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Abstract

Inter alia, Lebesgue-style integration plays a major role in advanced prob-
ability. We formalize a significant part of its theory in Higher Order Logic
using the generic interactive theorem prover Isabelle/Isar. This involves con-
cepts of elementary measure theory, real-valued random variables as Borel-
measurable functions, and a stepwise inductive definition of the integral
itself. Building on previous work about formal verification of probabilistic
algorithms, we exhibit an example application in this domain; another prim-
itive for randomized functional programming is developed to this end. All
proofs are carried out in human readable style using the Isar language.
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Chapter 1

Prologue

Verifying more examples of probabilistic algorithms will inevitably
necessitate more formalization; in particular we already can see
that a theory of expectation will be required to prove the cor-
rectness of probabilistic quicksort. If we can continue our policy
of formalizing standard theorems of mathematics to aid verifica-
tions, then this will provide long-term benefits to many users of
the HOL theorem prover.

This quote from the Future Work section of Joe Hurd’s PhD thesis “Formal
Verification of Probabilistic Algorithms” ([11] p. 131) served as a starting
point for the following work. A theory of expectation is nothing but a the-
ory of integration in its probability theoretic underpinnings. And though
the proof of correctness for probabilistic quicksort might not need integra-
tion, an average runtime analysis certainly will. We do not undertake such
analysis here, as I deem it too complex an example for the application of
the theory that is the main part of this thesis. Still, an application to prob-
abilistic algorithms is presented in chapter 4, even if in the end we prove
a combinatorial statement. Also, the formalization takes place in a Higher
Order Logic environment, even though we do not use the HOL theorem
prover [8] but the Isabelle/Isar HOL instantiation [16, 25].

1.1 Formalized mathematics

John Harrison has written a treatise [9] entitled precisely like this section,
and here we merely subsume a few arguments that support the idea. For
a more detailed discussion, including a history of formal mathematics, the
interested reader is referred to the original paper.

One of the most immediate applications crossing the mind is formal verifica-
tion of technical systems. This means that the requirements for a technical
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design, like an algorithm or hardware architecture, are written down in a
formal language — a process known as specification — and the final product
is then proven to fulfill this specification. Though in practice this is often a
tedious (and thus expensive) work, there are areas, such as security critical
software, in air traffic or medicine applications for example, where it may
be applied successfully. We may well see a rise of such methods with the
increasing impact of computing technology in everyday life.

The deeper benefit sought after in this viewpoint is a mechanized check for
errors. Correctness is also an important aspect in traditional mathematics;
and as Harrison ([9] p. 14) puts it, “In formalizing mathematics, we must
rephrase informal constructs in terms of formal ones, which is merely an
extreme case of defining non-rigorous concepts rigorously.”. In this respect,
theorem proving may be gainful in classical mathematical research, too.

For this argument to hold, correctness of the checking machinery must of
course be ensured. In our case of Isabelle, as well as in the HOL system, this
property is ensured by construction following the so-called LCF paradigm.
Robin Milner [13] developed the underlying design philosophy, which em-
ploys a small trusted logical kernel to flexibly implement any logic that is
built on top by reducing any proof to the simple deduction steps the LCF
kernel allows. For obvious reasons, we cannot detail the construction here.

There are many more reasons to make mathematical reasoning precise enough
to be checked upon by a software system, and nine of them are enumerated
in a manifesto by the QED project [1], which aims for formalization of even-
tually all of mathematics:

first to help mathematicians cope with the explosion in mathematical
knowledge

second to help development of highly complex IT systems by facilitat-
ing the use of formal techniques

third to help in mathematical education

fourth to provide a cultural monument to “the fundamental reality of
truth”

fifth to help preserve mathematics from corruption

sixth to help reduce the ‘noise level’ of published mathematics
seventh to help make mathematics more coherent

eighth to add to the body of explicitly formulated mathematics

ninth to help improve the low level of self-consciousness in mathematics
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These points are elaborated on in the original text, which also contains
a rebuttal to a lot of possible objections to the idea. Therefore, a short
explanation shall suffice here.

The opening point aims at the creation of a universal database of formal
text, but this also requires the act of formalization itself in the first place. I
have already commented on the use in technical systems.

The next three arguments are of a more cultural nature. Interactive proof
systems and formal theories can serve students to achieve training in math-
ematical subjects by hands-on experience, for “The development of math-
ematical ability is notoriously dependent upon ‘doing’ rather than upon
‘being told’ or ‘remembering’ ” (ibid.).

Furthermore, the achievement of (a large body of) formal mathematics laid
out in documents can be seen as an aesthetic cultural monument. The
authors of the QED manifesto cite Aristotle to support this idea: “That
which is proper to each thing is by nature best and most pleasant for each
thing; for man, therefore, the life according to reason is best and pleasantest,
since reason more than anything else is man.” (ibid.).

A motive that might seem more arcane at first glance is the protection of
mathematics from corruption. It is not so absurd if you consider the influ-
ence that, for example, politics, emotion, or a certain kind of fashion exert
on any science. For the most abhorrent imaginable instance, in Nazi Ger-
many there was a strong movement towards the establishment of a so-called
“Deutsche Mathematik”, which concentrated on applications and marginal-
ized a “Jewish style” of more theoretic research. A machine checkable foun-
dation could supply proof in a deeper sense if doubt arises as to the validity
of certain theories.

The final four points refer to aspects of mathematical research practice.
They stress that formalization could reduce the amount of erroneous or
redundant results published, help unite the notation of different branches of
mathematics via a natural process of generalization, make explicit a large
amount of “mathematical folklore” — lemmata and techniques that are used
without conscious consideration — and might ease a meta analysis of the
structure of mathematics.

While one certainly does not have to subscribe to all of these arguments in
equal proportion, I feel they provide a secure ground for the justification of
efforts like the present thesis.
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1.2 Lebesgue integration

Now that some of the reasoning behind formal reasoning in general has been
illustrated, it remains to explain the choice of the mathematical theory that
is to be presented in this thesis'. But allow me to comment on the title
first. In the literature on analysis and related fields, Lebesgue integration
is often understood as integration with respect to the Lebesgue measure?,
the standard measure for sets of real numbers. We do not cover it at all.
Instead, this thesis concentrates on a field that is often simply called in-
tegration theory. The way it develops, however, was generalized from the
approach that Henri Lebesgue took to integration of real functions. We
could therefore speak of “Lebesgue-style” integration. From now on, this
will be shortened to Lebesgue integration, but should always be understood

as a generic method independent of any specific measure.

As indicated in the very beginning of this chapter, integration is needed
in some way to talk about expectation in probability. The notion that is
addressed here is a kind of average value of a random valuable with respect to
a (probability) measure. This concept is not conveyed to most people when
they first learn about integration. Rather, an integral is often introduced
as the area between the graph of a function and the z-axis in a coordinate
system, or as the anti-derivative of a function. These are strongly concrete
ideas. The first leads into the definition the Riemann integral, and the
second is sometimes described as the Newton integral but usually not used
as a definition. Indeed, it is the gist of the Fundamental Theorem of Calculus
that these two notions coincide.

The idea of integration as measurement of an area can be traced back to
ancient Greece. Newton and Leibnitz found the interpretation as inverse
operation to differentiation at the end of the 17th century. A.L. Cauchy
developed requirements for integrability in the 19th century with a theory
of limits, establishing the condition of continuity for a function to have an
integral. In 1854, B. Riemann made the Cauchy approach more precise, also
permitting non-continuous functions. The Riemann integral is achieved by
partitioning the domain of a function in intervals, summing up the products
of the infimum /supremum of the function in each interval with its respective
length, and taking the limit to infinitely many intervals.

In 1902, Henri Lebesgue presented his new definition of an integral that
takes an opposite approach: Now the range of a function is discretized. The
definition can be made stepwise again. One begins taking into account only
so-called simple or elementary functions having only finitely many different

1The following remarks about the history of integration and different concepts of inte-
grals are based on the introduction of [2] and the section about integration in [10], as well
as [23]. Detailed references to historical literature can be found in these works.

>The notion of measure will be covered in detail later on.
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positive values. The products of these values with the measures of their
preimages are then summed up to yield the integral. If a nonnegative func-
tion can now be represented as the limit of simple functions, its integral
is simply defined as the limit of the integrals of these functions. Finally,
general functions can be represented as the difference between two positive
functions, and the integral is precisely the difference between their integrals.
This construction lies at the heart of the present thesis, so we will develop
it in far greater detail later on.

The new way of integration accounts for significant advantages: To begin
with, it is strictly more general. Any Riemann integral is also a Lebesgue
integral, and the two coincide. The inclusion is not valid in the other di-
rection, the typical example being the characteristic function of the set of
rational numbers xQ, the Lebesgue integral of which is 0, with the Riemann
integral undefined. This does not hold if you consider improper Riemann
integrals. They are a somewhat ad hoc extension of Riemann integrals that
is neither a subset nor a superset of the Lebesgue type. This complication
stems entirely from the nonnegative nature of Lebesgue integration: A func-
tion f is Lebesgue integrable if and only if | f| is integrable. In a way, this
condition is not necessary, but it simplifies matters greatly.

Later in the 20th century, an even more general notion was conceived of
that encompassed all other definitions. It was first discovered in the 1910s
by Arnaud Denjoy and Oskar Perron, whose definitions were equivalent but
highly complex. Only in the 1950s, Ralph Henstock and Jaroslav Kurzweil
found a considerably simpler formulation of what is now often called the
gauge integral. Indeed, theirs is only a slight generalization — at least over
compact intervals — of the Riemann integral, nevertheless resulting in a
much more powerful theory. That most powerful integral has even been
formalized in the HOL theorem prover by Harrison [10]. So why do we need
a Lebesgue integral at all?

As described above, other than in the alternative approaches, the concept
of a measure lies at the heart of Lebesgue integration. A measure is simply
a function fulfilling a few sanity properties that maps sets to real numbers.
Because the definition does not employ such concrete entities as intervals,
it generalizes easily to functions that do not have the real numbers as their
domain. Note that the construction described above, unlike the Riemann
one, does not depend on the structure of the domain. In particular, the
notion of measure is very natural in the field of probability theory, where
a probability measure — nothing but a measure P with P(Q)) =1 — gives
the probability of an event — a measurable subset of €.

This € might, for example, be the set of all infinite sequences of boolean
values, as in Hurd’s thesis[11]; our integral is then just a tool that extends
this work in the sense depicted at the very beginning of this chapter. Now
the gauge integral can be used in such a general setting, too. However, the
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simplicity that makes it so elegant in real analysis (especially over compact
intervals) seems to get lost in those cases, as the intuition behind it is very
similar to the Riemann construction, which depends heavily on the structure
of the real numbers as domain.

Moreover, a third advantage of the Lebesgue approach is the clear and beau-
tiful theory it yields. The integrable functions form mathematically regular
spaces and the behavior of the integral regarding limits is as simple as can
be. In comparison, the gauge integral has somewhat more intricate prop-
erties as the functions that it alone allows us to integrate often seem like
rather pathological cases. We cannot go into detail here and in this work
the effects might not yet be felt, but the Lebesgue integral therefore seems
well suited for formalization.

A last — and in my opinion quite compelling — reason for our choice is that
the theory that is to be formalized here is a very mature and oft-employed
one. It is the theory taught in most graduate calculus courses and there
is a lot of experience in finding good ways to present it, in textbooks for
example. The Henstock-Kurzweil theory still has to catch up here, even if
it is in terms of popularity only.

1.3 The Isabelle/Isar-HOL-Real environment

As stated before, the formalization is performed in the theorem prover
Isabelle [20, 19], using the Isar language [25], the HOL logic [17], and the
Real theory [7].

Isabelle is a generic theorem prover. That is, different object logics can be
defined in a meta logic. It is based on ML, a non-lazy functional language
[21]. Until recently, proofs for Isabelle consisted of tactic scripts in ML. In
a backward proof style, so-called tactics were applied to simplify goals into
subgoals or solve them completely. It was even possible to create your own
tactics with relatively little effort. One major drawback to this style of proof
is that it cannot be understood by humans without looking at the emerging
subgoals in a replayed proof process. Still, in most theorem provers, a similar
style is common.

On the other hand, there have long been efforts to create formal proof doc-
uments that people can actually read, the most prominent arguably being
MIZAR [24]. Lately, the Isar language, which improves on many short-
comings of MIZAR and similar systems [25], has been devised to support
“intelligible Semi-Automatic Reasoning” in Isabelle and possibly other theo-
rem provers. The style of proof document supported by such an environment
is known as declarative, meaning that intermediate goals are declared ex-
plicitly and then solved either by simple automatic steps or by a recursive
new proof. Isar proof scripts can look almost as textbook proofs, but the
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final document depends on the author’s style and experience, of course. All
proofs in this thesis are conducted in a declarative manner.

The logic that is used in what follows is HOL, a Higher Order Logic, which
basically means that functions are allowed as arguments to functions. It is
based on “a simple theory of types” by Alonzo Church [4], adding polymor-
phism above all. “HOL can best be understood as a simply-typed version of
classical set theory” 2. It includes the axiom of choice via a special € opera-
tor, of which we will make use. HOL is by far the most popular of Isabelle’s
object logics, a fact that is witnessed by a large library of existing theories.
Isabelle/HOL is but one of many incarnations of Higher Order Logic, with
the Cambridge HOL system [8] arguably the best known.

Among the many preexisting theories we will use in what follows, HOL-
Real is probably most prominent, since integration is usually done into the
real numbers. The libraries defining the reals and their properties have been
created as a sort of by-product in an effort to formalize non-standard analysis
[7], so the hyper-reals are available, too. Nevertheless, we restrict ourself
to the use of the common real numbers. First, to keep the terminology
as consistent as possible with theories that use the libraries of the HOL
theorem prover, chiefly with the work of Hurd [11] that this thesis is based
on. Second, to minimize learning and translation efforts for the author as
well as for the reader, since the rivaling theory is supposedly called “non-
standard” for a reason.

I refrain from giving an introduction to the Isar language here. Markus
Wenzel’s PhD thesis [25] is a highly detailed reference. Instead, I rely on
the similarity to textbook proofs that is hoped to be achieved and point out
peculiarities where they occur.

3 From the abstract of [17].
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1.4 About the presentation

The dominant part of this thesis consists of commented Isar text, rendered
by the document preparation facilities included in Isabelle/Isar. Any the-
orem found and used in the process is displayed, in contrast to only select
proofs. This practice necessitates a slightly formal style to a degree. I hope
the following will still be “intelligible” as the Isar acronym postulates.

We begin by declaring some preliminary notions, including elementary mea-
sure theory and monotone convergence. This leads into measurable real-
valued functions, also known as random variables. A sufficient body of
functions is shown to belong to this class.

The central chapter is about integration proper. Two approaches that failed
to establish the necessary facts are shortly commented on. Eventually, we
build the integral for increasingly complex functions and prove essential
properties, discovering the connection with measurability in the end.
Before ending the work with a short summary and suggestions for future
work, we test our achievements in an application. The first moment method
is applied to the problem of satisfiability for propositional formulas in con-
junctive normal form with & literals per clause. Though the setup is simple
enough in terms of integration, a new primitive is needed to represent the
probabilistic programs involved.



Chapter 2

Measurable Functions

In this chapter, the focus is on the kind of functions to be integrated. As we
will see later on, measurability is a good characterization for these functions.
Moreover, the language of measure theory as well as the notion of monotone
convergence is used frequently in the definition of the integral. So we begin
by formalizing these necessary tools.

2.1 Preliminaries

2.1.1 Sigma Algebras
theory Sigma-Algebra2 = Main:

The theory command commences a formal document and enumerates the
theories it depends on. With the Main theory, a standard selection of useful
HOL theories excluding the real numbers is loaded. Sigma-Algebra2 is built
upon Sigma-Algebra, a tiny example demonstrating the use of inductive
definitions by Markus Wenzel. This theory as well as Measure in 2.1.3 is
heavily influenced by Joe Hurd’s thesis [11] and has been designed to keep
the terminology as consistent as possible with that work.

Sigma algebras are an elementary concept in measure theory. To measure
— that is to integrate — functions, we first have to measure sets. Un-
fortunately, when dealing with a large universe, it is often not possible to
consistently assign a measure to every subset. Therefore it is necessary to
define the set of measurable subsets of the universe.

