am

e_
ge

th
os

tn
am

e
3
0

3
1

[3
→

2
]

[3
→

2
]

=
2

fu
zi

x_
ge

tp
as

s_
_g

et
s

3
1

3
5

[4
→

3
]

=
3

fu
zi

x_
in

od
e_

rw
se

tu
p

7
7

8
3

[4
→

3
]

[4
→

3
]

7
2

fu
zi

x_
m

al
lo

c_
__

in
se

rt
_c

hu
nk

1
0
4

1
1
6

[5
→

4
]

7
3

fu
zi

x_
na

no
sl

ee
p_

cl
oc

k_
na

no
sl

ee
p

1
1
0

1
2
1

[4
→

3
]

=
3

fu
zi

x_
pr

oc
es

s_
ge

tp
ro

c
3
2

3
5

[3
→

2
]

=
2

fu
zi

x_
qs

or
t_

_l
qs

or
t

8
9

9
4

[5
→

4
]

[4
→

3
]

[4
→

3
]

=
3

fu
zi

x_
re

ge
xp

_r
eg

co
m

p
1
1
8

1
2
9

[3
→

2
]

=
2

fu
zi

x_
se

tb
uf

fe
r_

se
tb

uf
fe

r
4
3

4
4

[3
→

2
]

[3
→

2
]

=
2

fu
zi

x_
se

te
nv

_s
et

en
v

1
2
2

1
3
1

[5
→

4
]

[5
→

4
]

7
3

fu
zi

x_
st

at
_s

ta
tfi

x
5
2

5
1

[2
→

1
]

[2
→

1
]

=
1

fu
zi

x_
sy

sc
on

f_
sy

sc
on

f
1
4
2

1
6
2

[2
0
→

1
6
]

[2
0
→

1
6
]

7
3

fu
zi

x_
tt

y_
tt

y_
re

ad
1
2
3

1
3
7

[8
→

5
]

7
4

fu
zi

x_
us

er
m

em
_u

ge
ts

2
4

2
5

[3
→

2
]

=
2

ga
m

es
1
2
0

1
1
9

4
2
3

[3
7
→

3
3
]

[3
3
→

2
9
]

[3
3
→

3
0
]

7
2
5

ga
m

es
1
2
0

1
2
0

6
3
8

[4
6
→

4
5

]
[6

2
→

4
3
]

[5
1
→

4
4
]

7
3
9

G
en

er
al

iz
ed

Pe
te

rs
en

G
ra

ph
_1

0
_4

2
0

3
0

[1
0
→

7
]

[8
→

6
]

=
6

G
N

P_
2
0

_2
0

_1
2
0

4
8

[9
→

8
]

[9
→

8
]

7
7

G
N

P_
2
0

_3
0

_0
2
0

5
6

[1
1
→

9
]

7
8

G
N

P_
2
0

_3
0

_1
2
0

6
3

[9
→

8
]

[1
0
→

9
]

[1
0
→

8
]

=
8

[3
/1

0
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

re
su

lt
be

st

G
N

P_
2
0

_4
0
_0

2
0

7
8

[1
2
→

1
1

]
[1

3
→

1
2

]
7

1
0

G
N

P_
2
0

_4
0
_1

2
0

7
1

[1
1
→

1
0

]
[1

1
→

9
]

7
8

G
N

P_
2
0

_5
0
_0

2
0

9
1

[1
3
→

1
2

]
[1

4
→

1
3

]
[1

3
→

1
2

]
7

1
0

G
N

P_
2
0

_5
0
_1

2
0

1
0
6

[1
4
→

1
3

]
[1

5
→

1
3
]

[1
4
→

1
3

]
=

1
3

G
oe

th
al

sS
ei

de
lG

ra
ph

_2
_3

1
6

7
2

[1
3
→

1
2

]
7

1
1

G
os

se
tG

ra
ph

5
6

7
5
6

[5
0
→

4
4

]
[4

5
→

4
4
]

[4
9
→

4
5

]
[4

9
→

4
5
]

[4
4
→

4
3

]
=

4
3

gr
ap

h0
9

4
5
8

1
6
6
7

[1
6
1
→

1
4
6
]

[1
3
8
→

1
3
1

]
7

1
1
8

G
ra

yG
ra

ph
5
4

8
1

[1
7
→

1
4
]

7
1
2

G
ro

tz
sc

hG
ra

ph
1
1

2
0

[7
→

5
]

[6
→

5
]

=
5

H
al

lJ
an

ko
G

ra
ph

1
0
0

1
8
0
0

[8
5
→

8
3
]

[8
8
→

8
5

]
[8

7
→

8
3

]
[9

0
→

8
3
]

[8
7
→

8
3
]

[8
5
→

8
4

]
[8

7
→

8
4

]
[9

3
→

8
5

]
[8

7
→

8
4

]
[8

7
→

8
6

]
[8

7
→

8
5
]

[8
7
→

8
5

]
3

8
5

H
an

oi
To

w
er

G
ra

ph
_4

_3
6
4

1
6
8

[2
6
→

1
7
]

[1
9
→

1
7

]
[1

7
→

1
5

]
3

1
6

H
ar

bo
rt

hG
ra

ph
5
2

1
0
4

[9
→

7
]

7
5

H
ar

ri
es

G
ra

ph
7
0

1
0
5

[2
5
→

2
0
]

[2
4
→

1
9

]
7

1
7

H
ea

w
oo

dG
ra

ph
1
4

2
1

[6
→

5
]

[6
→

5
]

=
5

H
ig

m
an

Si
m

sG
ra

ph
1
0
0

1
1
0
0

[9
0
→

8
0

]
7

7
5

H
of

fm
an

G
ra

ph
1
6

3
2

[1
0
→

7
]

[8
→

7
]

7
6

H
of

fm
an

Si
ng

le
to

nG
ra

ph
5
0

1
7
5

[2
9
→

2
8

]
[2

8
→

2
7

]
[3

4
→

2
7

]
[2

9
→

2
7
]

=
2
7

ho
m

er
4
0
3

1
0
2
9

[3
6
→

3
5

]
[4

0
→

3
6

]
7

2
5

H
yp

er
St

ar
G

ra
ph

_1
0
_2

4
5

7
2

[1
4
→

8
]

=
8

Ic
os

ah
ed

ra
lG

ra
ph

1
2

3
0

[7
→

6
]

[7
→

6
]

[8
→

6
]

[7
→

6
]

[7
→

6
]

[7
→

6
]

=
6

in
it

hx
.i.

3
-p

p
1
9
6

2
1
8
5

[8
0
→

5
0

]
[8

0
→

5
0

]
7

2
6

in
it

hx
.i.