A sigma algebra is such a set that has three very natural and desirable
properties.

constdefs
sigma-algebra:: 'a set set = bool
sigma-algebra A =

12
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{}eANNMa.a€ A— —ac A)A
(Va. (¥ iznat. ai € A) — (Ji. a i) € A)

The constdefs command declares and defines at the same time new con-
stants, which are just named functions in HOL. Mind that the third condi-
tion expresses the fact that the union of countably many sets in A is again
a set in A without explicitly defining the notion of countability.

Sigma algebras can naturally be created as the closure of any set of sets with
regard to the properties just postulated. Markus Wenzel wrote the following
inductive definition of the sigma operator.

consts

sigma :: 'a set set = 'a set set

inductive sigma A
intros
basic: a € A = a € sigma A
empty: {} € sigma A
complement: a € sigma A = —a € sigma A
Union: (N\iznat. a i € sigma A) = (Ji. a i) € sigma A

He also proved the following basic facts. The easy proofs are omitted.

theorem sigma-UNIV: UNIV € sigma A

theorem sigma-Inter:
(Niznat. a i € sigma A) = ((i. a i) € sigma A

It is trivial to show the connection between our first definitions. We use the
opportunity to introduce the proof syntax.

theorem assumes sa: sigma-algebra A
— Named premises are introduced like this.

shows sigma-sigma-algebra: sigma A = A
proof

The proof command alone invokes a single standard rule to simplify the goal. Here
the following two subgoals emerge.

show A C sigma A
— The show command starts the proof of a subgoal.

by (auto simp add: sigma.basic)

This is easy enough to be solved by an automatic step, indicated by the keyword
by. The method auto is stated in parentheses, with attributes to it following. In
this case, the first introduction rule for the sigma operator is given as an extra
simplification rule.
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show sigma A C A
proof

Because this goal is not quite as trivial, another proof is invoked, delimiting a block
as in a programming language.

fix z
— A new named variable is introduced.

assume z € sigma A

An assumption is made that must be justified by the current proof context. In this
case the corresponding fact had been generated by a rule automatically invoked by
the inner proof command.

from this sa show z € A

Named facts can explicitly be given to the proof methods using from. A special
name is this, which denotes current facts generated by the last command. Usually
from this sa — remember that sa is an assumption from above — is abbreviated
to with sa, but in this case the order of facts is relevant for the following method
and with would have put the current facts last.

by (induct rule: sigma.induct) (auto simp add: sigma-algebra-def’)

Two methods may be carried out at by. The first one applies induction here via the
canonical rule generated by the inductive definition above, while the latter solves
the resulting subgoals by an automatic step involving simplification.

qed
qed

These two steps finish their respective proofs, checking that all subgoals
have been proven.

To end this theory we prove a special case of the sigma-Inter theorem above.
It seems trivial that the fact holds for two sets as well as for countably many.
We get a first taste of the cost of formal reasoning here, however. The idea
must be made precise by exhibiting a concrete sequence of sets.

consts

trivial-series:: 'a set = 'a set = (nat = 'a set)

The new constant is only declared but not yet defined.

primrec
trivial-series a b 0 = a
trivial-series a b (Suc n) = b

Using primrec, primitive recursive functions over inductively defined data
types — the natural numbers in this case — may be constructed.

theorem assumes s: sigma-algebra A and a: a € Aand b: b € A
shows sigma-algebra-inter: a N b € A
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proof —
— This form of proof foregoes the application of a rule.

have a N b = ([ i:nat. trivial-series a b 1)

Intermediate facts that do not solve any subgoals yet are established this way.

proof (rule set-ext)

The proof command may also take one explicit method as an argument like the
single rule application in this instance.

fix z

{
fix 4

assume z € a N b
hence = € trivial-series a b i by (cases i) auto
— This is just an abbreviation for ”from this have”.
}

Curly braces can be used to explicitly delimit blocks. In conjunction with fix,
universal quantification over the fixed variable i is achieved for the last statement
in the block, which is exported to the enclosing block.

hence z € a N b = Vi. z € trivial-series a b i
by fast
also

The statement also introduces calculational reasoning. This basically amounts to
collecting facts. With also, the current fact is added to a special list of theorems
called the calculation and an automatically selected transitivity rule is additionally
applied from the second collected fact on.

{ assume Ai. z € trivial-series a b i
hence = € trivial-series a b 0 and z € trivial-series a b 1
by blast
hence z € a N b
by simp
}
hence Vi. © € trivial-series a bi — x € a N b
by blast

ultimately have z € ¢ N b = (Vi:nat. © € trivial-series a b i) ..

The accumulated calculational facts including the current one are exposed to the
next statement by ultimately and the calculation list is then erased. The two dots
after the statement here indicate proof by a single automatically selected rule.

also have ... = (z € ([i:nat. trivial-series a b 7))
by simp
finally show z € a N b = (z € ((i:nat. trivial-series a b 7)) .

The finally directive behaves like ultimately with the addition of a further tran-
sitivity rule application. A single dot stands for proof by assumption.
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qed

also have ([ i:nat. trivial-series a b i) € A
proof —
{ fix i
from a b have trivial-series a b i € A
by (cases i) auto
}
hence Ai. trivial-series a b i € sigma A
by (simp only: sigma.basic)
hence ([ i:nat. trivial-series a b i) € sigma A
by (simp only: sigma-Inter)
with s show %thesis
by (simp only: sigma-sigma-algebra)
qed

finally show ?%thesis .
qed

Of course, a like theorem holds for union instead of intersection. But as we
will not need it in what follows, the theory is finished with the following
easy properties instead. Note that the former is a kind of generalization of
the last result and could be used to shorten its proof. Unfortunately, this
one was needed — and therefore found — only late in the development.

theorem sigma-INTER:
assumes a:(\i:nat. i € S = a i € sigma A)
shows ((Ni€S. a i) € sigma A
proof —
from a have Ai. (if i€S then {} else UNIV) U a i € sigma A
by (simp add: sigma.intros sigma-UNIV)
hence ((i. (if i€S then {} else UNIV) U a i) € sigma A
by (rule sigma-Inter)
also have ((i. (if i€S then {} else UNIV) U a i) = ([)i€S. a i)
by force
finally show ?thesis .
qed

lemma assumes s: sigma-algebra a shows sigma-algebra-UNIV: UNIV €a
proof —

from s have {}€a by (unfold sigma-algebra-def) blast

with s show ?thesis by (unfold sigma-algebra-def) auto
qed

end
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2.1.2 Monotone convergence
theory MonConv = Lim:

A sensible requirement for an integral operator is that it be “well-behaved”
with respect to limit functions. To become just a little more precise, it is
expected that the limit operator may be interchanged with the integral op-
erator under conditions that are as weak as possible. To this end, the notion
of monotone convergence is introduced and later applied in the definition of
the integral.

In fact, we distinguish three types of monotone convergence here: There
are converging sequences of real numbers, real functions and sets. Mono-
tone convergence could even be defined more generally for any type in the
axiomatic type class' ord of ordered types like this.

mon-conv u f = (Vn. un < u (Suc n)) A isLub UNIV (range u) f

However, this employs the general concept of a least upper bound. For
the special types we have in mind, the more specific limit — respective
union — operators are available, combined with many theorems about their
properties.

It still seems worthwhile to add the type of real- (or rather ordered-) valued
functions to the ordered types by defining the less-or-equal relation point-
wise.

instance fun :: (type,ord)ord ..

defs
le-fun-def: f < g =Vuz. fz < gz

The following theorem is often used in this context and therefore even added
to the calculational transitivity rules. For reasons of brevity, the proof is
omitted here, as will be the case with several of the subsequent facts.

theorem assumes f < (k::'a = real) and k < g
shows realfun-le-trans[trans]: f < g

Now the foundations are laid for the definition of monotone convergence.
To express the similarity of the different types of convergence, a single over-
loaded operator is used.

consts
mon-conv:: (nat = 'a) = ‘a::ord = bool (-1- [60,61] 60)

1For the concept of axiomatic type classes, see [15, 26]
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defs (overloaded)
real-mon-conv: 1 (y:real) = (Vn. zn < x (Sucn)) Nz ————>y
realfun-mon-conv:
ul(f:'a = real) = (Vn. un < u (Sucn)) A Vw. (An. unw) ————> fw)
set-mon-conv: AT(B::'a set) = (Vn. An < A (Sucn)) A B=(Jn. 4An)

theorem realfun-mon-conv-iff: (ulf) = (Yw. (An. u n w)T((f w):real))
by (auto simp add: real-mon-conv realfun-mon-conv le-fun-def)

The long arrow signifies convergence of real sequences as defined in the
theory SEQ [7]. Monotone convergence for real functions is simply pointwise
monotone convergence.

Quite a few properties of these definitions will be necessary later, and they
are listed now, giving only few select proofs.

lemma assumes mon-conv: z7(y::real)
shows mon-conv-mon: (z i) < (z (m+1))

lemma assumes ls: z ————> y
shows limseg-shift: (Am. z (m+i)) ————> y using Is

theorem assumes mon-conv: x1(y::real)
shows real-mon-conv-le: x 1 < y
proof —
from mon-conv have (Am. ¢ (m+i)) ————>y
by (simp add: real-mon-conv limseg-shift)
also from mon-conv have Vm. z i < z (m+i) by (simp add: mon-conv-mon)
ultimately show ?thesis by (rule LIMSEQ-le-const)
qed

theorem assumes mon-conv: z1(y:(‘a = real))
shows realfun-mon-conv-le: z i < y
proof —
{fix w
from mon-conv have (\i. z ¢ w)T(y w)
by (simp add: realfun-mon-conv-iff)
hence z i w < y w
by (rule real-mon-conv-le)
}
thus ?thesis by (simp add: le-fun-def)
qed

lemma assumes mon-conv: z1(y::real)
and less: z < y
shows real-mon-conv-outgrow: 3n. Vm.n < m — z < zm
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proof —
from less have 0 < y—=z
by simp
with mon-conv have In.Ym. n <m — |z m + — y| < y—=z
by (simp add: real-mon-conv LIMSEQ-def)
also
{ fix m
from mon-conv have zm < y
by (rule real-mon-conv-le)
hence [zm + —y|=y —zm
by arith
also assume [z m + — y| < y—=2
ultimately have z < x m
by arith
}
ultimately show ?thesis
by fast
qed

theorem real-mon-conv-times:
assumes zy: z1(y:real) and nn: 0<z
shows (Am. zxz m)](zxy)

theorem realfun-mon-conv-times:
assumes zy: z1(y::'a=real) and nn: 0<z
shows (Am w. zxz m w)T(Aw. zxy w)

theorem real-mon-conv-add:
assumes zy: z](y::real) and ab: al(b::real)
shows (Am. zm + a m)(y + b)

theorem realfun-mon-conv-add:
assumes zy: 1(y::'a=real) and ab: al(b::'a = real)
shows (Am w. 2 mw 4+ am w)T(Aw. y w + b w)

theorem real-mon-conv-bound:
assumes mon: An. ¢ n < ¢ (Suc n)
and bound: An. ¢ n < (z:real)
shows 31[. ¢l A <z
proof —
from mon have m2: Vn. ¢ n < ¢ (Suc n)
by simp
also

19
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def g = (An:nat. )
hence Vn. g(Suc n) < g(n)
by simp
moreover
— This is like also but lacks the transitivity step.

from bound have Vn. ¢ n < g(n)
by (simp add: g-def)

ultimately have

FmAI<mA((¥Vn.en<D)Ac———=>1) A
Vn.m < gn)A (g ————>m)
by (rule lemma-nest)
then obtain [ m where Im: [ < m and conv: ¢ ————> 1
and gm: g ———>m
by fast

from gm g-def have m=x
by (simp add: LIMSEQ-const LIMSEQ-unique)
with Im conv m2 show ?thesis
by (auto simp add: real-mon-conv)
qed

theorem real-mon-conv-dom:
assumes zy: z7(y::real) and mon: An. ¢ n < ¢ (Suc n)
and dom: ¢ < z
shows 3. ¢l A I<y
proof —
from dom have An. ¢ n < z n by (simp add: le-fun-def)
also from zy have An. z n < y by (simp add: real-mon-conv-le)
also note mon
ultimately show ?thesis by (simp add: real-mon-conv-bound)
qed

theorem realfun-mon-conv-bound:
assumes mon: An. ¢ n < ¢ (Suc n)
and bound: An. ¢ n < (z::'a = real)
shows 1. ¢l A I<z

This brings the theory to an end. Notice how the definition of the limit of a
real sequence is visible in the proof to real-mon-conv-outgrow, a lemma that
will be used for a monotonicity proof of the integral of simple functions later
on.

end
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2.1.3 Measure spaces
theory Measure=Sigma-Algebra2+ MonConv+ NthRoot:

Now we are already set for the central concept of measure. The following
definitions are translated as faithfully as possible from those in Joe Hurd’s
Thesis [11].

constdefs
measurable:: 'a set set = 'b set set = (‘a = 'b) set
measurable F G = {f. VgeG. f —‘g € F'}

So a function is called F-G-measurable if and only if the inverse image of
any set in G is in F'. F' and G are usually the sets of measurable sets, the

first component of a measure space?.

measurable-sets:: ('a set set x ('a set = real)) = 'a set set
measurable-sets = fst

measure:: ('a set set x ("a set = real)) = ('a set = real)
measure = snd

The other component is the measure itself. It is a function that assigns a
nonnegative real number to every measurable set and has the property of
being countably additive for disjoint sets.

positive:: ('a set set x ('a set = real)) = bool
positive M = measure M {} = 0 A
(VA. A€ measurable-sets M — 0 < measure M A)

countably-additive:: ('a set set * ('a set = real)) = bool
countably-additive M = (VY f::(nat = 'a set). range f C measurable-sets M
ANNVmn m#n— fmnfn={}) A (Ui fi)€ measurable-sets M
— (An. measure M (f n)) sums measure M (| Ji. f 1))

This last property deserves some comments. The conclusion is usually —
also in the aforementioned source — phrased as

measure M ([Ji. f1) = (O n. measure M (f n)).

In our formal setting this is unsatisfactory, because the sum operator?, like
any HOL function, is total, although a series obviously need not converge.
It is defined using the € operator, and its behavior is unspecified in the
diverging case. Hence, the above assertion would give no information about
the convergence of the series.

2In standard mathematical notation, the universe is first in a measure space triple, but
in our definitions, following Joe Hurd, it is always the whole type universe and therefore
omitted.

3Which is merely syntactic sugar for the suminf functional from the Series theory [7].
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Furthermore, the definition contains redundancy. Assuming that the count-
able union of sets is measurable is unnecessary when the measurable sets
form a sigma algebra, which is postulated in the final definition®.

measure-space:: ('a set set x ('a set = real)) = bool
measure-space M = sigma-algebra (measurable-sets M) A
positive M A countably-additive M

Note that our definition is restricted to finite measure spaces — that is,
measure M UNIV < oo — since the measure must be a real number for any
measurable set. In probability, this is naturally the case.

Two important theorems close this section. Both appear in Hurd’s work as
well, but the proofs are shown anyway, owing to their central role in measure
theory.

The first one is a mighty tool for proving measurability. It states that for a
function mapping one sigma algebra into another, it is sufficient to be mea-
surable regarding only a generator of the target sigma algebra. Formalizing
the interesting proof out of Bauer’s textbook [2] is relatively straightforward,
the only difficulty that arises being rule induction.

theorem assumes sig: sigma-algebra a and meas: f € measurable a b shows
measurable-lift: f € measurable a (sigma b)

proof —
def Q={q.f —“q€ a}
with meas have 1: b C @ by (auto simp add: measurable-def)

{ fix z assume z€sigma b
hence z€(@
proof (induct rule: sigma.induct)
case basic
from 1 show Aa.a€b = a€ Q ..
next
case empty
from sig have {}€a
by (simp only: sigma-algebra-def)
thus {} € @
by (simp add: Q-def)
next
case complement
fix r assume r € @
then obtain r1 where im: r1 = f —‘rand a: r1 € a
by (simp add: Q-def)
with sig have —r1 € a
by (simp only: sigma-algebra-def)

4Joe Hurd inherited this practice from a very influential probability textbook [27]
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with im @Q-def show —r € @
by (simp add: vimage-Compl)
next
case Union
fix r assume Ai:nat. ri € Q
then obtain r/ where im: Ni.r1 i = f —‘riand a: Ai. r1 i € a
by (simp add: Q-def)
from a sig have UNION UNIV r1 € a
by (auto simp only: sigma-algebra-def)
with im @Q-def show UNION UNIV r € Q
by (auto simp add: vimage-UN)
qed }

hence (sigma b) C Q ..
thus f € measurable a (sigma b)
by (auto simp add: measurable-def Q-def)
qed

The case is different for the second theorem. It is only five lines in the book
(ibid.), but almost 200 in formal text. Precision still pays here, gaining a
detailed view of a technique that is often employed in measure theory —
making a sequence of sets disjoint. Moreover, the necessity for the above-
mentioned change in the definition of countably additive was detected only
in the formalization of this proof.

To enable application of the additivity of measures, the following construc-
tion yields disjoint sets. We skip the justification of the lemmata for brevity.

consts
mkdisjoint:: (nat = 'a set) = (nat = 'a set)

primrec
mkdisjoint A 0 = A 0
mkdisjoint A (Suc n) = A (Sucn) — A n

lemma mkdisjoint-un:
assumes up: An. A n C A (Suc n)
shows A n = (|Ji€{..n}. mkdisjoint A 7)

lemma mkdisjoint-disj:
assumes up: An. An C A (Suc n) and ne: m # n
shows mkdisjoint A m N mkdisjoint A n = {}

lemma mkdisjoint-mon-conv:
assumes mc: ATB
shows (|Ji. mkdisjoint A i) = B
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Joe Hurd calls the following the Monotone Convergence Theorem, though in
mathematical literature this name is often reserved for a similar fact about
integrals that we will prove in 3.2.2, which depends on this one. The claim
made here is that the measures of monotonically convergent sets approach
the measure of their limit. A strengthened version would imply monotone
convergence of the measures, but is not needed in the development.

theorem measure-mon-conv:
assumes ms: measure-space M and
Ams: An. A n € measurable-sets M and AB: A1B
shows (An. measure M (A n)) ————> measure M B
proof —

from AB have up: An. A n C A (Suc n)
by (simp only: set-mon-conv)

{ fix ¢
have mkdisjoint A i € measurable-sets M
proof (cases )
case ( with Ams show ?thesis by simp
next
case (Suc 1)
have A (Suci) — Ai= A (Suci) N — A i by blast
with Suc ms Ams show ?thesis
by (auto simp add: measure-space-def sigma-algebra-def sigma-algebra-inter)
qed

}

hence i: Ai. mkdisjoint A i € measurable-sets M .

with ms have un: (|Ji. mkdisjoint A i) € measurable-sets M
by (simp add: measure-space-def sigma-algebra-def)

moreover

from ¢ have range: range (mkdisjoint A) C measurable-sets M
by fast

moreover

from up have Vij. i # j — mkdisjoint A i N mkdisjoint A j = {}
by (simp add: mkdisjoint-disj)

moreover note ms

ultimately

have sums:
(Ni. measure M (mkdisjoint A i)) sums (measure M (|Ji. mkdisjoint A 7))
by (simp add: measure-space-def countably-additive-def)

hence (Y i. measure M (mkdisjoint A i)) = (measure M (|Ji. mkdisjoint A 1))
by (rule sums-unique] THEN sym))

also
from sums have summable (Ai. measure M (mkdisjoint A 1))
by (rule sums-summable)
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hence (An. sumr 0 n (Ai. measure M (mkdisjoint A 7)))
————> (> i. measure M (mkdisjoint A 7))
by (rule summable-sumr-LIMSEQ-suminf)

hence (An. sumr 0 (Suc n) (Ai. measure M (mkdisjoint A 1)))
————> (>_ 4. measure M (mkdisjoint A 7))
by (rule LIMSEQ-Suc)

ultimately have (An. sumr 0 (Suc n) (Ni. measure M (mkdisjoint A 1)))
————> (measure M (|Ji. mkdisjoint A i)) by simp

also
{ fix n
from up have A n = (|Jie{..n}. mkdisjoint A i)
by (rule mkdisjoint-un)
hence measure M (A n) = measure M (|Ji€{..n}. mkdisjoint A i)
by simp

also have
(Uie{..n}. mkdisjoint A i) = (. if i<n then mkdisjoint A i else {})
proof —
have UNIV = {..n} U {)n..} by auto
hence (|Ji. if i<n then mkdisjoint A i else {}) =
(Uie{..n}. if i<n then mkdisjoint A i else {})
U (Uie{)n..}. if i<n then mkdisjoint A i else {})
by (auto simp add: UN-Un)
also
{ have (Jie{)n..}. if i<n then mkdisjoint A i else {}) = {}
by force }
hence ... = (|Ji€{..n}. mkdisjoint A i)
by auto
finally show
(Uie{..n}. mkdisjoint A i) = (U4 if i<n then mkdisjoint A i else {}) ..
qed

ultimately have
measure M (A n) = measure M (|Ji. if i<n then mkdisjoint A i else {})
by simp

also

from i ms have
un: (Ui. if i<n then mkdisjoint A i else {}) € measurable-sets M
by (simp add: measure-space-def sigma-algebra-def’)

moreover

from ¢ ms have
range (Ai. if i<n then mkdisjoint A i else {}) C measurable-sets M
by (auto simp add: measure-space-def sigma-algebra-def’)
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moreover
from up have Vij. i #j —
(if i<n then mkdisjoint A i else {}) N
(if j<n then mkdisjoint A j else {}) = {}
by (simp add: mkdisjoint-disj)
moreover note ms
ultimately have
measure M (A n) = (3. i. measure M (if i < n then mkdisjoint A i else {}))
by (simp add: measure-space-def countably-additive-def sums-unique)

also

from ms have
Vi. (Suc n)<i — measure M (if i < n then mkdisjoint A i else {}) = 0
by (simp add: measure-space-def positive-def)

hence (\i. measure M (if © < n then mkdisjoint A i else {})) sums
sumr 0 (Suc n) (Ai. measure M (if i < n then mkdisjoint A i else {}))
by (rule series-zero)

hence (3 i. measure M (if i < n then mkdisjoint A i else {})) =
sumr 0 (Suc n) (Ai. measure M (if i < n then mkdisjoint A i else {}))
by (rule sums-unique| THEN sym))

also

have ... = sumr 0 (Suc n) (N\i. measure M (mkdisjoint A i))
by (simp add: sumr-fun-eq)

finally have
measure M (A n) = sumr 0 (Suc n) (Ai. measure M (mkdisjoint A i)) .

}

ultimately have
(An. measure M (A n)) ————> (measure M (|Ji. mkdisjoint A 1))
by simp

with AB show %thesis
by (simp add: mkdisjoint-mon-conv)
qed

end

2.2 Real-valued random variables

theory RealRandVar = Measure + Rats:

While most of the above material was modeled after Hurd’s work (but still
proved independently), the original content of this thesis basically starts
here. From now on, we will specialize in functions that map into the real
numbers and are measurable with respect to the canonical sigma algebra on
the reals, the Borel sigma algebra. These functions will be called real-valued
random variables. The terminology is slightly imprecise, as random variables
hint at a probability space, which usually requires measure M UNIV = 1.
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Notwithstanding, as we regard only finite measures (cf. 2.1.3), this condition
can eagsily be achieved by normalization. After all, the other standard name,
“measurable functions”, is even less precise.

A lot of the theory in this and the preceding section has also been formalized
within the Mizar project [5, 6]. The abstract of the second source hints that
it was also planned as a stepping stone for Lebesgue integration, though
further results in this line could not be found. The main difference lies in
the use of extended real numbers — the reals together with 00 — in those
documents. It is established practice in measure theory to allow infinite
values, but “(...) we felt that the complications that this generated (...)
more than canceled out the gain in uniformity (...), and that a simpler
theory resulted from sticking to the standard real numbers.” [11]. Hurd
also advocates going directly to the hyper-reals, should the need for infinite
measures arise. I agree, nevertheless sticking to his example for the reasons
mentioned in the prologue.

constdefs
Borelsets:: real set set (B)
B == sigma {S. Ju. S={..u}}

rv:: (‘a set set x ("a set = real)) = ('a = real) set
rv M == {f. measure-space M N f € measurable (measurable-sets M) B}

As explained in the first paragraph, the preceding definitions determine the
rest of this section. There are many ways to define the Borel sets. For
example, taking into account only rationals for u would also have worked
out above, but we can take the reals to simplify things. The smallest sigma
algebra containing all the open (or closed) sets is another alternative; the
multitude of possibilities testifies to the relevance of the concept.

The latter path leads the way to the fact that any continuous function is
measurable. Generalization for IR" brings another unified way to prove all
the measurability theorems in this theory plus, for instance, measurability
of the trigonometric and exponential functions. This approach is detailed
in another influential textbook by Billingsley [3]. It requires some concepts
of topologic spaces, which made the following elementary course, based on
Bauer’s excellent book [2], seem more feasible.

Two more definitions go next. The image measure, law, or distribution —
the last term being specific to probability — of a measure with respect to
a measurable function is calculated as the measure of the inverse image of
a set. Characteristic functions will be frequently needed in the rest of the
development.

constdefs
distribution::
('a set set x ('a set = real)) = ('a = real) = (real set = real) (law)
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fervM = law M f == (measure M) o (vimage f)

characteristic-function:: 'a set = ('a = real) (x- [1000))
XAz ==ifx € A then 1 else 0

lemma char-empty: x{} = (\t. 0)
proof (rule ext)

fix t

show x{} ¢t = 0 by (simp add: characteristic-function-def)
qged

Now that random variables are defined, we aim to show that a broad class
of functions belongs to them. For a constant function this is easy, as there
are only two possible preimages.

lemma assumes sigma: sigma-algebra S
shows const-measurable: (M. (c::real)) € measurable S X
proof (unfold measurable-def, rule, rule)
fix g
show (A\z.¢) —‘ge S
proof (cases ¢ € g)
case True
hence (\z. ¢) —‘g = UNIV
by blast
also from sigma have UNIV € §
by (rule sigma-algebra-UNIV)
finally show ?thesis .
next
case Fulse
hence (A\z. ¢) —‘ g = {}
by blast
also from sigma have {} € S
by (simp only: sigma-algebra-def)
finally show ?thesis .

qed
qed

theorem assumes ms: measure-space M
shows const-rv: (Az. ¢) € rv M using ms
by (auto simp only: measure-space-def const-measurable rv-def)

Characteristic functions produce four cases already, so the details are glossed
over.

lemma assumes a: a € S and sigma: sigma-algebra S shows
char-measurable : xa € measurable S x
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theorem assumes ms: measure-space M and A: A € measurable-sets M
shows char-rv: YA € rv M using ms A
by (auto simp only: measure-space-def char-measurable rv-def)

For more intricate functions, the following application of the measurability
lifting theorem from 2.1.3 gives a useful characterization.

theorem assumes ms: measure-space M shows
ro-le-iff: (f € ro M) = (Va. {w. fw < a} € measurable-sets M)
proof —

have f € rv M = Va. {w. fw < a} € measurable-sets M
proof
{fix a
assume [ € measurable (measurable-sets M) B
hence VbeB. f —‘ b € measurable-sets M
by (unfold measurable-def) blast
also have {..a} € B
by (simp only: Borelsets-def) (rule sigma.basic, blast)
ultimately have {w. fw < a} € measurable-sets M
by (auto simp add: vimage-def)

thus Aa. f € v M = {w. fw < a} € measurable-sets M
by (simp add: rv-def)
qed

also have Va. {w. fw < a} € measurable-sets M = f € rv M
proof —
assume Va. {w. fw < a} € measurable-sets M
hence f € measurable (measurable-sets M){S. Fu. S={..u}}
by (auto simp add: measurable-def vimage-def)
with ms have f € measurable (measurable-sets M) B
by (simp only: Borelsets-def measure-space-def measurable-lift)
thus %thesis
by (auto simp add: rv-def)

qed
ultimately show ?thesis by rule
qged

The next four lemmata allow for a ring deduction that helps establish this
fact for all of the signs <, > and > as well.

lemma assumes sigma: sigma-algebra A and le: Va. {w. fw < a} € A
shows le-less: Va. {w. fw < (atreal)} € A
proof
fix a::real
from le sigma have (|Jn:nat. {w. fw < a — inverse (real (Suc n))}) € A
by (simp add: sigma-algebra-def)
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also
have (|Jn:nat. {w. fw < a — inverse (real (Suc n))}) = {w. fw < a}
proof —
{
fix wn
have 0 < inverse (real (Suc (n::nat)))
by simp
hence fw < a — inverse (real (Suc n)) = fw < a
by arith
}

also
{ fix w
have (An. inverse (real (Suc n))) ————> 0
by (rule LIMSEQ-inverse-real-of-nat)

also assume fw < a
hence 0 < a — fw ..

ultimately have
In0.Vn. n0 < n — abs (inverse (real (Suc n))) < a — fw
by (auto simp add: LIMSEQ-def)
then obtain n where abs (inverse (real (Suc n))) < a — fw
by blast
hence fw < a — inverse (real (Suc n))
by arith
hence In. fw < a — inverse (real (Suc n)) ..
}
ultimately show ?thesis by auto
qed
finally show {w. fw < a} € 4.
qed

lemma assumes sigma: sigma-algebra A and less: Va. {w. fw < a} € A
shows less-ge: Va. {w. (a:real) < fw} € A
proof
fix a::real
from less sigma have —{w. fw < a} € A
by (simp add: sigma-algebra-def)

also
have —{w. fw < a} = {w. a < fw}
by auto

finally show {w. « < fw} € 4.
qed

30
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lemma assumes sigma: sigma-algebra A and ge: Va. {w. a < fw} € A
shows ge-gr: ¥V a. {w. (a:real) < fw} € A

lemma assumes sigma: sigma-algebra A and gr: Va. {w. a < fw} € A
shows gr-le: Va. {w. fw < (a:real)} € A

theorem assumes ms: measure-space M shows
rv-ge-iff: (f € ro M) = (Va. {w. a < fw} € measurable-sets M)
proof —
from ms have (f € rv M) = (Va. {w. fw < a} € measurable-sets M)
by (rule rv-le-iff)
also have ... = (Va. {w. a < fw} € measurable-sets M) (is ?lhs = ?rhs)
proof —
from ms have sigma: sigma-algebra (measurable-sets M)
by (simp only: measure-space-def)
also note less-ge le-less
ultimately have ?lhs = ?rhs by blast
also
from sigma gr-le ge-gr have ?rhs = ?lhs by blast
ultimately
show ?thesis ..
qed
finally show ?thesis .
qed

theorem assumes ms: measure-space M shows
ro-gr-iff: (f € ro M) = (Va. {w. a < fw} € measurable-sets M)

theorem assumes ms: measure-space M shows
rv-less-iff: (f € ro M) = (Va. {w. fw < a} € measurable-sets M)

As a first application we show that addition and multiplication with con-
stants preserve measurability. This is a precursor to the more general ad-
dition and multiplication theorems later on. You can see that quite a few
properties of the real numbers are employed.

lemma assumes g: g € rv M
shows affine-rv: (Az. (a:real) + (g z) x b) € ro M
proof (cases b=0)
from g have ms: measure-space M
by (simp add: rv-def)
case True
hence (Az. a + (g z) * b) = (Az. a)
by simp
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also
from g have (\z. a) € rv M

by (simp add: const-measurable rv-def measure-space-def)
ultimately show ?thesis by simp

next
from g have ms: measure-space M
by (simp add: rv-def)
case Fulse
have cale: Az c. (a+gz+xb<c)=(gax*xb <c¢— a)
by arith
have Ve. {w. a + g w x b < ¢} € measurable-sets M
proof (cases b<0)
case Fulse
from prems have 0<b by arith
hence Az c. (92 b <c—a)=(gz<(c—a)/Db)
by (rule pos-real-le-divide-eq [THEN sym)])
with calc have Ac. {w. a+gw b <c}={w.gw<(c—a)/ b}
by simp

also from ms g have Va. {w. g w < a} € measurable-sets M
by (simp add: rv-le-iff )

ultimately show ?thesis by simp

next
case True
hence Az c. (92 % b < c—a) = ((c—a)/b < gx)
by (rule neg-real-divide-le-eq [THEN sym)])
with calc have Ac. {w. a+ gw xb < ¢} ={w. (¢c—a)/b < g w}
by simp

also from ms g have Va. {w. a < g w } € measurable-sets M
by (simp add: rv-ge-iff)

ultimately show ?thesis by simp
qed

with ms show ?thesis
by (simp only: rv-le-iff [THEN sym)])
qed



THEORY RealRandVar 33

For the general case of addition, we need one more set to be measurable,
namely {w. fw < g w}. This follows from a like statement for <. A dense
and countable subset of the reals is needed to establish it.