2
-p

p
2
2
0

4
1
6
5

[1
8
5
→

7
0
]

[4
9
→

4
5

]
[1

8
1
→

6
8
]

7
2
8

in
it

hx
.i.

2
2
9
9

5
1
6
2

[2
4
3
→

1
2
1

]
[2

4
3
→

8
6
]

7
2
8

in
it

hx
.i.

1
3
0
9

7
5
8
5

[2
5
5
→

1
6
9

]
[2

5
5
→

1
0
7

]
7

5
0

in
it

hx
.i.

2
-p

p
3
6
3

8
8
9
7

[4
9
→

4
7

]
7

3
1

in
it

hx
.i.

1
5
1
9

1
8
7
0
7

[2
9
5
→

8
9
]

[4
8
8
→

1
8
9

]
7

5
6

in
it

hx
.i.

2
5
5
8

1
3
9
7
9

[2
4
3
→

8
3
]

[5
2
7
→

1
8
9

]
7

3
1

in
it

hx
.i.

3
5
5
9

1
3
9
6
9

[2
4
4
→

8
3
]

[5
2
8
→

1
8
9

]
7

3
1

je
an

7
0

1
8
4

[8
→

7
]

[8
→

7
]

[1
0
→

8
]

=
7

je
an

7
7

2
5
4

[1
3
→

1
2
]

[1
3
→

1
2

]
7

9

[4
/1

0
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

re
su

lt
be

st

Jo
hn

so
nG

ra
ph

_1
0

_4
2
1
0

2
5
2
0

[1
5
7
→

1
3
1
]

[1
5
6
→

1
3
3
]

[1
5
3
→

1
2
9
]

[1
4
0
→

1
3
0
]

[1
7
4
→

1
2
9
]

[1
4
0
→

1
3
0
]

[1
5
9
→

1
3
0
]

[1
4
7
→

1
2
5

]
[1

5
2
→

1
2
8

]
[1

5
8
→

1
3
0

]
[1

5
4
→

1
2
9

]
7

1
1
8

K
it

te
llG

ra
ph

2
3

6
3

[8
→

7
]

3
8

K
ne

se
rG

ra
ph

_1
0
_2

4
5

6
3
0

[4
1
→

3
7
]

[4
0
→

3
9
]

[3
9
→

3
8

]
[4

2
→

3
7

]
[3

9
→

3
8

]
[3

9
→

3
8

]
7

3
5

K
ne

se
rG

ra
ph

_8
_3

5
6

2
8
0

[3
8
→

3
2
]

[3
5
→

3
2

]
[4

2
→

3
1

]
[3

5
→

3
2

]
3

3
2

La
dd

er
G

ra
ph

_2
0

4
0

5
8

[1
4
→

3
]

7
2

le
4
5
0
_1

5
a

4
3
4

4
3
1
5

[2
0
6
→

1
9
5
]

[1
9
8
→

1
9
6
]

[2
2
8
→

1
9
9
]

[2
1
1
→

1
8
6

]
[1

8
9
→

1
8
8

]
[1

9
1
→

1
7
8

]
[1

8
4
→

1
7
6

]
3

1
7
8

le
4
5
0
_1

5
a

4
5
0

8
1
6
8

[3
3
3
→

3
0
1
]

[3
1
4
→

3
0
1

]
[3

3
5
→

3
0
3

]
[3

1
5
→

3
1
1

]
[3

0
2
→

3
0
1

]
[3

0
6
→

2
9
7

]
[3

1
0
→

3
0
4

]
7

2
9
0

le
4
5
0
_1

5
a-

pp
4
3
1

4
2
5
6

[1
7
9
→

1
7
6
]

[2
2
6
→

1
9
9
]

[1
7
9
→

1
7
6
]

[2
5
9
→

1
9
1

]
[1

8
8
→

1
8
7

]
[1

8
6
→

1
8
5

]
[1

9
8
→

1
9
0

]
[1

8
9
→

1
7
8

]
3

1
7
9

le
4
5
0
_1

5
b

4
2
7

5
6
1
5

[2
5
5
→

2
3
7
]

[2
6
0
→

2
3
9

]
[2

5
8
→

2
4
4

]
[2

6
2
→

2
4
0

]
[2

4
6
→

2
3
7

]
[2

4
9
→

2
4
1

]
7

2
2
9

le
4
5
0
_1

5
b

4
5
0

8
1
6
9

[3
2
6
→

3
0
9
]

[3
2
0
→

3
0
4

]
[3

2
0
→

3
0
9

]
[3

1
4
→

3
1
0

]
[3

0
8
→

3
0
0

]
=

3
0
0

le
4
5
0
_1

5
c

4
4
5

1
1
7
7
6

[3
0
8
→

3
0
7
]

[3
2
2
→

3
0
4
]

[3
1
9
→

3
0
5

]
[3

1
9
→

3
0
6

]
[3

1
8
→

3
0
3

]
[3

0
8
→

3
0
5

]
[3

1
1
→

3
0
5

]
[3

1
2
→

3
0
8

]
7

3
0
0

le
4
5
0
_1

5
c

4
5
0

1
6
6
8
0

[4
0
1
→

3
8
4
]

[4
0
0
→

3
8
3

]
[3

9
1
→

3
8
4

]
[3

8
3
→

3
7
9

]
[3

8
6
→

3
8
1

]
[3

8
3
→

3
8
1

]
7

3
7
3

le
4
5
0
_1

5
d

4
4
7

9
2
1
8

[3
0
0
→

2
5
8
]

[2
3
2
→

2
3
1

]
[2

5
1
→

2
4
1

]
[2

6
0
→

2
4
9

]
3

2
3
2

le
4
5
0
_1

5
d

4
5
0

1
6
7
5
0

[3
9
7
→

3
8
3
]

[3
9
8
→

3
8
4

]
[3

8
6
→

3
8
4

]
[3

8
3
→

3
8
0

]
[3

8
9
→

3
8
3

]
7

3
7
5

le
4
5
0
_2

5
a

4
2
2

5
5
6
5

[2
2
4
→

2
0
1
]

[2
1
1
→

2
0
3

]
[2

0
7
→

2
0
3

]
[2

0
8
→

2
0
4

]
[2

0
2
→

2
0
1

]
7

1
9
4

le
4
5
0
_2

5
a

4
5
0

8
2
6
0

[3
0
1
→

2
9
0
]

[2
7
9
→

2
5
5

]
[2

7
0
→

2
5
7

]
[2

6
5
→

2
5
9

]
[2

5
9
→

2
4
7

]
[2

6
8
→

2
5
9

]
3

2
5
4

le
4
5
0
_2

5
a-

pp
4
1
3

5
5
6
9

[1
9
8
→

1
9
7
]