Of course, the rationals come to mind. They were not available in Isabelle/HOL?,
so I built a theory with the necessary properties on my own. It can be found
in the appendix A.1.

lemma assumes f: f € ro M and g: g € T M
shows ruv-less-rv-measurable: {w. fw < g w} € measurable-sets M
proof —
from g have ms: measure-space M
by (simp add: rv-def)
have {w. fw < gw} = (Ji. let s = n-to-rat i in {w. fw < s} N {w. s < gw})
proof
{ fix w assume w € {w. fw < g w}
hence fw < gw ..
hence 3s5€Q. fu < sAs<gw
by (rule rats-dense-in-real)
hence 3s€Q. w € {w. fw < s} N{w. s < g w}
by simp
hence 3i. w € (let s = n-to-rat i in {w. fw < s} N{w. s < g w})
by (simp add: Rats-def Let-def)
hence w € (|Ji. let s = n-to-rat i in {w. fw < s} N{w. s < g w})
by simp
}

thus
{w. fw < gw} C (Ui let s =n-to-ratiin {w. fwu<s}N{w. s<guw})..

show
(Usi. let s = n-to-rat i in {w. fw < s} N{w. s < gw}) C{w. fw<gw}
by (force simp add: Let-def)

qged

also have
(Usi. let s = n-to-rat i in {w. fw < s} N {w. s < g w}) € measurable-sets M
proof —
from ms have sig: sigma-algebra (measurable-sets M)
by (simp only: measure-space-def)

{ fix s
note sig
also from ms f have {w. fw < s} € measurable-sets M (is Zac?M)
by (simp add: rv-less-iff)
moreover from ms g have {w. s < g w} € ?M (is %b € ?M)
by (simp add: rv-gr-iff)

At least not as a subset of the reals, to the definition of which a type of positive
rational numbers contributed [7].
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ultimately have %a N 20 € ?M
by (rule sigma-algebra-inter)

}

hence
Vi. let s = n-to-rat i in {w. fw < s} N {w. s < g w} € measurable-sets M
by (simp add: Let-def)

with sig show ?thesis
by (auto simp only: sigma-algebra-def Let-def)

qed

finally show ?thesis .
qed

lemma assumes f: f € rv M and ¢g: g € T7v M
shows ruv-le-rv-measurable: {w. f w < g w} € measurable-sets M (is ?a € ?M)
proof —
from g have ms: measure-space M
by (simp add: rv-def)
from ¢ f have {w. gw < fw} € ?M
by (rule rv-less-rv-measurable)
also from ms have sigma-algebra ?M
by (simp only: measure-space-def)

ultimately have —{w. g w < fw} € M
by (simp only: sigma-algebra-def)

also have —{w. g w < fw} = %a
by auto

finally show ?%thesis .
qed

lemma assumes f: f € rvo M and g: g € T M
shows f-eq-g-measurable: {w. fw = g w} € measurable-sets M

lemma assumes f: f € ro M and g: g € T M

shows f-noteq-g-measurable: {w. fw # g w} € measurable-sets M

With these tools, a short proof for the addition theorem is possible.

theorem assumes f: f € rvo M and g: g € rv M
shows rv-plus-rv: (Aw. fw + g w) € ro M

proof —
from ¢ have ms: measure-space M by (simp add: rv-def)
{ fix a
have {w. a < fw + gw} ={w. a + (g w)*(—1) < fw}
by auto

also from g have (Aw. a + (g w)x(—1)) € rv M
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by (rule affine-rv)
with f have {w. a + (g w)x(—1) < fw} € measurable-sets M
by (simp add: rv-le-rv-measurable)
finally have {w. a < fw + g w} € measurable-sets M .
}
with ms show ?thesis
by (simp add: rv-ge-iff)
qed

To show preservation of measurability by multiplication, it is expressed by
addition and squaring. This requires a few technical lemmata including the
one stating measurability for squares, the proof of which is skipped.

lemma pow2-le-abs: (a? < b?) = (|a| < |bu:real])

lemma assumes f: f € v M
shows rv-square: (\w. (f w)?) € rv M

lemma realpow-two-binomial-iff: (f+g::real)® = f2 + 2%(fxg) + ¢°
lemma times-iff-sum-squares: fxg = (f+9)2/4 — (f—9)?/(4::real)

theorem assumes f: f € rv M and g: g € 1o M
shows rv-times-rv: (Aw. fw * gw) € ro M
proof —
have (\w. fw * g w) = . (fw + g w)/4 — (Fw — gw)/4)
by (simp only: times-iff-sum-squares)
also have ... = (\w. (fw + g w)?xinverse 4 — (fw + — g w)*xinverse /)
by (simp add: real-diff-def)
also from f g have ... € rvo M
proof —
from f g have \w. (fw + g w)?) € v M
by (simp add: rv-plus-rv rv-square)
hence (A\w. 0+(f w + g w)*xinverse 4) € rv M
by (rule affine-rv)
also from g have (Aw. 0 + (g w)x—1 ) € ru M
by (rule affine-rv)
with f have \w. (fw + — gw)?) € v M
by (simp add: rv-plus-rv rv-square)
hence (Aw. 0+(f w + — g w)*x—inverse /) € rv M
by (rule affine-rv)
ultimately show ?thesis
by (simp add: rv-plus-rv real-diff-def)
qed

ultimately show ?thesis by simp
qged
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The case of substraction is an easy consequence of rv-plus-rv and rv-times-rv.

theorem rv-minus-rv:
assumes f: f € ro M and g: g € ro M
shows (\t. ft —gt)erv M

Measurability for limit functions of monotone convergent series is also sur-
prisingly straightforward.

theorem assumes u: An. un € rv M and mon-conv: ulf
shows mon-conv-rv: f € rv M
proof —
from v have ms: measure-space M
by (simp add: rv-def)

{

fix a
{
fix w
from mon-conv have up: (An. u n w)]f w
by (simp only: realfun-mon-conv-iff)
{
fix i
from up have u i w < fw
by (rule real-mon-conv-le)
also assume fw < a
finally have uviw < a .

}
also
{ assume Ai. uiw < a
also from up have (An. u n w) ————> fw

by (simp only: real-mon-conv)
ultimately have fw < a
by (simp add: LIMSEQ-le-const2)
}
ultimately have (fw < a) = (Vi. v i w < a) by fast
}
hence {w. fw < a} = (Ni. {w. viw < a}) by fast
also
from ms u have Ai. {w. viw < a} € sigma(measurable-sets M)
by (simp add: rv-le-iff sigma.intros)
hence (i. {w. viw < a}) € sigma(measurable-sets M)
by (rule sigma-Inter)
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with ms have ((i. {w. v i w < a}) € measurable-sets M
by (simp only: measure-space-def sigma-sigma-algebra)
finally have {w. fw < a} € measurable-sets M .

}

with ms show ?Zthesis
by (simp add: rv-le-iff )
qed

Before we end this chapter to start the formalization of the integral proper,
there is one more concept missing: The positive and negative part of a
function. Their definition is quite intuitive, and some useful properties are
given right away, including the fact that they are random variables, provided
that their argument functions are measurable.

constdefs
nonnegative:: ('a = ('b::{ord,zero})) = bool
nonnegative f =Vzx. 0 < fz

positive-part:: ('a = ('b::{ord,zero})) = ('a = 'b) (pp)
pp fx == if 0<f(x) then fx else 0

negative-part:: ('a = ('b:{ord,zero,minus})) = (‘a = 'b) (np)
np fax == if 0<f(z) then 0 else —f(x)

lemma f-plus-minus: ((f z):real) = pp fx — np fz
by (simp add:positive-part-def negative-part-def)

lemma f-plus-minus2: (f::'a = real) = (A\t. pp ft — np [ 1)
using f-plus-minus
by (rule ext)

lemma f-abs-plus-minus: (|f x|::real) = pp fz + np fx
by (auto simp add:positive-part-def negative-part-def abs-minus-eqI2 abs-eql1)

lemma nn-pp-np: assumes nonnegative f
shows pp f = f and np f = (At. 0) using prems
by (auto simp add: positive-part-def negative-part-def nonnegative-def ext)

lemma pos-pp-np-help: Nz. 0<fz = ppfex=faxAnpfz =20
by (simp add: positive-part-def negative-part-def)

lemma real-neg-pp-np-help: Nz. fz < (0::real) = np fz = —fz ANpp fz =10
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lemma real-neg-pp-np: assumes f < (At. (0::real))
shows np f = (At. —ft) and pp f = (At. 0) using prems
by (auto simp add: real-neg-pp-np-help ext le-fun-def)

lemma assumes a: 0<(a::real)
shows real-pp-np-pos-times:
pp (At. axft) = (At. axpp ft) A np (At. axft) = (At. axnp f )

lemma assumes a: (a::real)<0
shows real-pp-np-neg-times:
pp (At axft) = (At. —axnp ft) A np (At axft) = (At. —axpp f 1)

lemma pp-np-rv:
assumes f: f € rv M
shows pp f € ru M and np f € rv M
proof —
from f have ms: measure-space M by (simp add: rv-def)

{fixa
from ms f have fm: {w. f w < a} € measurable-sets M
by (simp add: rv-le-iff )
have
{w. pp fw < a} € measurable-sets M A
<

{w. np fw
proof (cases 0<a)

a} € measurable-sets M

case True
hence {w. pp fw < a} ={w. fw < a}
by (auto simp add: positive-part-def)
also note fm also
have {w. np fw < a} = {w. —a < fw}
by (auto simp add: negative-part-def)
moreover from ms f have ... € measurable-sets M
by (simp add: rv-ge-iff)
ultimately show ?thesis by simp
next
case Fulse
hence {w. pp fw < a} = {}
by (auto simp add: positive-part-def )
also from Fualse have {w. np fw < a} = {}
by (auto simp add: negative-part-def)
moreover from ms have {} € measurable-sets M
by (simp add: measure-space-def sigma-algebra-def)
ultimately show ?thesis by simp
qed
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} with ms show pp f € ro M and np f € rv M
by (auto simp add: rv-le-iff)
qed

theorem pp-np-rv-iff:
shows (f::'a = real) e ro M = (ppf € rv M A np f € rv M)

This completes the chapter about measurable functions. As we will see in
the next one, measurability is the prime condition on Lebesgue integrable
functions; and the theorems and lemmata established here suffice — at least
in principle — to show it holds for any function that is to be integrated
there.

end



Chapter 3

Integration

The chapter at hand assumes a central position in the present thesis. The
Lebesgue integral is defined and its characteristics are shown in 3.2. To
illustrate the problems arising in doing so, we first look at implementation
alternatives that did not work out.

3.1 Two approaches that failed

Defining Lebesgue integration can be quite involved, judging by the process
in 3.2 that imitates Bauer’s way [2]. So it is quite tempting to try cutting
a corner. The following two alternative approaches back up my experience
that this almost never pays in formalization. The theory that seems most
complex at first sight is often the one that is closest to formal reasoning and
deliberately avoids “hand-waving”.

3.1.1 A closed expression

In contrast, Billingsley’s definition ([3] p. 172) is strikingly short. For
nonnegative measurable functions f:

J flp = sup 3, [inf ue a, f (w)](Ad).
The supremum here extends over all finite decompositions {A4;}
of  into F-sets.!

Like the definition, the proofs of the essential properties are also rather
short, about three pages in the textbook for almost all the theorems in
3.2; and a proof of uniqueness is obsolete for a closed expression like this.
Therefore, 1 found this approach quite tempting. It turns out, however,

IThe F-sets are just the measurable sets of a measure space.

40
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that it is unfortunately not well suited for formalization, at least with the
background we use.

A complication shared by all possible styles of definition is the lack of infinite
values in our theory, combined with the lack of partial functions in HOL.
Like the sum operator in 2.1.3, the integral has to be defined indirectly. The
classical way to do this employs predicates, invoking € to choose the value
that satisfies the condition:

[ fdM = (e i. is-integral M f 1)

To sensibly apply this principle, the predicate has to be e-free to supply
the information if the integral is defined or not. Now the above definition
contains up to three additional € when formalized naively in HOL, namely
in the supremum, infimum and sum operators. The sum is over a finite set,
so it can be replaced by a total function. For nonnegative functions, the
infimum can also be shown to exist everywhere, but, like the supremum,
must itself be replaced by a predicate.

Also note that predicates require a proof of uniqueness, thus losing the
prime advantage of a closed formula anyway. In this case, uniqueness can
be reduced to uniqueness of the supremum/infimum. The problem is that
neither suprema nor infima come predefined in Isabelle/Isar as of yet. It is
an easy task to make up for this — and I did — but a much harder one to
establish all the properties needed for reasoning with the defined entities.

A lot of such reasoning is necessary to deduce from the above definition (or
a formal version of it, as just outlined) the basic behavior of integration,
which includes additivity, monotonicity and especially the integral of simple
functions. It turns out that the brevity of the proofs in the textbook stems
from a severely informal style that assumes ample background knowledge.
Formalizing all this knowledge started to become overwhelming when the
idea of a contrarian approach emerged.

3.1.2 A one-step inductive definition

This idea was sparked by the following note: “(...) the integral is uniquely
determined by certain simple properties it is natural to require of it” ([3]
p. 175). Billingsley goes on discussing exactly those properties that are
so hard to derive from his definition. So why not simply define integration
using these properties? That is the gist of an inductive set definition, like the
one we have seen in 2.1.1. This time a functional operator is to be defined,
but it can be represented as a set of pairs, where the first component is the
function and the second its integral. To cut a long story short, here is the
definition.

consts
integral-set:: ('a set set * (‘a set = real)) = (('a = real) * real) set
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inductive integral-set M

intros
char: [f = x4; A € measurable-sets M| = (f ,measure M A) € integral-set M
add: [f = (Aw. g w + h w); (g,) € integral-set M; (h,y) € integral-set M]
= (f,(z + y)) € integral-set M
times: [f = (Aw. axg w); (g,2) € integral-set M| = (f,a*z) € integral-set M
mon-conv: [ulf; An. (u n, z n) € integral-set M; z1y]
= (f,y) € integral-set M

The technique is also encountered in the Finite-Set theory from the Isabelle
library. It is used there to define the setsum function, which calculates a
sum indexed over a finite set and is employed in 3.2. The definition here is
much more intricate though.

An obvious advantage of this approach is that almost all important proper-
ties are gained without effort. The introduction rule mon-conv corresponds
to what is known as the Monotone Convergence Theorem in scientific lit-
erature; negative functions are also provided for via the times rule. To be
precise, there is exactly one important theorem missing — uniqueness. That
is, every function appears in at most one pair.

From uniqueness together with the introduction rules, all the other state-
ments about integration, monotonicity for example, could be derived. On
the other hand, monotonicity implies uniqueness. Much to my regret, none
of these two could be proven. The proof would basically amount to a double
induction to show that an integral gained via one rule is the same when
derived by another. A lot of effort was spent trying to strengthen the in-
duction hypothesis or reduce the goal to a simpler case. All of this was in
vain though, and I am still not sure if there is a proof or a counter-example
or neither.

3.2 The three-step approach

theory Integral = RealRandVar+ SetsumThms:

Having learnt from my failures, we take the safe and clean way of Heinz
Bauer [2]. It proceeds as outlined in the introduction. In three steps, we fix
the integral for elementary (“step-”)functions, for limits of these, and finally
for differences between such limits. This theory uses a collection of lemmata
on the previously mentioned setsum operator, put together in the appendix
A.2. Occasionally, a theorem will be trailed by the sorry keyword. This
interactive Isabelle command indicates that the respective fact has not yet
been proven formally due to lack of time.
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3.2.1 Simple functions

A simple function is a finite sum of characteristic functions, each multiplied
with a nonnegative constant. These functions must be parametrized by
measurable sets. Note that to check this condition, the integral operator
needs to take a tuple, consisting of measurable sets and measure, as his
second argument, whereas the measure only is given in informal notation.
Usually the tuple will be a measure space, though it is not required so by
the definition at this point.