[2
2
5
→

2
0
1
]

[1
9
8
→

1
9
7
]

[2
1
1
→

2
0
5

]
[2

0
8
→

2
0
4

]
[2

0
7
→

2
0
3

]
[2

0
5
→

2
0
4

]
3

1
9
8

le
4
5
0
_2

5
b

4
2
3

4
2
9
5

[2
3
3
→

1
7
5
]

[1
8
3
→

1
8
0

]
[1

7
3
→

1
6
1

]
[2

0
1
→

1
9
1

]
[1

6
5
→

1
6
1

]
[1

6
2
→

1
5
9

]
[1

7
2
→

1
6
7

]
7

1
4
6

le
4
5
0
_2

5
b

4
5
0

8
2
6
3

[2
6
7
→

2
6
5
]

[3
1
7
→

2
6
9
]

[2
6
7
→

2
6
5
]

[2
6
1
→

2
6
0

]
[2

9
3
→

2
6
2

]
[2

9
1
→

2
6
8

]
[2

6
2
→

2
5
6

]
[2

6
6
→

2
4
8

]
3

2
6
1

le
4
5
0
_2

5
b-

pp
4
1
5

4
2
8
0

[2
3
7
→

1
9
3
]

[1
8
3
→

1
7
6

]
[1

6
7
→

1
6
2

]
[2

0
2
→

1
9
0

]
[1

6
0
→

1
5
5

]
[1

6
0
→

1
5
9

]
7

1
5
2

le
4
5
0
_2

5
c

4
4
2

9
5
8
9

[3
0
2
→

2
4
5
]

[2
2
5
→

2
2
0

]
[3

2
0
→

2
3
2

]
[3

0
3
→

2
5
0

]
[2

3
7
→

2
3
2

]
[2

4
2
→

2
3
3

]
7

2
1
5

le
4
5
0
_2

5
c

4
5
0

1
7
3
4
3

[3
8
3
→

3
6
4

]
[3

6
8
→

3
5
8

]
[3

6
5
→

3
5
6

]
[3

7
0
→

3
6
3

]
3

3
6
0

le
4
5
0
_2

5
d

4
4
4

1
2
1
6
9

[2
9
7
→

2
9
4
]

[3
0
3
→

2
9
4
]

[2
9
0
→

2
8
9
]

[3
1
8
→

2
9
6
]

[2
9
0
→

2
8
9
]

[2
9
7
→

2
9
4
]

[3
0
1
→

2
8
9

]
[3

1
8
→

3
0
5

]
[3

2
8
→

3
0
1

]
[2

9
7
→

2
9
1

]
[3

0
9
→

2
9
9

]
[3

0
6
→

2
9
3

]
3

2
9
0

le
4
5
0
_2

5
d

4
5
0

1
7
4
2
5

[3
7
4
→

3
6
9
]

[3
8
3
→

3
6
9
]

[3
6
3
→

3
5
9

]
[3

8
0
→

3
6
1

]
[3

7
7
→

3
6
3

]
[3

7
8
→

3
6
4

]
[3

7
2
→

3
5
6

]
3

3
6
3

le
4
5
0
_5

a
4
3
8

3
0
1
8

[2
2
5
→

2
1
1
]

[2
3
6
→

1
8
9

]
[2

1
3
→

2
0
5

]
[1

8
2
→

1
7
6

]
[1

9
0
→

1
8
5

]
3

1
7
7

le
4
5
0
_5

a
4
5
0

5
7
1
4

[3
5
9
→

3
1
4
]

[3
2
7
→

3
1
6

]
[3

4
8
→

3
1
5

]
[3

2
5
→

3
1
0

]
[3

2
3
→

3
1
6

]
[3

2
4
→

3
1
0

]
[3

1
4
→

3
0
1

]
3

3
1
4

le
4
5
0
_5

b
4
3
5

2
9
4
9

[2
2
3
→

2
1
1
]

[1
9
2
→

1
7
8
]

[2
4
9
→

1
8
5

]
[1

9
8
→

1
9
5

]
[2

0
9
→

1
9
4

]
[1

9
6
→

1
9
1

]
[1

8
9
→

1
8
2

]
[1

9
7
→

1
8
5

]
3

1
8
0

le
4
5
0
_5

b
4
5
0

5
7
3
4

[3
5
4
→

3
1
9
]

[3
2
8
→

3
2
3

]
[3

4
1
→

3
1
1

]
[3

2
6
→

3
1
9

]
[3

1
4
→

3
1
0

]
[3

0
5
→

2
9
2

]
3

3
0
5

le
4
5
0
_5

c
4
4
0

5
1
7
7

[2
5
4
→

2
3
9
]

[2
7
4
→

2
2
3

]
[3

0
0
→

2
4
0

]
[2

1
8
→

2
0
8

]
7

2
0
3

le
4
5
0
_5

c
4
5
0

9
8
0
3

[3
9
1
→

3
4
9
]

[3
6
7
→

3
4
9

]
[3

7
7
→

3
5
3

]
[3

6
2
→

3
4
4

]
7

2
9
6

[5
/1

0
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

re
su

lt
be

st

le
4
5
0
_5

d
4
4
4

6
8
4
5

[3
1
0
→

2
9
1

]
[3

0
7
→

2
8
4

]
[3

0
4
→

2
9
2
]

[2
9
0
→

2
8
9
]

[2
7
2
→

2
7
1
]

[2
7
1
→

2
6
1
]

[2
5
7
→

2
5
3
]

7
2
5
2

le
4
5
0
_5

d
4
5
0

9
7
5
7

[3
9
6
→

3
5
0

]
[3

6
5
→

3
4
9

]
[3

8
7
→

3
4
7
]

[3
6
1
→

3
4
1
]

7
2
9
0

Lj
ub

lja
na

G
ra

ph
1
1
2

1
6
8

[3
5
→

2
8

]
[3

4
→

2
7

]
7

2
4

M
cG

ee
G

ra
ph

2
4

3
6

[1
0
→

7
]

[9
→

8
]

=
7

M
er

ed
it

hG
ra

ph
7
0

1
4
0

[1
5
→

1
3

]
7

7

m
ile

s1
0
0
0

1
2
8

1
5
9
4

[6
3
→

4
9

]
[7

8
→

5
4

]
7

2
7

m
ile

s1
0
0
0

1
2
8

3
2
1
6

[7
0
→

5
4

]
[7

8
→

5
8

]
[7

6
→

6
3

]
7

5
0

m
ile

s1
5
0
0

1
2
8

5
1
9
8

[8
3
→

8
0

]
[8

3
→

8
1
]

[9
1
→

8
0

]
[8

2
→

7
7

]
[8

3
→

8
0

]
[8

3
→

7
8

]
[8

3
→

7
7

]
[8

3
→

7
8

]
[8

7
→

8
1

]
[1

0
4
→

7
7

]
[1

0
4
→

7
7

]
=

7
7

m
ile

s2
5
0

7
7

1
9
6

[1
2
→

9
]

[1
1
→

9
]

7
8

m
ile

s2
5
0

9
2

3
2
7

[1
4
→

1
1

]
[1

1
→

1
0

]
[1

1
→

1
0

]
7

9

m
ile

s5
0
0

1
2
8

1
1
7
0

[4
6
→

4
1

]
[2

6
→

2
5

]
[3

6
→

3
0

]
[3

6
→

3
1

]
7

2
3

m
ile

s7
5
0

1
2
5

1
2
5
1

[4
3
→

4
0

]
[3

5
→

3
4

]
7

2
8

m
ile

s7
5
0

1
2
8

2
1
1
3

[4
3
→

4
2

]
[6

6
→

4
9

]
[4

3
→

4
2

]
[5

8
→

5
6

]
[5

3
→

5
2

]
[5

3
→

4
9

]
7

3
8

m
ul

so
l.i

.5
-p

p
7
7

9
7
4

[4
1
→

3
6

]
[4

2
→

3
0

]
[3

4
→

2
9

]
[4

2
→

3
4

]
=

2
9

m
ul

so
l.i

.4
-p

p
7
8

1
0
6
2

[4
3
→

3
5

]
[4

6
→

3
4

]
[3

9
→

3
3

]
[4

6
→

3
4

]
[3

4
→

3
1

]
7

2
9

m
ul

so
l.i

.1
1
0
0

1
7
2
5

[5
0
→

4
6

]
[5

0
→

4
3

]
[5

4
→

4
8

]
7

4
2

m
ul

so
l.i

.2
1
0
1

1
2
3
3

[5
0
→

4
2

]
[5

0
→

3
9

]
7

2
9

m
ul

so
l.i

.5
1
0
2

1
2
2
4

[5
2
→

3
8

]
[5

2
→

3
8

]
7

2
8

m
ul

so
l.i

.3
1
0
2

1
2
3
3

[4
7
→

3
8

]
[4

7
→

3
8

]
7

2
9

m
ul

so
l.i

.5
-p

p
1
1
9

2
5
5
6

[5
4
→

5
1

]
[3

8
→

3
7

]
[3

8
→

3
7

]
7

3
1

m
ul

so
l.i

.1
1
3
8

3
9
2
5

[7
0
→

6
2

]
[1

0
7
→

7
3

]
7

5
0

m
ul

so
l.i

.2
1
7
3

3
8
8
5

[7
7
→

6
1

]
[1

4
2
→

7
9

]
7

3
2

m
ul

so
l.i

.3
1
7
4

3
9
1
6

[7
7
→

6
1

]
[1

4
3
→

7
6

]
7

3
2

m
ul

so
l.i

.4
1
7
5

3
9
4
6

[7
7
→

6
1

]
[1

4
4
→

6
9

]
7

3
2

m
ul

so
l.i

.5
1
7
6

3
9
7
3

[7
7
→

6
1

]
[1

4
5
→

7
9

]
7

3
1

m
un

in
3

1
0
4
4

1
7
4
5

[5
2
→

5
0

]
[5

2
→

5
0

]
7

7

m
yc

ie
l3

1
1

2
0

[6
→

5
]

[6
→

5
]

=
5

m
yc

ie
l4

2
3

7
1

[1
5
→

1
1

]
[1

4
→

1
1

]
[1

6
→

1
1

]
7

1
0

m
yc

ie
l5

4
6

1
3
9

[2
2
→

1
5

]
[1

5
→

1
4

]
[2

3
→

1
4

]
7

1
2

m
yc

ie
l5

4
7

2
3
6

[3
4
→

2
3

]
[3

7
→

2
2

]
7

1
9

[6
/1

0
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

re
su

lt
be

st

m
yc

ie
l6

9
4

5
5
0

[6
0
→

4
2

]
[4

1
→

4
0

]
[6

1
→

4
0

]
7

2
9

m
yc

ie
l6

9
5

7
5
5

[7
6
→

4
5

]
[4

3
→

3
9

]
[8

1
→

4
5

]
7

3
5

m
yc

ie
l7

1
9
1

2
3
6
0

[1
6
1
→

9
9

]
[8

5
→

8
3

]
[1

7
1
→

9
7

]
[7

9
→

7
6
]

7
6
6

N
au

ru
G

ra
ph

2
4

3
6

[7
→

6
]

[1
2
→

7
]

[7
→

6
]

[9
→

8
]

=
6

N
on

is
ot

ro
pi

cO
rt

ho
go

na
lP

ol
ar

G
ra

ph
_3

_5
1
5

6
0

[1
1
→

1
0

]
[1

1
→

1
0

]
[1

1
→

1
0

]
[1

1
→

1
0

]
[1

1
→

1
0

]
[1

1
→

1
0

]
[1

1
→

1
0

]
[1

1
→

1
0

]
[1

1
→

1
0
]

=
1
0

N
on

is
ot

ro
pi

cU
ni

ta
ry

Po
la

rG
ra

ph
_3

_3
6
3

1
0
0
8

[5
5
→

5
4

]
[5

5
→

5
4

]
[5

5
→

5
4

]
[5

5
→

5
4

]
[5

6
→

5
4

]
[5

5
→

5
4

]
[5

8
→

5
4

]
=

5
4

O
dd

G
ra

ph
_4

3
5

7
0

[1
8
→

1
4

]
[1

8
→

1
4

]
7

1
2

oe
so

ca
+-

pp
1
4

7
5

[1
3
→

1
1
]

=
1
1

Pa
le

yG
ra

ph
_1

7
1
7

6
8

[1
3
→

1
2

]
[1

3
→

1
2

]
[1

2
→

1
1

]
=

1
1

Pa
pp

us
G

ra
ph

1
8

2
7

[8
→

6
]

[7
→

6
]

=
6

pa
th

fin
de

r-
pp

1
2

4
3

[8
→

7
]

7
6

Po
us

si
nG

ra
ph

1
5

3
9

[7
→

6
]

[7
→

6
]

=
6

qu
ee

n1
0
_1

0
1
0
0

1
4
7
0

[8
1
→

8
0

]
[8

4
→

7
8

]
[7

9
→

7
8

]
[8

4
→

8
1

]
[7

9
→

7
8

]
[8

3
→

7
9

]
[9

0
→

7
9

]
[7

9
→

7
8

]
[8

3
→

8
1

]
[8

3
→

7
9

]
[8

3
→

7
9
]