It is most natural to declare the value of the integral in this elementary
case by simply replacing the characteristic functions with the measures of
their respective sets. At least one element could be preserved from the
last-mentioned trial, namely the use of inductive set definitions. This one
constructs simple function integral sets.

consts
sfis:: ('a = real) = ('a set set * ('a set = real)) = real set
inductive sfis f M
intros
base: [f = (At. > i€(S::nat set). z i x x(A 1) t);
Vi € S. A i € measurable-sets M; nonnegative x; finite S;
VieS.VjeS. i £j — Ain Aj={}; (Ji€S. A i) = UNIV]
= (>_i€S. z i * measure M (A 1)) € sfisf M

As you can see we require two extra conditions, and they amount to the sets
being a partition of the universe. We say that a function is in normal form if
it is represented this way. Normal forms are only needed to show additivity
and monotonicity of simple function integral sets. These theorems can then
be used in turn to get rid of the normality condition.

More precisely, normal forms play a central role in the sfis-present lemma.
For two simple functions with different underlying partitions it states the
existence of a common finer-grained partition that can be used to represent
the functions uniformly. The proof is remarkably lengthy, another case
where informal reasoning is more intricate than it seems. The reason it is
included anyway, with the exception of the two following lemmata, is that
it gives insight into the arising complication and its formal solution.

The problem is in the use of informal sum notation, which easily permits
for a change in index sets, allowing for a pair of indices. This change has to
be rectified in formal reasoning. Luckily, the task is eased by an injective
function from N? into N, which was developed for the rationals mentioned
in 2.2 and relegated to the appendix A.1. It might have been still easier if
index sets were polymorphic in our integral definition, permitting pairs to
be formed when necessary, but the logic doesn’t allow for this.
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lemma assumes un: ((Ji€R. B i) = UNIV and fin: finite R
and dis: ¥jI€R. Vj2€R. j1 # j2 — (B j1) N (B j2) = {}
shows char-split: xA t = (3. jeR. x(AN Bj)t)

lemma assumes ms: measure-space M and un: ((Ji€R. B i) = UNIV and
fin: finite R and dis: Vj1€R. Vj2€R. j1 # j2 — (B j1) N (B j2) = {}
shows measure-split: measure M A = (3. j€R. measure M (A N B j))
sorry

theorem sfis-present:
assumes ms: measure-space M and a: a € sfis f M and b: b € sfis g M
shows 3 21 22 C K.
[ =t > ie(Kunat set). z1 4% x(Ci) t) AN g=(At. D i€K. 220 x x(C 1) t)
ANa= (> ieK. z1 i * measure M (C 1))
ANb= (> i€eK. 22 i x measure M (C i))
A finite K AN (VieK.VjeK. i #j— Cin Cj=1{})
A (Vi e K. Ci € measurable-sets M) N ((Ji€eK. Ci) = UNIV
A nonnegative zI N nonnegative z2
using a
proof cases
case (base A R 1)
show ?thesis using b
proof cases
case (base B S y)

from prems have ms: measure-space M
and f: f = (A\t. D i€(Runat set). i % x(A 1) t)
and a: a = (D 4i€R. i *x measure M (A 1))
and Ams: Vi € R. A i € measurable-sets M
and R: finite R and Adis: VieR.VjeR. i #j — AinNAj={}
and Aun: ((Ji€R. A i) = UNIV
and ¢: g = (At. Y i€(Sunat set). y i * x(B i) t)
and b: b = (>.j€S. yj * measure M (B 7))
and Bms: Vi € S. B i € measurable-sets M
and S: finite S
and Bdis: VieS. VjeS. i #j — BiNn Bj={}
and Bun: (|Ji€S. Bi) = UNIV
and z: nonnegative x and y: nonnegative y
by simp

def C = (A\(i,j). Ai N Bj) o n-to-n2

def z1 = (Ak. z (fst (n-to-n2 k)))

def 22 = (A\k. y (snd (n-to-n2 k)))

def K = {k. i€R. 3j€S5. k = n2-to-n (i,j)}
def G = (Ai. (A\j. n2-to-n (i,5)) ©9)

def H = (N\j. (Mi. n2-to-n (i,5)) ‘ R)
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{ fix ¢
{ fix i
from Bun S Bdis have x(A i) t = (>_jeS. x(AinNn Bj)t)
by (rule char-split)
hence z i x x(A i) t = (>.jeS. zixx(AinN Bj)t)
by (simp add: setsum-times-real)
also
{ fixj
have 5=S and
zix x(AinN Bj)t=(let k=n2-to-n(i,j) in z1 k x x(C k) t)
by (auto simp add: C-def z1-def Let-def n2-to-n-inj n-to-n2-def)

}

hence ... = (> j€S. let k=n2-to-n (i,j) in 21 k = x(C'k) t)
by (rule setsum-cong)

also from S have ... = (3" ke(G ). z1 k = x(Ck) t)

by (simp add: G-def Let-def setsum-image o-def)
finally have eq: z i * x(A i)t = O ke Gi. 21k xx(Ck)t).

from ms Bun S Bdis have
measure M (A i) = (D j€S. measure M (A i N B j))
by (rule measure-split)

hence = i * measure M (A i) = (Y. j€S. z i * measure M (A i N B j))
by (simp add: setsum-times-real)

also
{ fix j
have S=S5 and z i * measure M (Ai N Bj) =
(let k=n2-to-n(i,j) in z1 k * measure M (C k))
by (auto simp add: C-def z1-def Let-def n2-to-n-inj n-to-n2-def)
}

hence ... = (> j€S. let k=n2-to-n (i,j) in z1 k x measure M (C k))
by (rule setsum-cong)

also from S have ... = (3 ke(G i). 21 k x measure M (C k))
by (simp add: G-def Let-def setsum-image o-def)

finally have
eq2: x i *x measure M (A i) = (O ke(G i). 21 k * measure M (C'k)) .

from S have G: finite (G 1)
by (simp add: finite-imagel G-def)

{ fix k assume k € G i
then obtain j where kij: k=n2-to-n (i,j)
by (auto simp only: G-def)

{

fix 12 assume 12: i2 # i
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{ fix k2 assume k2 € G i2
then obtain j2 where kij2: k2=n2-to-n (i2,j2)
by (auto simp only: G-def)

from i2 have (i2,j2) # (i,j) and (i2,j2) € UNIV
and (i,5) € UNIV by auto

with n2-to-n-inj have n2-to-n (i2,52) # n2-to-n (i,j)
by (rule inj-on-contraD)

with kij kij2 have k2 # k
by fast

hence k ¢ G i2
by fast

}
}
hence \j. i #j = Gin Gj={}
by fast
note eq G eq2 this
}
hence eq: \i. zi % x(A i)t = (O keGi. z1 k= x(Ck) t)
and G: Ai. finite (G i) and eq2: Ni. ¢ * measure M (A i) =
O ke(G ). 21 k x measure M (C k))
and Gdis: Nij. i1 #j = GinNn Gj={}.
from eq eq2 f a have ft = (D ieR. (D keG i. 21 k x x(Ck) t))
and a = (3 i€R. (3 ke(G 1). 21 k x measure M (C k)))
by auto
also have KG: K = (|Ji€R. G i)
by (auto simp add: K-def G-def)
moreover note G Gdis R
ultimately have f: ft = (O keK. 21 k = x(Ck) t)
and a: a = (D keK. z1 k x measure M (C k))
by (auto simp add: setsum-UN-disjoint)

{ fix )
from Aun R Adis have x(Bj) t = (D i€R. x(Bj N A i) t)
by (rule char-split)
hence yj * x(Bj)t = (O i€R. yj*x x(AiNn Bj)t)
by (simp add: setsum-times-real Int-commute)
also
{ fix ¢
have R=R and
yjxx(Ain Bj)t=(let k=n2-to-n(i,j) in 22 k x x(C k) t)
by (auto simp add: C-def 22-def Let-def n2-to-n-inj n-to-n2-def)
}
hence ... = (> i€R. let k=n2-to-n (i,j) in 22 k = x(Ck) t)
by (rule setsum-cong)
also from R have ... = (> ke(Hj). 22k = x(Ck) t)
by (simp add: H-def Let-def setsum-image o-def)
finally have eq: yj « x(Bj) t = O_ ke Hj. 22k x x(Ck) t) .
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from ms Aun R Adis have measure M (B j) =
(> i€R. measure M (B j N A 1))
by (rule measure-split)
hence y j * measure M (B j) = (D i€R. yj * measure M (A i N B j))
by (simp add: setsum-times-real Int-commute)
also
{ fix ¢
have R=R and y j * measure M (A i N Bj) =
(let k=n2-to-n(i,j) in 22 k * measure M (C'k))
by (auto simp add: C-def 22-def Let-def n2-to-n-inj n-to-n2-def)
}
hence ... = () i€R. let k=n2-to-n(i,j) in 22 k * measure M (C k))
by (rule setsum-cong)
also from R have ... = (> ke(H j). 22 k * measure M (C k))
by (simp add: H-def Let-def setsum-image o-def)
finally have eq2:
y j * measure M (B j) = O ke(H j). 22 k * measure M (C k)) .

from R have H: finite (H j)
by (simp add: finite-imagel H-def)

{ fix k assume k € Hj
then obtain i where kij: k=n2-to-n (i,j)
by (auto simp only: H-def)
{ fix j2 assume j2: j2 # j
{ fix k2 assume k2 € H j2
then obtain i2 where kij2: k2=n2-to-n (i2,j2)
by (auto simp only: H-def)

from j2 have (i2,j2) # (i,j) and (i2,j2) € UNIV and (i,j) € UNIV
by auto
with n2-to-n-inj have n2-to-n (i2,j2) # n2-to-n (i,j)
by (rule inj-on-contraD)
with kij kij2 have k2 # k
by fast
}

hence k ¢ H j2
by fast
}
}
hence A\i. i #j = HiNHj =}
by fast
note eq H eq2 this
}
hence eq: \j. yj*x(Bj)t= (O keHj. 22k * x(Ck) t)
and H: Ai. finite (H i) and eq2: \j. y j * measure M (B j) =
(3" ke(Hj). 22 k x measure M (C'k))
and Hdis: Nij. i #j = HinHj={}.
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from eq g have gt = (3_j€S. (O keHj. 22k x x(Ck) t))
by simp

also from eg2 b have b = (>_jeS. (3 ke(H j). 22 k * measure M (C k)))
by simp

moreover have K = (|Jj€S. Hj)
by (auto simp add: K-def H-def)

moreover note H Hdis S

ultimately have g: gt = (Y k€K. 22k x x(Ck) t) and K: finite K
and b: b = (D keK. 22 k * measure M (C'k))
by (auto simp add: setsum-UN-disjoint)

{ fix i
from Bun have ((JkeGi. Ck)= A1
by (simp add: G-def C-def n-to-n2-def n2-to-n-inj)

}
with Aun have (|Ji€R. (Jk€eG i. Ck)) = UNIV

by simp

hence (|Jke(JieR. Gi). Ck) = UNIV
by simp

with KG have Kun: (Jk€eK. Ck) = UNIV
by simp

note f g a b Kun K

}

hence f: f = (M. Qo keK. z1 k = x(Ck) t))
and ¢g: g = (At. (O keK. 22k x x(Ck) 1))
and a: a = (D keK. z1 k x measure M (C k))
and b: b = (O keK. 22 k « measure M (C' k))
and Kun: UNION K C = UNIV and K: finite K
by (auto simp add: ext)

note fgab K
moreover
{ fix k1 k2 assume kI1€K and k2€K and diff: k1 # k2
with K-def obtain i1 jI i2 j2 where
RS:i1 e RNi2e€ RANj1I€eSN2esS
and k1: kI = n2-to-n (il,j1) and k2: k2 = n2-to-n (i2,j2)
by auto

with diff have (i1,j1) # (i2,52)
by auto

with RS Adis Bdis k1 k2 have C kI N C k2 = {}
by (simp add: C-def n-to-n2-def n2-to-n-inj) fast

}

moreover
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{ fix k assume k € K
with K-def obtain i j where R: i € Rand S:j € §
and k: k = n2-to-n (4,j)
by auto
with Ams Bms have A i € measurable-sets M and B j € measurable-sets M
by auto
with ms have A i N B j € measurable-sets M
by (simp add: measure-space-def sigma-algebra-inter)
with k£ have C k € measurable-sets M
by (simp add: C-def n-to-n2-def n2-to-n-inj)
}

moreover note Kun

moreover from z have nonnegative z1
by (simp add: zI1-def nonnegative-def)
moreover from y have nonnegative 22
by (simp add: z2-def nonnegative-def)
ultimately show ?thesis by blast
qged
qed

Additivity and monotonicity are now almost obvious, the latter trivially
implying uniqueness.

lemma assumes ms: measure-space M and a: a € sfis f M and b: b € sfis g M
shows sfis-add: a+b € sfis (Aw. fw + g w) M
proof —
from prems have
321 22CK. f= (M Y ie(K:nat set). z1 4 % x(C i) t) A
g=(At. Y ieK. 220+« x(Ci)t) N a= (D i€K. z1 i % measure M (C 1))
ANb=(>ieK. 22 i x measure M (C 1))
A finite K AN (VieK.VjeK.i#j — Cin Cj={})
A (Vi € K. Ci € measurable-sets M) A (Ji€K. C i) = UNIV
A nonnegative z1 N nonnegative z2
by (rule sfis-present)

then obtain z1 22 C' K where f: f = (A\t. > ie(K::nat set). z1 i x x(C i) t)
and ¢g: g = (Mt. Y i€K. 220 % x(C1) t)
and a2: a = (Y i€K. z1 i *x measure M (C 7))
and b2: b = (> i€K. 22 i x measure M (C 1))
and CK: finite K N (VieK. VjeK. i #j — Cin Cj={}) A
(VieK. Ci € measurable-sets M) AN UNION K C = UNIV
and z1: nonnegative z1 and 22: nonnegative z2
by auto
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{ fix ¢
from f g have
ft+gt=04€K. 21ixx(Ci)t)+ O i€K. 2214 x x(C1i) t)

by simp

also have ... = (D i€K. z1 i x x(C i) t + 220 % x(C i) t)
by (rule setsum-addf[ THEN sym))

also have ... = (DJi€K. (21 i + 221i) * x(C i) t)

by (simp add: real-add-mult-distrib)
finally have ft + gt = (D_i€K. (21 i + 221) = x(C 1) ¢) .
}

also
{ fix ¢
from zI have 0 < z1 ¢
by (simp add: nonnegative-def)
also from z2 have 0 < 22 ¢
by (simp add: nonnegative-def)
ultimately have 0 < 21t + 22t
by (rule real-le-add-order)
}

hence nonnegative (Aw. z1 w + 22 w)
by (simp add: nonnegative-def ext)

moreover note CK

ultimately have
(o ieK. (214 + 2214) * measure M (C i) € sfis (Aw. fw+ gw) M
by (auto simp add: sfis.base)

also

from a2 b2 have a+b = (D> _i€K. (21 i + 22 i) * measure M (C 7))
by (simp add: setsum-addf[THEN sym] real-add-mult-distrib)

ultimately show ?thesis by simp

qed

lemma assumes ms: measure-space M and a: a € sfis f M
and b: b € sfis g M and fg: f<g
shows sfis-mono: a < b

proof —

from ms a b have
32122 CK. f= (Mt Y ie(K:unat set). z14 % x(Ci)t) A
g=(At. Y i€eK. 220+ x(Ci) t) Na= (D ieK. 21 i x measure M (C 1))
ANb= (> i€K. 22 i x measure M (C 1))
A finite K A (VieK. VjeK. i #j — Cin Cj = {})
A (Vi e K. Ci € measurable-sets M) A (Ji€eK. C i) = UNIV
A nonnegative z1 N nonnegative z2
by (rule sfis-present)
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then obtain z1 22 C K where f: f = (A\t. > i€(K::nat set). z1 i % x(C i) t)
and g: g = (At. D i€K. 224 x x(C14) t)
and a2: a = (Y i€K. z1 i * measure M (C 7))
and b2: b = (> i€K. 22 i x measure M (C 1))
and K: finite K and dis: (VieK.VjeK.i#j— Cin Cj = {})
and Cms: (VieK. C i € measurable-sets M) and Cun: UNION K C = UNIV
by auto

{ fix i assume iK: i € K
{ assume C'i # {}

then obtain ¢ where ti: t € C'i
by auto

hence z1 i = z1 i x x(Ci) t
by (simp add: characteristic-function-def)

also

from dis iK ti have K—{i} = K—{i}
and A\z. 2 e K—{i} = z1zxx(Cz)t=10
by (auto simp add: characteristic-function-def)

hence 0 = (D keK—{i}. z1 k x x(Ck) t)
by (simp only: setsum-0 setsum-cong)

with K iK have z1 i x x(C i) t = (O keK. z1 k * x(Ck) t)
by (simp add: setsum-diff-real)

also

from fg f g have (> i€K. z1 i x x(C i) t) < (D i€K. 2214 x x(C i) t)
by (simp add: le-fun-def)

also

from dis iK ti have K—{i} = K—{i}
and A\z. 2 € K—{i} = 22z +x x(Cz)t=10
by (auto simp add: characteristic-function-def)

hence 0 = (D keK—{i}. 22 k = x(Ck) t)
by (simp only: setsum-0 setsum-cong)

with K iK have (D k€K. 22k x x(Ck) t) = 224 % x(C1i) t
by (simp add: setsum-diff-real)

also

from ti have ... = 22 i
by (simp add: characteristic-function-def)

finally

have z1 i < 221 .