7
7
7

qu
ee

n1
1
_1

1
1
2
1

1
2
6
5

[6
6
→

6
3

]
[6

3
→

6
0

]
[7

7
→

6
1

]
7

5
4

qu
ee

n1
1
_1

1
1
2
1

1
9
8
0

[1
0
0
→

9
6
]

[1
0
1
→

9
6
]

[1
0
3
→

9
7
]

[1
0
4
→

9
5
]

[1
0
1
→

9
8
]

[1
0
5
→

9
6

]
[1

0
1
→

9
5

]
[9

9
→

9
8
]

7
9
3

qu
ee

n1
2
_1

2
1
4
4

1
7
5
0

[8
2
→

8
1

]
[7

3
→

6
8

]
[8

4
→

7
4

]
[7

6
→

6
9

]
[7

7
→

7
3

]
3

7
1

qu
ee

n1
2
_1

2
1
4
4

2
5
9
6

[1
2
0
→

1
1
7

]
[1

2
0
→

1
1
6

]
[1

2
4
→

1
1
6

]
[1

2
7
→

1
1
4

]
[1

2
2
→

1
1
6

]
[1

3
2
→

1
1
6
]

[1
2
2
→

1
1
6
]

[1
2
1
→

1
1
6
]

[1
2
3
→

1
1
6
]

7
1
1
2

qu
ee

n1
3
_1

3
1
6
9

2
1
6
5

[8
1
→

7
7

]
[6

9
→

6
7

]
[8

0
→

7
0

]
[7

1
→

7
0

]
[7

2
→

6
9

]
7

6
5

qu
ee

n1
3
_1

3
1
6
9

3
3
2
8

[1
4
5
→

1
3
4

]
[1

4
6
→

1
3
8

]
[1

4
8
→

1
3
8

]
[1

4
8
→

1
3
2

]
[1

4
7
→

1
3
9

]
[1

5
7
→

1
3
6
]

[1
4
1
→

1
3
4
]

[1
3
9
→

1
3
6
]

[1
4
6
→

1
3
7
]

7
1
3
1

qu
ee

n1
4
_1

4
1
9
6

3
5
2
6

[1
5
1
→

1
4
3

]
[1

5
1
→

1
4
3

]
[1

5
4
→

1
4
3

]
[1

5
7
→

1
4
3

]
[1

5
1
→

1
4
3

]
[1

5
1
→

1
4
2
]

[1
6
5
→

1
4
2
]

[1
5
1
→

1
4
4
]

[1
5
4
→

1
4
3
]

[1
5
5
→

1
4
4
]

7
1
4
1

qu
ee

n1
4
_1

4
1
9
6

4
1
8
6

[1
6
9
→

1
6
0

]
[1

6
6
→

1
6
1

]
[1

7
3
→

1
6
0

]
[1

7
2
→

1
6
3

]
[1

6
8
→

1
6
0

]
[1

8
2
→

1
6
2
]

[1
6
8
→

1
5
7
]

[1
6
7
→

1
6
0
]

[1
6
7
→

1
5
8
]

7
1
5
5

qu
ee

n1
5
_1

5
2
2
5

3
4
6
7

[1
0
9
→

1
0
2

]
[1

1
0
→

1
0
0

]
[1

1
0
→

1
0
4

]
[1

0
6
→

1
0
2

]
[1

2
2
→

1
0
4

]
[1

0
6
→

1
0
2

]
[1

0
9
→

1
0
2

]
[1

0
6
→

1
0
1
]

[1
1
0
→

1
0
3
]

[1
1
0
→

1
0
2
]

[1
1
4
→

1
0
4
]

[1
1
0
→

1
0
2
]

3
1
0
6

qu
ee

n1
5
_1

5
2
2
5

5
1
8
0

[1
8
8
→

1
8
7

]
[1

9
3
→

1
8
8

]
[1

9
5
→

1
8
6

]
[1

8
3
→

1
8
0

]
[2

0
0
→

1
8
3

]
[1

8
3
→

1
8
0

]
[1

9
5
→

1
8
3

]
[2

0
3
→

1
8
5
]

[1
9
0
→

1
8
9
]

[1
9
3
→

1
8
1
]

[1
9
4
→

1
8
7
]

7
1
7
5

qu
ee

n1
6
_1

6
2
5
6

4
3
8
2

[1
4
1
→

1
3
2

]
[1

3
9
→

1
3
4

]
[1

4
0
→

1
3
3

]
[1

5
2
→

1
3
4

]
[1

4
1
→

1
3
2

]
[1

2
8
→

1
2
7
]

[1
4
1
→

1
3
4
]

[1
3
4
→

1
2
8
]

[1
4
2
→

1
3
2
]

[1
4
1
→

1
3
2
]

[1
3
9
→

1
3
1
]

3
1
2
8

qu
ee

n1
6
_1

6
2
5
6

6
3
2
0

[2
2
8
→

2
1
4

]
[2

2
4
→

2
1
3

]
[2

2
8
→

2
1
2

]
[2

1
8
→

2
1
0

]
[2

3
1
→

2
1
1

]
[2

1
8
→

2
1
0

]
[2

2
6
→

2
1
4

]
[2

4
0
→

2
0
9
]

[2
2
4
→

2
1
4
]

[2
1
7
→

2
1
1
]

[2
2
1
→

2
0
8
]

7
2
0
4

qu
ee

n5
_5

2
5

1
0
6

[1
3
→

1
2

]
7

1
1

qu
ee

n5
_5

2
5

1
6
0

[1
9
→

1
8

]
[2

0
→

1
8

]
=

1
8

qu
ee

n6
_6

3
6

2
1
7

[2
1
→

2
0

]
[2

1
→

2
0

]
[2

0
→

1
9

]
[2

2
→

2
0

]
[2

1
→

2
0

]
[2

2
→

2
0

]
=

1
9

qu
ee

n6
_6

3
6

2
9
0

[2
8
→

2
7

]
[2

8
→

2
7

]
[2

8
→

2
7

]
[2

9
→

2
7

]
[3

0
→

2
7

]
[2

7
→

2
6

]
[2

8
→

2
7

]
[2

8
→

2
7
]

=
2
6

qu
ee

n7
_7

4
9

3
8
8

[3
1
→

3
0

]
[3

1
→

3
0

]
[3

4
→

3
0

]
[3

1
→

3
0

]
[3

4
→

3
0

]
[3

1
→

3
0

]
[3

1
→

2
9

]
[3

2
→

3
0

]
[3

2
→

3
0
]

3
3
0

[7
/1

0
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

re
su

lt
be

st

qu
ee

n7
_7

4
9

4
7
6

[3
8
→

3
7

]
[3

8
→

3
7
]

[4
0
→

3
6

]
[4

1
→

3
7
]

[4
0
→

3
8

]
[3

7
→

3
6

]
[3

8
→

3
6

]
[3

9
→

3
7

]
[3

9
→

3
8

]
=

3
6

qu
ee

n8
_1

2
9
6

1
2
6
1

[7
1
→

6
6

]
[7

0
→

6
4
]

[7
4
→

6
5

]
[6

8
→

6
4

]
[7

5
→

6
5
]

[6
8
→

6
4
]

[7
1
→

6
6

]
[6

9
→

6
4

]
[7

6
→

6
5

]
[7

5
→

6
3

]
[7

0
→

6
3

]
[7

5
→

6
5

]
[7

4
→

6
6

]
3

6
8

qu
ee

n8
_1

2
9
6

1
3
6
8

[7
8
→

7
1

]
[7

6
→

7
1
]

[7
9
→

7
0

]
[7

2
→

7
1

]
[8

1
→

7
3
]

[7
2
→

7
1
]

[8
0
→

7
2

]
[7

2
→

7
1

]
[8

3
→

7
2

]
[7

7
→

7
2

]
[7

8
→

7
1

]
[7

9
→

7
1

]
[8

0
→

7
0

]
3

7
2

qu
ee

n8
_8

6
4

7
2
8

[5
0
→

4
8

]
[5

3
→

5
0

]
[5

5
→

4
8
]

[5
6
→

5
0

]
[4

9
→

4
8

]
[5

2
→

4
9

]
[5

1
→

4
9

]
[5

0
→

4
9

]
7

4
7

qu
ee

n9
_9

8
1

9
6
8

[5
9
→

5
6

]
[6

1
→

5
9
]

[6
1
→

5
8

]
[6

2
→

5
7
]

[5
9
→

5
6

]
[7

1
→

5
7

]
[6

2
→

5
9

]
[6

2
→

5
9

]
[6

2
→

5
7

]
[6

1
→

5
7

]
3

5
7

qu
ee

n9
_9

8
1

1
0
5
6

[6
6
→

6
1
]

[6
7
→

6
3

]
[6

5
→

6
3

]
[6

8
→

6
3
]

[6
5
→

6
3
]

[6
3
→

6
2

]
[7

2
→

6
3

]
[6

6
→

6
2

]
[6

5
→

6
4

]
[6

6
→

6
4

]
=

6
1

R
an

do
m

Ba
ra

ba
si

A
lb

er
t_

1
0
0
_2

1
0
0

1
9
6

[2
2
→

2
0

]
7

1
2

R
an

do
m

Ba
ra

ba
si

A
lb

er
t_

1
0
0
_5

1
0
0

4
7
5

[4
9
→

4
3

]
[4

6
→

4
0

]
[4

5
→

4
4

]
[3

9
→

3
8

]
7

3
5

R
an

do
m

Bi
pa

rt
it

e_
1
0

_5
0
_3

6
0

1
3
8

[1
3
→

1
2

]
[1

9
→

1
3

]
7

9

R
an

do
m

Bi
pa

rt
it

e_
2
5

_5
0
_1

6
9

1
1
4

[1
8
→

1
3

]
[1

7
→

1
3

]
7

9

R
an

do
m

Bi
pa

rt
it

e_
2
5

_5
0
_3

7
5

3
6
8

[3
7
→

3
2

]
[3

4
→

3
2

]
[3

3
→

3
0

]
7

2
3

R
an

do
m

Bo
un

de
dT

ol
er

an
ce

G
ra

ph
_6

0
6
0

1
1
6
8

[4
0
→

3
8

]
[4

3
→

3
5

]
[4

2
→

3
8

]
[4

4
→

3
8

]
7

3
0

R
an

do
m

Bo
un

de
dT

ol
er

an
ce

G
ra

ph
_8

0
8
0

1
7
1
7

[4
6
→

4
1
]

[3
6
→

3
5

]
[4

8
→

4
7

]
[4

8
→

4
6

]
7

3
2

R
an

do
m

G
N

M
_2

5
0
_1

0
0
0

2
5
0

1
0
0
0

[1
3
0
→

1
0
7
]

[1
2
1
→

1
1
3

]
[1

3
4
→

1
1
8

]
[1

1
8
→

1
1
0
]

7
1
0
5

R
an

do
m

G
N

M
_5

0
0
_5

0
0

4
0
0

4
8
3

[3
4
→

3
2
]

[3
2
→

2
8

]
[3

8
→

3
5

]
7

2
2

R
an

do
m

H
ol

m
eK

im
_7

0
0

_2
_2

7
0
0

1
3
9
6

[1
1
5
→

1
0
3

]
[9

6
→

8
6

]
[1

2
5
→

1
1
0

]
7

5
9

R
an

do
m

N
ew

m
an

W
at

ts
St

ro
ga

tz
_1

0
0

_5
_3

1
0
0

2
6
9

[3
4
→

2
8
]

7
2
2

R
an

do
m

N
ew

m
an

W
at

ts
St

ro
ga

tz
_2

5
0

_1
0

_3
2
5
0

1
6
3
6

[1
5
9
→

1
1
2
]

[1
2
3
→

1
1
3

]
[1

0
7
→

1
0
6

]
[1

2
8
→

1
2
0

]
[1

1
2
→

1
1
1

]
[1

1
4
→

1
0
6

]
7

1
0
2

R
an

do
m

Tr
ia

ng
ul

at
io

n_
8
0
0

8
0
0

2
3
9
4

[7
0
→

6
8

]
[1

9
6
→

1
2
0
]

[7
0
→

6
8

]
7

5
0

R
in

ge
dT

re
e_

6
6
3

1
2
3

[1
9
→

1
2
]

[1
7
→

1
5

]
7

1
0

R
in

ge
dT

re
e_

8
2
5
5

5
0
7

[6
8
→

5
1
]

[6
5
→

4
1

]
7

1
5

R
K

T
_1

0
0
_8

0
_3

0
_0

1
0
0

5
0
7

[3
9
→

3
4

]
[3

5
→

3
3

]
7

2
7

R
K

T
_1

0
0
_9

0
_3

0
_0

9
8

2
5
4

[2
9
→

2
8

]
7

2
2

R
K

T
_2

0
_4

0
_1

0
_0

2
0

8
7

[1
2
→

1
0

]
[1

2
→

1
0

]
[1

2
→

1
0

]
7

9

R
K

T
_2

0
_4

0
_1

0
_1

2
0

8
7

[1
2
→

1
1

]
[1

2
→

1
0

]
=

1
0

R
K

T
_2

0
_5

0
_1

0
_0

2
0

7
3

[1
1
→

9
]