}
hence h: Ci # {} = 21 i < 221 .

have 21 i * measure M (C i) < 22 i * measure M (C i)
proof (cases C i # {})
case Fulse



THEORY Integral 52

with ms show ?thesis

by (auto simp add: measure-space-def positive-def)

next
case True
with h have z1 1 < 221
by fast
also from iK ms Cms have 0 < measure M (C i)
by (auto simp add: measure-space-def positive-def )
ultimately show %thesis
by (simp add: real-mult-le-monol)
qed
}
with a2 b2 show ?thesis
by (simp add: setsum-mono-real)
qed

lemma sfis-unique:
assumes ms: measure-space M and a: a € sfis f M and b: b € sfis f M
shows a=0b using prems
proof —
have f<f by (simp add: le-fun-def)
with prems have a<b and b<a
by (auto simp add: sfis-mono)
thus ?thesis by simp
qed

The integral of characteristic functions, as well as the effect of multiplication
with a constant, follows directly from the definition. Together with a gener-
alization of the addition theorem to setsums, a less restrictive introduction
rule emerges, making normal forms obsolete. It is only valid in measure
spaces though.

lemma sfis-char:
assumes ms: measure-space M and mA: A € measurable-sets M
shows measure M A € sfis xYA M

lemma sfis-times:
assumes a: a € sfis f M and z: 0<z
shows zxa € sfis (Aw. zxf w) M

lemma assumes ms: measure-space M
and a: VieS. a i € sfis (fi) M and S: finite S
shows sfis-setsum: (3. i€S. a i) € sfis (At. Y i€S. fit) M
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lemma sfis-intro:
assumes ms: measure-space M and Ams: Vi € S. A i € measurable-sets M
and nn: nonnegative x and S: finite S
shows (> i€S. z i x measure M (A i)) €
sfis (At. > i€(S:nat set). x i x x(A i) t) M
proof —
{ fix ¢ assume iS: i € S
with ms Ams have measure M (A i) € sfis x(A i) M
by (simp add: sfis-char)
with nn have z i * measure M (A i) € sfis (At. z i * x(4 i) t) M
by (simp add: nonnegative-def sfis-times)
}
with ms S show ?thesis
by (simp add: sfis-setsum)
qged

That is nearly all there is to know about simple function integral sets. It
will be useful anyway to have the next two facts available.

lemma sfis-nn:
assumes f: a € sfis f M
shows nonnegative f

lemma sfis-rv:
assumes ms: measure-space M and f: a € sfis f M
shows f € rv M
sorry

3.2.2 Nonnegative Functions

There is one more important fact about sfis, easily the hardest one to see.
It is about the relationship with monotone convergence and paves the way
for a sensible definition of nnfis, the nonnegative function integral sets, en-
abling monotonicity and thus uniqueness. A reasonably concise formal proof
could fortunately be achieved in spite of the nontrivial ideas involved — com-
pared for instance to the intuitive but hard-to-formalize sfis-present. A small
lemma is needed to ensure that the inequation, which depends on an arbi-
trary z strictly between 0 and 1, carries over to z = 1, thereby eliminating
z in the end.

lemma real-le-mult-sustain:
assumes zr: N\z. [0<z; 2<1] = zxr <y
shows r < y

sorry
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lemma sfis-mon-conv-mono:
assumes uf: ulf and zu: An. z n € sfis (un) M and zy: =1y
and sr: r € sfis s M and sf: s < f and ms: measure-space M
shows r < y using sr

proof cases
case (base A S a)

{ fix z assume znn: 0<(z:real) and z1: z<1
def B = (An. {w. z¢s w < un w})

{ fixn
note ms also
from zu have zu: z n € sfis (un) M .
hence nnu: nonnegative (u n)
by (rule sfis-nn)
from ms zu have un € rv M
by (rule sfis-rv)
moreover from ms sr have s € rv M
by (rule sfis-rv)
with ms have (Aw. zxs w) € rv M
by (simp add: const-rv rv-times-rv)
ultimately have B n € measurable-sets M
by (simp add: B-def rv-le-rv-measurable)
with prems have ABms: Vi€S. (A i N B n) € measurable-sets M
by (auto simp add: measure-space-def sigma-algebra-inter)

from zu have zx(>_i€S. a i x measure M (Ai N Bn)) <zn
proof (cases)
case (base C' R ¢)
{ fix t
{ fix i
have S=S and ai x x(AiNBn)t=x(Bn)tx(ai=*x(Ai)t)
by (auto simp add: characteristic-function-def) }
hence (> i€S. aix x(AiN Bn)t)=
(>oieS. x(Bn) tx (a1 xx(41)1t))
by (rule setsum-cong)
hence zx(> i€S. ai * x(AiN Bn) t) =
z#(D>_i€S. x(Bn) t* (aix* x(41i)t))
by simp
also have ... =z« x(Bn) t x (D i€S. ai x x(4 1) t)
by (simp add: setsum-times-real[ THEN sym))
also
from prems have nonnegative s
by (simp add: sfis-nn)

o4
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with nnu B-def prems
have z * x(Bn) t * (3 i€S. aixx(Ai)t)<unt

by (auto simp add: characteristic-function-def nonnegative-def)
finally have z*x(} i€S. ai*x x(AiNBn)t)<unt.

}

also
from prems ABms have
z#(>41€S. a i * measure M (A i N B n)) €
sfis (At. z#%(D>Ji€S. aix x(AiNBn)t) M
by (simp add: sfis-intro sfis-times)
moreover note zru ms
ultimately show “thesis
by (simp add: sfis-mono le-fun-def)
qed
note this ABms
}
hence 1: An. z x (D i€S. ai * measure M (AiNBn)) <zn
and ABms: An.Vi€S. A i N Bn € measurable-sets M .

have Bun: (An. B n)TUNIV
proof (unfold set-mon-conv, rule)
{fixn
from uf have um: u n < u (Suc n)
by (simp add: realfun-mon-conv)
{
fix w
assume zxs w < un w
also from um have v n w < u (Suc n) w
by (simp add: le-fun-def)
finally have z+s w < u (Suc n) w .
}
hence B n < B (Suc n)
by (auto simp add: B-def)
}
thus Vn. Bn C B (Suc n)
by fast

{ fixt
have In. zxst < unt
proof (cases st = 0)
case True
fix n
from True have zxst = 0
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by simp
also from zu have nonnegative (u n)
by (rule sfis-nn)
hence 0 < unt
by (simp add: nonnegative-def)
finally show ?thesis
by rule

next
case Fulse
from sr have nonnegative s
by (rule sfis-nn)
hence 0 < st
by (simp add: nonnegative-def)
with False have 0 < st
by arith
with 21 have z+st < Ixst
by (simp only: real-mult-less-monol)
also from sf have ... < ft
by (simp add: le-fun-def)
finally have z x st < f¢.

also from uf have (Am. um t)f¢
by (simp add: realfun-mon-conv-iff)

ultimately have 3n.Vm. n<m — zxst < umt
by (simp add: real-mon-conv-outgrow)

hence In. zxst < unt
by fast

thus ?thesis
by (auto simp add: order-less-le)

qed

hence dn. t € Bn
by (simp add: B-def)
hence t € (Un. B n)
by fast
}
thus UNIV=(Jn. B n)
by fast
qed

{ fix j assume jS: j € S
note ms
also

56
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from jS ABms have An. A j N B n € measurable-sets M
by auto

moreover

from Bun have (An. A j N B n)1(4 j)
by (auto simp add: set-mon-conv)

ultimately have (An. measure M (A j N B n)) ————> measure M (A j)
by (rule measure-mon-conv)

hence (An. a j * measure M (A j N Bn)) ————> aj * measure M (A j)
by (simp add: LIMSEQ-const LIMSEQ-mult)
}
hence (An. Y j€S. aj * measure M (A j N B n))
————> (>2j€S8. aj *x measure M (A 7))
by (rule limseg-setsum)
hence (An. zx (> j€S. a j * measure M (A j N B n)))
————> 2zx(D>_J€S. a j * measure M (A j))
by (simp add: LIMSEQ-const LIMSEQ-mult)

with 1 prems have zxr < y
by (auto simp add: LIMSEQ-le real-mon-conv)
}
hence zr: A\z. [0<z; 2<1] = z*xr < y.
thus ?thesis
by (rule real-le-mult-sustain)
qed

Now we are ready for the second step. The integral of a monotone limit
of functions is the limit of their integrals. Note that this last limit has to
exist in the first place, since we decided not to use infinite values. Backed
by the last theorem and the preexisting knowledge about limits, the usual
basic properties are straightforward.

consts
nnfis:: (‘a = real) = ('a set set x ('a set = real)) = real set
inductive nnfis f M

intros

base: [ulf; An. zn € sfis (un) M; zly] = y € nnfis f M

lemma sfis-nnfis:
assumes s: a € sfis f M
shows a € nnfis f M

lemma nnfis-times:
assumes ms: measure-space M and a: a € nnfis f M and nn: 0<z
shows zxa € nnfis (Aw. zxf w) M
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lemma nnfis-add:
assumes ms: measure-space M and a: a € nnfis f M and b: b € nnfis g M
shows a+b € nnfis Aw. fw + gw) M

lemma assumes ms: measure-space M and a: a € nnfis f M
and b: b € nnfis g M and fg: f<g
shows nnfis-mono: ¢ < b using «a
proof (cases)
case (base u x y)
from b show ?thesis
proof (cases)
case (base v 1 8)
{ fix m
from prems have um < f
by (simp add: realfun-mon-conv-le)
also note fg finally have um < g .
with prems have vlg and An. rn € sfis (vn) M and rs
and z m € sfis (um) M and u m < g and measure-space M
by simp-all
hence zm < s
by (rule sfis-mon-conv-mono)
}
with prems have y < s
by (auto simp add: real-mon-conv LIMSEQ-le-const2)
thus ?thesis using prems
by simp
qged
qed

corollary nnfis-unique:
assumes ms: measure-space M and a: a € nnfis f M and b: b € nnfis f M
shows a=b

There is much more to prove about nonnegative integration. Next up is
a classic theorem by Beppo Levi, the monotone convergence theorem. In
essence, it says that the introduction rule for nnfis holds not only for se-
quences of simple functions, but for any sequence of nonnegative integrable
functions. We prove it by exhibiting a sequence of simple functions that
converges to the same limit as the original one and then applying the intro-
duction rule.
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The construction and properties of the sequence are slightly intricate. By
definition, for any f,, in the original sequence, there is a sequence (U )men
of simple functions converging to it. The nth element of the new sequence
is the upper closure of the nth elements of the first n sequences.

constdefs
upclose:: ('a = real) = (‘a = real) = ('a = real)
upclose f g = (At. maz (ft) (gt))

consts
mon-upclose-help :: nat = (nat = nat = 'a = real) = nat = ('a = real) (muh)

primrec
muh 0 um=um0
muh (Suc n) u m = upclose (uw m (Suc n)) (muh n u m)

constdefs
mon-upclose :: (nat = nat = 'a = real) = nat = ('a = real) (mu)
mu um = muh mum

lemma upclose-sfis:
assumes f: a € sfis f M and g: b € sfis ¢ M and ms: measure-space M
shows Jc. ¢ € sfis (upclose fg) M
sorry

lemma mu-sfis:
assumes u: Am n. Ja. a € sfis (u m n) M and ms: measure-space M
shows Jc. Vm. ¢ m € sfis (muum) M

sorry

lemma mu-help:
assumes uf: An. (Am. u m n)](f n) and fh: fTh
shows (mu u)Th and An. muun < fn
proof —
show mu-le: An. muun < fn
proof (unfold mon-upclose-def)
fix n
show Am. muhnum < fn
proof (induct n)
case (0 m)
from uf have um 0 < f 0
by (rule realfun-mon-conv-le)
thus “case by simp
next
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case (Suc n m)
{ fixt
from Suc have muhnumt < fnt
by (simp add: le-fun-def)
also from fh have fnt < f (Sucn) t
by (simp add: realfun-mon-conv-iff real-mon-conv)
also from uf have (Am. u m (Suc n) t)T(f (Suc n) t)
by (simp add: realfun-mon-conv-iff)
hence um (Suc n) t < f (Sucn) t
by (rule real-mon-conv-le)
ultimately have muh (Suc n) umt < f (Sucn) t
by (simp add: upclose-def)
}
thus ?case by (simp add: le-fun-def)
qed
qed

{ fix ¢
{fix mn
have muh n v m t < muh (Sucn) umt
by (simp add: upclose-def) arith

}

hence posi: Am n. muh numt < muh (Sucn) umt.

from uf have uiso: Amn. umnt < u (Sucm) nt
by (simp add: realfun-mon-conv-iff real-mon-conv)

have iso: An. muunt < muu (Sucn)t
proof (unfold mon-upclose-def)
fix n
have Am. muh num t < muh n u (Suc m) t
proof (induct n)
case 0 from wuiso show ?case
by (simp add: upclose-def le-mazx-iff-disj)
next
case (Suc n m)

from Suc have muh n u m t < muh n u (Suc m)

.

t
also from wuiso have u m (Suc n) t < u (Suc m) (Suc n) t

ultimately show ?case
by (auto simp add: upclose-def le-maz-iff-disj)
qed
note this [of n] also note pos! [of n Suc n)
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finally show muh n u nt < muh (Suc n) u (Suc n) t .
qed

also

{ fix n
from mu-le [of n]
have muunt < fnt
by (simp add: le-fun-def)
also
from fh have (An. fn t)Tht
by (simp add: realfun-mon-conv-iff)
hence fnt < ht
by (rule real-mon-conv-le)
finally have muunt < ht.