=
9

R
K

T
_2

0
_5

0
_1

0
_1

2
0

7
3

[1
1
→

8
]

[1
1
→

1
0

]
[1

2
→

9
]

[1
0
→

9
]

[1
0
→

9
]

=
8

R
K

T
_2

0
_6

0
_1

0
_0

2
0

5
8

[9
→

8
]

[9
→

8
]

7
7

R
K

T
_2

0
_6

0
_1

0
_1

2
0

5
8

[1
2
→

8
]

=
8

R
K

T
_2

0
_7

0
_1

0
_1

2
0

4
4

[1
0
→

9
]

7
6

[8
/1

0
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

re
su

lt
be

st

R
K

T_
2
0

_8
0
_1

0
_0

2
0

2
9

[5
→

4
]

=
4

R
K

T_
2
0

_8
0
_1

0
_1

1
7

2
9

[6
→

5
]

=
5

R
K

T_
3
0
0
_7

5
_3

0
_0

3
0
0

2
1
3
4

[1
3
8
→

4
2
]

[5
0
→

3
8

]
[9

1
→

3
7

]
7

2
9

R
K

T_
3
0
0
_9

0
_3

0
_0

2
9
3

8
5
4

[7
1
→

3
5

]
[3

8
→

3
5

]
[4

6
→

4
1

]
7

2
7

R
K

T_
5
0
0
_8

0
_3

0
_0

4
9
9

2
9
0
7

[1
1
1
→

4
6
]

[1
2
0
→

4
5

]
7

2
9

Sc
hl

ae
fli

G
ra

ph
2
7

2
1
6

[2
3
→

2
1

]
[2

3
→

2
1

]
[2

3
→

2
1

]
[2

3
→

2
1
]

[2
3
→

2
1

]
[2

2
→

2
1

]
[2

3
→

2
1
]

=
2
1

sc
ho

ol
1

3
7
0

1
0
2
9
0

[2
2
9
→

1
8
6
]

[2
0
1
→

1
8
6
]

7
1
3
2

sc
ho

ol
1

3
7
7

1
9
0
9
1

[2
7
1
→

2
7
0

]
[2

6
6
→

2
5
0
]

[3
0
3
→

2
5
5
]

[3
1
2
→

2
4
9
]

[2
4
4
→

2
3
8
]

[2
5
9
→

2
3
9
]

7
2
2
5

sc
ho

ol
1

-p
p

3
5
2

1
2
9
2
9

[2
3
4
→

2
0
1
]

[2
7
0
→

1
9
8
]

[2
3
6
→

2
1
6
]

[2
2
9
→

1
8
7
]

[2
0
8
→

1
9
3
]

[2
0
9
→

1
9
4
]

7
1
8
1

sc
ho

ol
1

_n
sh

3
3
7

7
6
9
6

[2
2
6
→

1
6
1
]

[1
2
6
→

1
2
1
]

7
9
0

sc
ho

ol
1

_n
sh

3
4
4

1
4
6
0
8

[2
1
4
→

2
1
3

]
[2

3
6
→

2
1
9

]
[2

6
3
→

2
2
6
]

[2
1
4
→

2
1
3

]
[2

3
7
→

2
1
3
]

[2
6
9
→

2
0
0
]

[2
6
6
→

2
0
2
]

[2
1
8
→

2
0
7
]

[2
4
2
→

2
2
9
]

[2
3
2
→

2
0
7
]

3
2
0
4

sc
ho

ol
1

_n
sh

-p
p

3
2
4

7
3
8
7

[2
0
4
→

1
5
2
]

[1
5
4
→

1
3
6
]

[1
8
0
→

1
6
5
]

7
9
8

sh
ip

-s
hi

p-
pp

3
0

7
7

[1
3
→

1
0

]
7

8

Sh
ri

kh
an

de
G

ra
ph

1
6

4
8

[1
0
→

9
]

[1
0
→

9
]

[1
0
→

9
]

[1
0
→

9
]

[1
0
→

9
]

[1
0
→

9
]

=
9

Si
m

sG
ew

ir
tz

G
ra

ph
5
6

2
8
0

[4
0
→

3
6
]

[3
7
→

3
5

]
[4

5
→

3
6

]
7

3
3

Sq
ua

re
dS

ke
w

H
ad

am
ar

dM
at

ri
xG

ra
ph

_2
4
9

5
8
8

[4
4
→

4
1
]

[4
4
→

4
1

]
7

4
0

Sq
ua

re
dS

ke
w

H
ad

am
ar

dM
at

ri
xG

ra
ph

_3
1
2
1

3
6
3
0

[1
1
6
→

1
1
0
]

[1
1
7
→

1
1
1
]

[1
1
0
→

1
0
9
]

=
1
0
9

Sy
lv

es
te

rG
ra

ph
3
6

9
0

[2
0
→

1
7
]

[2
1
→

1
7

]
7

1
6

Sy
m

pl
ec

ti
cD

ua
lP

ol
ar

G
ra

ph
_4

_4
8
5

8
5
0

[7
2
→

6
8
]

[6
6
→

6
5

]
[8

0
→

6
7

]
[6

6
→

6
5

]
7

6
4

Sy
m

pl
ec

ti
cP

ol
ar

G
ra

ph
_4

_4
8
5

8
5
0

[7
7
→

6
6
]

[7
3
→

6
8

]
7

6
3

Sz
ek

er
es

Sn
ar

kG
ra

ph
5
0

7
5

[1
3
→

1
0
]

[1
1
→

1
0

]
[1

1
→

1
0

]
7

7

Ta
yl

or
Tw

og
ra

ph
D

es
ce

nd
an

tS
R

G
_3

2
7

1
3
5

[2
0
→

1
8

]
[2

0
→

1
9
]

[2
0
→

1
8
]

[2
0
→

1
9

]
[2

0
→

1
8

]
[2

2
→

2
0

]
[2

0
→

1
9

]
[2

0
→

1
9
]

7
1
7

Ta
yl

or
Tw

og
ra

ph
SR

G
_3

2
8

2
1
0

[2
5
→

2
2

]
=

2
2

To
ro

id
al

6
R

eg
ul

ar
G

ri
d2

dG
ra

ph
_4

_6
2
4

7
2

[1
1
→

1
0

]
[1

4
→

1
0
]

[1
2
→

1
0

]
[1

0
→

9
]

3
1
0

Tu
tt

e1
2
C

ag
e

1
2
6

1
8
9

[3
4
→

3
2
]

[3
4
→

3
1

]
7

2
4

w
at

er
3
2

1
2
3

[1
3
→

1
2
]

[1
6
→

1
1

]
[1

6
→

1
1
]

7
1
0

W
or

ld
M

ap
1
5
7

3
1
8

[1
1
→

7
]

[1
2
→

1
0

]
7

5

ze
ro

in
.i.