}

ultimately have 31. (An. muun )i ALl <ht
by (rule real-mon-conv-bound)

then obtain | where
conv: (An. mu un t)7l and th: | < ht
by (force simp add: real-mon-conv-bound)

{ fix n:nat
{ fix m assume le: n < m
henceumnt < muumt
proof (unfold mon-upclose-def)
haveumnt < muhnumt
by (induct n) (auto simp add: upclose-def le-maz-iff-disj)
also
from pos! have Vn. muh n umt < muh (Suc n) umt
by simp
hence muh n um t < muh (n+(m—n)) umt
by (rule lemma-f-mono-add)
with le have muhnum it < muh mumt
by simp
finally show v mnt < muh mu mt.
qed
}
hence AN.Vm. N<m —umnt<muumt
by fast
also from uf have (Am. umnt) ———> fnt
by (simp add: realfun-mon-conv-iff real-mon-conv)
moreover
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from conv have (An. muunt) ————>1
by (simp add: real-mon-conv)
ultimately have fnt <[
by (simp add: LIMSEQ-le)
}
also from fh have (An. fnt) ————> ht
by (simp add: realfun-mon-conv-iff real-mon-conv)
ultimately have h t <[
by (simp add: LIMSEQ-le-const2)

with [h have | = h t
by simp
with conv have (An. mu u n t)7(h t)
by simp
}
with mon-upclose-def show mu uTh
by (simp add: realfun-mon-conv-iff )
qed

theorem nnfis-mon-conv:
assumes fh: fTh and zf: An. zn € nnfis (fn) M and zy: zly
and ms: measure-space M
shows y € nnfis h M
proof —
def u = (An. SOME u. ul(fn) A (Ym. Ja. a € sfis (um) M))
{ fix n
from zf[of n] have Ju. u(fn) A (Vm. Ja. a € sfis (um) M) (is Jz. ?P )
proof (cases)
case (base  a b)
hence r1(f n) and Am. Ja. a € sfis (r m) M by auto
thus ?thesis by fast
qed
hence ?P (SOME z. 7P x)
by (rule somel-ex)
with u-def have 7P (u n)
by simp
} also
def urev = (Am n. u n m)
ultimately have uf: An. (Am. urev m n)1(f n)
and sf: An m. Ja. a € sfis (urev m n) M
by auto

from uf fh have up: mu urevTh
by (rule mu-help)
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from uf fh have le: An. mu urevn < fn
by (rule mu-help)

from sf ms obtain ¢ where sf2: Am. ¢ m € sfis (mu urev m) M
by (force simp add: mu-sfis)

{ fix m
from sf2 have ¢ m € nnfis (mu urev m) M
by (rule sfis-nnfis)
with ms le[of m] zf[of m] have ¢ m < x'm
by (simp add: nnfis-mono)
} hence ¢ < z by (simp add: le-fun-def)
also
{ fix m note ms also
from up have mu urev m < mu urev (Suc m)
by (simp add: realfun-mon-conwv)
moreover from sf2 have ¢ m € sfis (mu urev m) M
and ¢ (Suc m) € sfis (mu urev (Suc m)) M
by fast
ultimately have ¢ m < ¢ (Suc m)
by (simp add: sfis-mono)
}
moreover note zy
ultimately have 31. ¢TI ANl <y
by (simp add: real-mon-conv-dom)
then obtain [ where cl: ¢l and ly: | < y
by fast

from up sf2 cl have int: | € nnfis h M
by (rule nnfis.base)

{ fixn
from fh have fn < h
by (rule realfun-mon-conv-le)
with ms zf[of n] int have z n < |
by (rule nnfis-mono)
} with zy have y <[
by (auto simp add: real-mon-conv LIMSEQ-le-const2)

with ly have I=y
by simp
with int show ?thesis
by simp
qed
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Establishing that only nonnegative functions may arise this way is a trivi-
ality.

lemma nnfis-nn: assumes a € nnfis f M
shows nonnegative f

3.2.3 Integrable functions

Before we take the final step of defining integrability and the integral oper-
ator, we should first clarify what kind of functions we are able to integrate
up to now.

It is easy to see that all nonnegative integrable functions are random vari-
ables.

lemma nnfis-rv:
assumes ms: measure-space M and f: a € nnfis f M
shows f € rv M

sorry

The converse does not hold of course, since there are measurable functions
whose integral is infinite. Regardless, it is possible to approximate any
measurable function using simple step-functions. This means that all non-
negative random variables are quasi integrable, as the property is sometimes
called, and brings forth the fundamental insight that a nonnegative func-
tion is integrable if and only if it is measurable and the integrals of the
simple functions that approximate it converge monotonically. Technically,
the proof is rather complex, involving many properties of real numbers.

lemma rv-mon-conv-sfis:
assumes ms: measure-space M and f: f € ro M
and nn: nonnegative f
shows Ju z. ulf A (Vn. zn € sfis (un) M)
sorry

The following dominated convergence theorem is an easy corollary. It can
be effectively applied to show integrability.

corollary assumes ms: measure-space M and f: f € rv M
and b: b € nnfis g M and fg: f<g and nn: nonnegative f
shows nnfis-dom-conv: 3a. a € nnfis f M N a < b using b
proof (cases)
case (base v r z)
from ms f nn have Ju z. ulf A (Vn. zn € sfis (un) M)
by (rule rv-mon-conv-sfis)
then obtain u z where uf: ulf and zu: An. zn € sfis (un) M
by fast
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{ fix n

from uf have un < f
by (rule realfun-mon-conv-le)

also note fg

also

from 2u have z n € nnfis (un) M
by (rule sfis-nnfis)

moreover note b ms

ultimately have le: x n < b
by (simp add: nnfis-mono)

from uf have u n < u (Suc n)
by (simp only: realfun-mon-conv)
with ms zulof n] zulof Suc n] have z n < z (Suc n)
by (simp add: sfis-mono)
note this le
}
hence Ja. zTa A a <)
by (rule real-mon-conv-bound)
then obtain a where za: zTa and ab: a < b
by auto

from uf zu za have a € nnfis f M
by (rule nnfis.base)
with ab show %thesis
by fast
qed

Speaking all the time about integrability, it is time to define it at last.

constdefs
integrable:: ('a = real) = ('a set set x ('a set = real)) = bool

integrable f M = measure-space M A
(z. z € nnfis (pp f) M) AN By. y € nnfis (np f) M)

integral:: ('a = real) = ('a set set * ('a set = real)) = real ([ - 0-)
integrable f M = [ f OM = (THE i. i € nnfis (pp f) M) —
(THE j. j € nnfis (np f) M)

So the final step is done, the integral defined. The theorems we are already
used to prove from the earlier stages are still missing. Only now there are
always two properties to be shown: integrability and the value of the integral.
Isabelle makes it possible two have both goals in a single theorem, so that the
user may derive the statement he desires. Two useful lemmata follow. They
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help lifting nonnegative function integral sets to integrals proper. Notice
how the dominated convergence theorem from above is employed in the
latter.

lemma nnfis-integral:
assumes nn: a € nnfis f M and ms: measure-space M
shows integrable f M and [ f O M = a
proof —
from nn have nonnegative f
by (rule nnfis-nn)
hence pp f = f and 0: np f = (\&. 0)
by (auto simp add: nn-pp-np)
with nn have a: a € nnfis (pp f) M
by simp
have 0<(0::real)
by (rule real-le-refl)
with ms nn have 0xa € nnfis (At. 0xft) M
by (rule nnfis-times)
with 0 have 02: 0 € nnfis (np f) M
by simp
with ms a show integrable f M
by (auto simp add: integrable-def)
also
from a ms have (THE i. i € nnfis (pp f) M) = a
by (auto simp add: nnfis-unique)
moreover
from 02 ms have (THE i. i € nnfis (np f) M) = 0
by (auto simp add: nnfis-unique)
ultimately show [ f 0 M =a
by (simp add: integral-def)
qed

lemma nnfis-minus-nnfis-integral:
assumes a: a € nnfis f M and b: b € nnfis g M
and ms: measure-space M
shows integrable (\t. ft — gt) M and [ (Mt. ft —gt)OM =a — b
proof —
from ms a b have (\t. ft —gt)erv M
by (auto simp only: nnfis-rv ro-minus-rv)
hence prv: pp (At. ft — gt) € ro M and nrv: np (At. ft —gt) € rvM
by (auto simp only: pp-np-rv)



THEORY Integral 67

have nnp: nonnegative (pp (At. ft — g t))
and nnn: nonnegative (np (At. ft — g t))
by (simp-all add: nonnegative-def positive-part-def negative-part-def)

from ms a b have fg: a+b € nnfis (\t. ft + gt) M
by (rule nnfis-add)

from a b have nnf: nonnegative f and nng: nonnegative g
by (simp-all only: nnfis-nn)

{ fix t
from nnf nng have 0 < ftand 0 < gt
by (simp-all add: nonnegative-def)
hence (pp (At. ft —gt))t < ft+gtand (np (A\t. ft —gt))t<ft+gt
by (simp-all add: positive-part-def negative-part-def)
}
hence (pp (At. ft —gt)) < (At. ft+gt)
and (np (Mt. ft —gt)) < (At. ft+g1)
by (simp-all add: le-fun-def)
with fg nnf nng prv nrv nnp nnn ms
have 31. 1 € nnfis (pp (M\t. ft —gt)) M ANl < a+d
and 3k. k € nnfis (np (M. ft —gt) M ANk < a+b
by (auto simp only: nnfis-dom-conv)
then obtain [ k where [: [ € nnfis (pp (A\t. ft —gt)) M
and k: k € nnfis (np (M. ft —gt)) M
by auto
with ms show i: integrable (At. ft — gt) M
by (auto simp add: integrable-def)

{ fix t
have ft — gt = (pp (M. ft —gt)t —(np (At. ft —gt))t
by (rule f-plus-minus)

hence ft + (np (At. ft —gt))t =gt + (pp (M. ft —gt))t
by arith
}
hence (At. ft + (np (At. ft —gt)) ) =
(At.gt+ (pp (M. ft—gt))t)
by (rule ext)
also
from ms a k b | have a+k € nnfis (At. ft + (np (M\t. ft —gt)) t) M
and b+! € nnfis (At. gt + (pp (Mt ft —gt)) t) M
by (auto simp add: nnfis-add)
moreover note ms



THEORY Integral 68

ultimately have a+k = b+I
by (simp add: nnfis-unique)

hence [—k=a—b by arith

also

from & [ ms have (THE i. i € nnfis (pp (At. ft —gt)) M) =1
and (THE i. i € nnfis (np (M\t. ft —gt)) M) =k
by (auto simp add: nnfis-unique)

moreover note ;¢

ultimately show [ (Mt. ft —gt) O M =a — b
by (simp add: integral-def)

qed

Armed with these, the standard integral behavior should not be hard to
derive. Mind that integrability always implies a measure space, just like
random variables did in 2.2.

theorem integrable-rv:
assumes int: integrable f M
shows f € v M
sorry

theorem integral-char:
assumes ms: measure-space M and mA: A € measurable-sets M
shows [ xA 0 M = measure M A and integrable xA M

theorem integral-add:
assumes f: integrable f M and g: integrable g M
shows integrable (At. ft + gt) M
and [ (Mt. ft+gt)OM = [ fOM + [ g OM
proof —
defu=(At.ppft+ppgt)
defv=(At.npft+npgt)

from f obtain pf nf where pf: pf € nnfis (pp f) M
and nf: nf € nnfis (np f) M and ms: measure-space M
by (auto simp add: integrable-def)

from g obtain pg ng where pg: pg € nnfis (pp g) M
and ng: ng € nnfis (np g) M
by (auto simp add: integrable-def)

from ms pf pg u-def have
u: pf+pg € nnfis u M
by (simp add: nnfis-add)
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from ms nf ng v-def have
v: nf+ng € nnfis v M
by (simp add: nnfis-add)

{ fix ¢
from u-def v-def have ft + gt =ut — vt
by (simp add: positive-part-def negative-part-def)
}

hence wvf: (\t. ut —vt) = (M. ft+ gt)
by (simp add: ext)

from u v ms have integrable (A\t. ut — vit) M
by (rule nnfis-minus-nnfis-integral)

with u-def v-def uvf show integrable (At. ft + gt) M
by simp

from pf nf ms have [ (At. pp ft — np ft) OM = pf—nf
by (rule nnfis-minus-nnfis-integral)

hence [ f OM = pf—nf
by (simp add: f-plus-minus| THEN sym))

also

from pg ng ms have [ (A\t. pp gt — np g t) OM = pg—ng
by (rule nnfis-minus-nnfis-integral)

hence [ g OM = pg—ng
by (simp add: f-plus-minus| THEN sym])

moreover

from u v ms have [ (M. ut — vt) OM = pf + pg — (nf + ng)
by (rule nnfis-minus-nnfis-integral)

with uwuf have [ (At. ft + g t) OM = pf—nf + pg—ng
by simp

ultimately

show [ (Mt. ft+gt)OM = [ fOM + [ g OM
by simp

qed

theorem integral-mono:
assumes f: integrable f M
and g: integrable g M and fg: f<g
shows [ fOM < [ g OM
proof —
from f obtain pf nf where pf: pf € nnfis (pp f) M
and nf: nf € nnfis (np f) M and ms: measure-space M
by (auto simp add: integrable-def)
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from ¢ obtain pg ng where pg: pg € nnfis (pp g) M
and ng: ng € nnfis (np g) M
by (auto simp add: integrable-def)

{ fix ¢
from fg have ft < gt
by (simp add: le-fun-def)
hence pp ft <ppgtand np gt < np ft
by (auto simp add: positive-part-def negative-part-def )
}
hence pp f < ppgand np g < np f
by (simp-all add: le-fun-def)
with ms pf pg ng nf have pf < pg and ng < nf
by (simp-all add: nnfis-mono)

also
from ms pf pg ng nf have (THE i. i € nnfis (pp f) M) = pf
and (THE i. i € nnfis (np f) M) = nf
and (THE i. i € nnfis (pp g) M) = pyg
and (THE i. i € nnfis (np g) M) = ng
by (auto simp add: nnfis-unique)
with f g have [ f OM = pf — nf
and [ g OM = pg — ng
by (auto simp add: integral-def)

ultimately show ?thesis
by simp
qed

theorem integral-times:
assumes int: integrable f M
shows integrable (At. axft) M and [ (At. axft) OM = ax| f OM

To try out our definitions in an application, only one more theorem is miss-
ing. The famous Markov-Chebyshev inequation is not difficult to arrive at
using the basic integral properties and may itself serve as a neat example
for applying them.

theorem assumes int: integrable f M and a: 0<a
and intp: integrable (A\z. |fz| “p) M
shows markov-ineq: law M f {a..} < [ (Az.|fz] ~p) M / (a"p)
proof —
from int have rv: f € rv M
by (rule integrable-rv)
hence ms: measure-space M
by (simp add: rv-def)
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from ms rv have ams: {w. a < fw} € measurable-sets M
by (simp add: rv-ge-iff)

from rv have (a"p)*law M f {a..} = (a"p)xmeasure M {w. a < fw}
by (simp add: distribution-def vimage-def)

also
from ms ams have int2: integrable x{w. a < fw} M
and eg2: ... = (a'p)x[ x{w.a < fw}d M

by (auto simp add: integral-char)
note eq2 also
from nt2 have int3: integrable (\t. (a"p)xx{w. a < fw} t) M
and eg3: ... = [ (At (a'p)sx{w. a < fw} t) O M
by (auto simp add: integral-times)
note eq3 also
{ fix t
from a have (a"p)sx{w. a < fw} ¢t < |ft| " p
proof (cases a < ft)
case Fulse
thus ?thesis
by (simp add: characteristic-function-def)
next
case True
with a have ¢ “p < (f¢t)" p
by (simp add: realpow-le)
also
have (ft)"p < |(ft) " p|
by arith
hence (/)" p < |f | " p
by (simp add: realpow-abs)
finally
show ?thesis
by (simp add: characteristic-function-def)
qed
}
with int3 intp have ... < [ (\z. [fz| "~ p) OM
by (simp add: le-fun-def integral-mono)

also
from a have 0 < a"p
by (rule realpow-gt-zero)
ultimately show ?thesis
by (simp add: pos-real-le-divide-eq real-mult-commute)
qed

end
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Chapter 4

Probabilistic Algorithms

To take up a point from the prologue, one major motive for formalizing
integration is to formalize expectation. Indeed, the expectation of a random
variable is nothing but its integral. This simple fact makes it possible to use
all the theorems about integration to manipulate expected values. In the
application I chose, only two properties are needed, namely additivity and
the Markov inequation. The latter gives rise to the so-called first moment
method. Before going into the details of the use case, a concrete probability
space is required.

4.1 The probability space

theory Imported = Measure+SupInf:

In this section, no single theorem is truly proven. Instead, as the theory!
title suggests, it imports some notions that were developed formally by Joe
Hurd [11] in the HOL theorem prover. They lay the foundations necessary to
reason about functional probabilistic programs. The way Hurd arranges for
this is by a monadic notation. Random is modeled by an infinite sequence
of boolean values (“coin flips”) that is passed around by the algorithms. We
introduce the type of sequences to this end, represented as functions from
the natural numbers to some basis type, which will always be the booleans
in what follows.

types ‘a seq = nat = 'a

There are some canonical operations on this type, reminiscent of the typical
list operations.