3
-p

p
4
9

6
5
1

[3
6
→

3
1

]
[3

1
→

3
0

]
[3

7
→

3
1
]

[3
6
→

3
1

]
[3

1
→

2
9

]
[3

2
→

3
1

]
[3

3
→

3
1

]
=

2
9

ze
ro

in
.i.

3
8
3

9
1
7

[3
7
→

3
5

]
[3

7
→

3
5

]
7

2
4

ze
ro

in
.i.

2
8
5

9
5
1

[4
1
→

3
1

]
[4

1
→

3
5

]
7

2
4

[9
/1

0
]

G
ra

ph
n

m
m

in
d

m
ul

t
am

d
m

in
f

be
ta

bm
f

m
m

d
le

xm
m

cs
m

cs
m

m
et

m
m

et
n

pa
rm

re
su

lt
be

st

ze
ro

in
.i.

1
1
2
6

4
1
0
0

[7
9
→

7
0

]
[9

6
→

5
8

]
[5

2
→

5
0
]

=
5
0

ze
ro

in
.i.

3
1
5
7

3
5
4
0

[1
2
3
→

8
5

]
[1

3
3
→

8
9
]

7
3
3

ze
ro

in
.i.

2
1
5
7

3
5
4
1

[1
2
3
→

8
5

]
[1

3
3
→

8
9
]

7
3
3

[1
0

/1
0

]

C
L I S T O F A U T H O R ’ S P U B L I C AT I O N S

Journal publications

2017 Matthew Farrell, Timothy D. Goodrich, Nathan Lemons, Felix Reidl, Fernan-
do Sánchez Villaamil, and Blair D. Sullivan. Hyperbolicity, degeneracy, and
expansion of random intersection graphs. To appear in Internet Mathematics.

Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Sebastian Ordyniak, Felix Reidl, Pe-
ter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. Kernelization
using structural parameters on sparse graph classes. Journal of Computer and Sys-
tem Sciences, 84:219–242, 2017.

2015 Aaron B. Adcock, Erik D. Demaine, Martin L. Demaine, Michael P. O’Brien, Felix
Reidl, Fernando Sánchez Villaamil, and Blair D. Sullivan. Zig-zag numberlink is
NP-complete. Journal of Information Processing, 23(3):239–245, 2015.

Conference and Workshop proceedings

2016 Pål Grønås Drange, Markus Sortland Dregi, Fedor V. Fomin, Stephan Kreutzer,
Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Felix Reidl, Fernando
Sánchez Villaamil, Saket Saurabh, Sebastian Siebertz, and Somnath Sikdar. Ker-
nelization and sparseness: the case of dominating set. In STACS, volume 47

of LIPIcs, pages 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016.

2015 Pål Grønås Drange, Felix Reidl, Fernando Sánchez Villaamil, and Somnath Sikdar.
Fast biclustering by dual parameterization. In IPEC, volume 43 of LIPIcs, pages
402–413. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

Matthew Farrell, Timothy D. Goodrich, Nathan Lemons, Felix Reidl, Fernando
Sánchez Villaamil, and Blair D. Sullivan. Hyperbolicity, degeneracy, and expan-
sion of random intersection graphs. In WAW, volume 9479 of Lecture Notes in
Computer Science, pages 29–41. Springer, 2015.

2014 Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar.
A faster parameterized algorithm for treedepth. In ICALP, volume 8572 of Lecture
Notes in Computer Science, pages 931–942. Springer, 2014.

172 C list of author’s publications

Jakub Gajarský, Jan Obdrzálek, Sebastian Ordyniak, Felix Reidl, Peter Rossmanith,
Fernando Sánchez Villaamil, and Somnath Sikdar. Finite integer index of path-
width and treewidth. In IPEC, volume 8894 of Lecture Notes in Computer Science,
pages 258–269. Springer, 2014.

2013 Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Sebastian Ordyniak, Felix Reidl, Pe-
ter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. Kernelization
using structural parameters on sparse graph classes. In ESA, volume 8125 of
Lecture Notes in Computer Science, pages 529–540. Springer, 2013.

2011 Ling-Ju Hung, Ton Kloks, and Fernando Sánchez Villaamil. Black-and-white
threshold graphs. In CATS, volume 119 of CRPIT, pages 121–130. Australian
Computer Society, 2011.

Philipp Kranen, Felix Reidl, Fernando Sánchez Villaamil, and Thomas Seidl. Hier-
archical clustering for real-time stream data with noise. In SSDBM, volume 6809

of Lecture Notes in Computer Science, pages 405–413. Springer, 2011.

Preprints

2016 Li-Hsuan Chen, Felix Reidl, Peter Rossmanith, and Fernando Sánchez Villaamil.
Width, depth and space. arXiv e-prints, 2016, arXiv:1607.00945.

Felix Reidl, Fernando Sánchez Villaamil, and Konstantinos Stavropoulos. Char-
acterising bounded expansion by neighbourhood complexity. arXiv e-prints, 2016,
arXiv:1603.09532.

2014 Erik D. Demaine, Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, Som-
nath Sikdar, and Blair D. Sullivan. Structural sparsity of complex networks: Ran-
dom graph models and linear algorithms. arXiv e-prints, 2014, arXiv:1406.2587.

	Dedication
	Abstract
	Zusammenfassung
	Preface
	Acknowledgments
	Contents

	Introduction
	1 Treedepth by any other name
	2 Organization and Summary of Results
	3 Preliminaries

	Computing Treedepth
	4 Computing Treedepth in Linear Time
	5 Nice Treedepth Decompositions and Restrictions
	6 Dynamic Programming Algorithm
	7 Simpler Dynamic Programming Algorithm
	8 Simple Algorithm
	9 Fast Algorithm
	10 Treedepth and Chordal graphs
	11 Conclusion

	Branching Versus Dynamic Programming
	12 Branching, Dynamic Programming, Treedepth and Treewidth
	13 Myhill–Nerode families
	14 Space lower bounds for dynamic programming
	15 Dominating Set with O(d3 logd + d logn) space
	16 Conclusion

	Motif Counting on Random Intersection Graphs
	17 Sparsity of Complex Networks
	18 Random Intersection Graphs and Bounded Expansion
	19 Structural sparsity
	20 Experimental evaluation
	21 Counting graphlets and subgraphs
	22 Conclusion

	Treewidth from Treedepth
	23 Starting from Treedepth
	24 Heuristic
	25 Experiments
	26 Conclusion

	Conclusion
	27 Consider Treedepth

	Bibliography
	Appendix
	A Problems
	B Experimental Result of Treewidth Heuristics
	C List of Author's publications