'The SupInf theory merely contains standard definitions of suprema and infima and is
therefore omitted.
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constdefs
shd:: 'a seq = 'a
shd s = s 0
stl:: 'a seq = 'a seq
stl s = s o Suc
sdest:: 'a seq = ('a x 'a seq)
sdest s = (shd s, stl s)

consts
stake:: nat = 'a seq = 'a list
sdrop:: nat = 'a seq = 'a seq
scons:: 'a = 'a seq = nat = 'a

primrec
stake 0 s =[]
stake (Suc n) s = shd s # stake n (stl s)

primrec
sdrop 0 s = s
sdrop (Suc n) s = sdrop n (stl s)

primrec
scons a s 0 = a
scons a s (Sucn) =sn

With sdest, a first probabilistic program has already been exhibited. In
general, randomized algorithms take the stream of random bits as an ex-
tra parameter and pass on the unused bits — still an infinite sequence —
as the second component of a result pair. This process is characteristic
of the so-called state-transformer monad, which is a standard method in
pure, i.e. stateless, functional languages. It can be hidden from the user by
function abstraction, employing the following two monadic operators.

constdefs
unit:: ‘a = 'b = (a x 'b)
unit = Pair

bind:: ('a = (b * 'a)) = (b= 'a = "c) = ('a = ¢
bind f g = (split g) o f

While the latter is the monadic equivalent of function composition, the for-
mer is used to lift values to the tuple form, just handing on the sequence
it is given. In conjunction with sdest, any useful probabilistic program may
be expressed via these primitives.

The name unit is the common term in monad theory and Hurd adopts it
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for this reason. It has already been given another meaning in Isabelle/HOL
though, whereas the corresponding function is known as Pair. This being a
rather descriptive name, we will stick to it instead.

Prior to generating the probability space of boolean sequences, the notion of
such a space has to be defined first. With it comes a change in terminology.
In this context, measurable sets are called events and measures probabilities.

constdefs
prob-space:: ('a set set x ('a set = real)) = bool
prob-space M = (measure-space M N measure M UNIV = 1)

consts
events:: ('a set set * ('a set = real)) = 'a set set
prob:: ('a set set * ('a set = real)) = ('a set = real)

translations
events == measurable-sets
prob == measure

The construction of a sensible probability measure and its sigma algebra
of measurable sets for boolean sequences — this is known as the Bernoulli
space — is a nontrivial feat. One begins by defining more or less obvious
probabilities on a set of sets called an algebra. An algebra is almost a sigma
algebra, but we require the union condition to hold for two? sets only.

This algebra with its premeasure, as it is named in mathematical litera-
ture, is then lifted to a sigma algebra including a measure that maintains
the original values on the primal sets. The process is performed noncon-
structively, involving a weaker version of Carathéodory’s extension theo-
rem, which states the existence of such a measure®. The technical details
are explained in the foregoing source.

consts
prefiz-seq:: 'a list = 'a seq
is-prefix:: 'a list = 'a list = bool

primrec
prefiz-seq (h#t) = scons h (prefiz-seq t)

primrec
is-prefic [| | = True
is-prefix (z#txs) | = (if =[] then False
else (x=hd 1) N is-prefiz xzs (tl 1))

2and thus for finitely many
3There are stronger forms that permit lifting from semirings, for instance. The most
famous application is the construction of the Lebesgue measure.
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constdefs
prefiz-set:: 'a list = 'a seq set
prefiz-set | = {s. stake (length 1) s = 1}

embed:: 'a list list = 'a seq set
embed Il = |J1 € set ll. prefiz-set |

algebra:: 'a set set = bool
algebra A ==
{}eAAN{Mac A —ac ANKNbe A aUb e A))

constdefs
bernoulli-algebra:: bool seq set set
bernoulli-algebra = {A. 31. A = embed 1}

mu0:: bool list list = real (pu0)
pOll =% 1€ setll 2°(—length 1)

mu:: bool seq set = real (p)
p A = infimum {l. embed | = A} p0

lemma mu-positive: positive (bernoulli-algebra, i)
sorry

lemma mu-countably-additive: countably-additive (bernoulli-algebra,u)
sorry

lemma ba-algebra: algebra bernoulli-algebra
sorry

lemma caratheodory-light:
[algebra (measurable-sets MO); positive MO; countably-additive M0]
= JM. (VA. A € measurable-sets MO0 — measure M A = measure M0 A)
A measurable-sets M = sigma (measurable-sets M0O) N measure-space M

sorry

constdefs
bern:: (bool seq set set) x (bool seq set = real)
bern = let M0 = (bernoulli-algebra,p) in
e M. (VA. A € events MO — prob M A = prob M0 A)
A events M = sigma (events M0O) A measure-space M

P:: bool seq set = real
P = prob bern
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Epsilon:: bool seq set set
Epsilon = events bern

lemma ms-bern: measure-space (Epsilon,P)
sorry

lemma ps-bern:
prob-space (Epsilon,P)
sorry

lemma UNIV-prob:
P UNIV =1
sorry

Joe Hurd goes on developing a handy characterization of probabilistic pro-
grams called strong function independence. It amounts to a compositional
version of measurability and independence, the latter meaning independence
between the first and second component of the result pair. That is, the pro-
gram may not use the bit-stream it passes back in the calculation of the
proper result.

Luckily, the property is compositional in the sense that it holds for any
program that is constructed using only the three primitives mentioned pre-
viously. Again, it is not necessary to understand the exact definition for our
purpose.

constdefs
prefix-cover:: bool list set = bool
prefiz-cover C = (V 11€C.V 12€C. 1 # 12 — — is-prefiz 11 12) A
P (JleC. prefiz-set ) = 1

indep-fn:: (bool seq = ('a % (bool seq))) set

indep-fn = {f. (3 F::(nat="a). range (fst o f) C range F) A

(fst o f) € measurable Epsilon UNIV A (snd o f) € measurable Epsilon Epsilon
A (3 C. prefiz-cover C' A

(Vis. (I € C A s € prefiz-set |

— fs = (fst (f (prefiz-seq l)), sdrop (length 1) s))))}

lemma Pair-indep: Aa. (Pair a) € indep-fn
sorry

lemma bind-indep:
[f € indep-fn; Na. g a € indep-fn] = bind f g € indep-fn
sorry
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lemma sdest-indep: sdest € indep-fn
sorry

For us, the crucial point of strong functional independence, besides proving
measurability for our programs, is the following lemma, which formalizes the
idea of independence just explained. It could not be found in Hurd’s thesis
proper, but in the formal text itself. Moreover, the formulation is slightly
different, since predicates are employed instead of sets in the HOL theories.
Basically this means exchanging function composition for the inverse image
operator.

lemma indep-fn-prob:
[f € indep-fn; q € Epsilon] =
P ((fstof)—=pn(sndof)—<q)
=P ((fstof) ="p)xPq

sorry

To start reasoning about probabilities, we need one of them to begin with.
The last lemma in this section provides this humble starting point.

lemma shd-sdrop-prob: P {s. shd (sdrop n s)=b} = 1/2
sorry

It should be mentioned that there is research in progress that aims to truly
import proofs from Cambridge HOL into Isabelle at Tobias Nipkow’s theo-
rem proving group in Munich. For the time being, converting the definitions
and assuming the facts by hand should suffice to base a mere example on.

end

4.2 A new primitive

theory Lsdest = Imported:

It is time to introduce the example application that is being formalized in
section 4.3. We will be looking at the most simplistic possible program for
finding a satisfying assignment for a propositional formula in conjunctive
normal form where any clause consists of exactly k literals. This problem is
known as k-SAT. Our algorithm simply selects a random assignment for all
of the n variables. We are interested in the probability that the assignment
fails to satisfy a given clause. The reasons behind this will become clear in
a while.

In the previous section it was stated that one should be able to construct
any randomized functional program from the three primitive building blocks
defined there. Of course, this also holds for the program we have in mind.
Nevertheless, when you try following the style these constructs suggest, tak-
ing one random bit at a time and evaluating somewhere in between, you run
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into problems. That is to say, the clauses are not independent in general.
A variable may appear in several clauses, and it would be wrong to fetch a
new bit from the stream every time it is evaluated. Ergo, the simplest way
to perform the evaluation of a clause independently from the rest is to get
a list of all n random bits beforehand.

A function accomplishing this is not hard to devise. It is elementary enough
to possibly support a lot of programs.

consts
Isdest:: nat = 'a seq = ('a list x 'a seq)

primrec
Isdest 0 = Pair ||
Isdest (Suc n) = bind sdest (Az. bind (Isdest n) (Al. Pair (z#1)))

lemma Isdest-length: \s. length (fst (lsdest n s)) = n
by (induct n) (auto simp add: bind-def split-def)

lemma Isdest-indep: lsdest n € indep-fn
by (induct n) (auto simp add: Pair-indep sdest-indep bind-indep)

lemma Isdesttakedrop: \s. lsdest n s = (stake n s, sdrop n s)
by (induct n) (simp-all add: bind-def sdest-def )

We need to know more than these facts to make use of the new primitive.
The real challenge here lies in getting to the probability distribution. Mind
that it is not sufficient to know the probability of a whole list or a single bit.
To draw conclusions about clauses, we need assertions about any k positions
in a list of length n. On the other hand, this furnishes the whole common
probability distribution. A few lemmata pave the way.

lemma sdrop-stl: \s. sdrop n (stl s) = stl (sdrop n s)

lemma stake-shd:
A\s. stake u s @ [shd (sdrop u s)] = shd s # stake u (stl s)
by (induct u) simp-all

lemma stake-prob: Ar m. Suc r < n = P {s. stake n (sdrop m s)lr = b} =1/2
proof (induct n)

case 0 thus ?case by simp
next

case (Suc n rm)

thus ?case

proof (cases r=0)

case True



THEORY Lsdest 79

hence As. stake (Suc n) (sdrop m s)lr = shd (sdrop m s)
by simp

hence {s. stake (Suc n) (sdrop m s)lr = b} = {s. shd (sdrop m s) = b}
by fast

thus ?thesis
by (simp only: shd-sdrop-prob)

next

case Fulse

then obtain u where u:r = Suc u
by (auto simp add: gr0-conv-Suc)

hence As. stake (Suc n) (sdrop m s)lr = stake n (stl (sdrop m s))lu
by simp

also

{ fix s
have stake n (stl (sdrop m s))lu = stake n (sdrop (Suc m) s)lu

by (simp only: sdrop-stl[ THEN sym] sdrop.simps[THEN sym])

}

finally

have {s. stake (Suc n) (sdrop m s) ! r = b} =
{s. stake n (sdrop (Suc m) s) ! u = b}
by fast

also

from u Suc have Suc u < n by simp

with Suc have P {s. stake n (sdrop (Suc m) s)!u=0} =1/ 2
by fast

finally show ?thesis .

qed
qed

This generalizes the simple probability fact from the last section and almost
immediately results in the probability for a single bit in the Isdest list.

theorem Isdest-prob:
assumes le: Sucr < n
shows P {s. (fst (Isdest n s))lr = b} = 1/2

Another generalization, this time of the recursive lsdest definition, enables
the decisive theorem.

lemma Isdest-split:
assumes le: r < n
shows Isdest n = bind (lsdest r) (A(I::"a list).
bind (Isdest (n—r)) (A\k. Pair (1QF)))

The upcoming powerful result closes the theory. Notice that the proposition
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had to be strengthened to arrive at a viable induction hypothesis. That is
why a simplified version is attached.

lemma Isdest-prob2:
shows AS n m. [finite S; card S = k; VY reS. Suc (r—-m) < n A m < r]
= P (NreS. {s. (fst (Isdest n s)){(r—m) =br}) =(1/2)"k
proof (induct k)
case (0 95)
hence S={}
by simp
thus Zcase
by (simp add: UNIV-prob)

next

case (Suc kS nm)

then obtain r’ where 7' € S
by force

hence (LEAST r.re€ S) e S
by (rule Leastl)

also

have A\y. y€S = (LEASTr.r € §) <y
by (rule Least-le)

moreover

def r = (LEAST r.r € S)

ultimately have rS:r € S and VyeS. r <y
by simp-all

hence rl:¥yeS—{r}. r <y
by auto

from rS have S = insert r (S—{r})
by auto
with rl have Sr2:S = insert r {r2. r2 € S A r < r2}
by auto
hence ((reS. {s. (fst (Isdest n s))!|(r—m) =br}) =
(Nre insert r {r2. r2 € S A r < r2}.
{s. (fst (Isdest n s))(r—m) = b r})
by simp
also have ... = {s. (fst (Isdest n s))l(r—m) =br} N
(Nr2 e{r2.r2 € S A r <12} {s. (fst (Isdest n s))/(r2—m) = b r2})
by simp
finally
have P ((\reS. {s. fst (Isdest n s) ! (r—m) = b r}) =
P ({s. fst (lsdest n s) ! (r—=m) =br} N
(Nr2e{r2. r2 € S Ar < r2}. {s. fst (Isdest n s) ! (r2—m) = b r2}))
by simp

also

from prems rS have le: Suc (r—m) < n
by simp

{ fix s
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from le have fst (Isdest n s)!(r—m) =
fst (bind (lsdest (Suc (r—m)))
(AL bind (Isdest (n—(Suc (r—m)))) (Ak. Pair (1Qk))) s)!(r—m)
by (simp add: lsdest-split)
hence fst (Isdest n s)!/(r—m) = fst (Isdest (Suc (r—m)) s)!(r—m)
by (simp add: nth-append bind-def split-def lsdest-length del: lsdest.simps)
}

hence {s. fst (Isdest n s)!(r—m) =br} =
{s. fst (Isdest (Suc (r—m)) $)!(r—m) = b r}
by fast

moreover
from prems rS have mr:m < r
by simp

{ fix s r2 assume r < 2

with mr have 12: = (r2—m) < Suc (r—m) by arith

from le have fst (Isdest n s) ! (r2—m) =
fst (bind (lsdest (Suc (r—m)))
(AL bind (Isdest (n—(Suc (r—m)))) (Ak. Pair (1Qk))) s)!/(r2—m)
by (simp add: lsdest-split)

with [2 have fst (lsdest n s) ! (r2—m) =
fst (Isdest (n — Suc (r—m))
(snd (Isdest (Suc (r—m)) s))) ! ((r2 — m) — Suc (r—m))
by (simp add: nth-append bind-def split-def lsdest-length del: lsdest.simps)

hence (N r2e{r2. r2 € S A r < r2}. {s. fst (lsdest n s) ! (r2—m) = b r2}) =
(Nr2e{r2. r2 € S Ar < r2}. {s. fst (lsdest (n — Suc (r—m))
(snd (Isdest (Suc (r—m)) s))) ! ((r2—m) — Suc (r—m)) = b r2})
by fast

ultimately have P ((\r€S. {s. fst (Isdest n.s) ! (r—m) =br}) =
P ({s. fst (Isdest (Suc (r—m)) s)i(r—=m) =br} N
(Nr2e{r2. r2 € S Ar < r2}. {s. fst (lsdest (n — Suc (r—m))
g)snd '(lsdest (Suc (r—=m)) s))) ! ((r2—m) — Suc (r—m)) = b r2}))
y simp

also
have ... = P ((fst o Isdest (Suc (r—m))) —¢ {l. ll(r—m) = b r}
N (snd o Isdest (Suc (r—m))) — (Nr2e{r2. 12 € S A r < r2}.
{s. fst (Isdest (n — Suc (r—m)) s) ! ((r2—m) — Suc (r—m)) = b r2}))
by (simp add: vimage-INT)
also
{
{ fix r2
from Isdest-indep[of (n — Suc (r—m))]
have (fst o Isdest (n — Suc (r—m))) —°
{I. I' ((r2—m) — Suc (r—m)) = b r2} € Epsilon
by (auto simp only: indep-fn-def measurable-def)



THEORY Lsdest 82

hence {s. fst (Isdest (n — Suc (r—m)) s)!
((r2—m) — Suc (r—m)) = b r2} € sigma Epsilon
by (simp add: sigma.intros)
}
hence (Nr2 € {r2. 12 € S A r < r2}.
{s. fst (lsdest (n — Suc (r—m)) s) !
((r2—m) — Suc (r—m)) = b r2}) € sigma Epsilon
by (simp add: sigma-INTER)
with ms-bern have (72 € {r2. r2 € S A r < r2}.
{s. fst (Isdest (n — Suc (r—m)) s) ! ((r2—m) — Suc (r—m)) = b r2})
€ Epsilon
by (simp add: measurable-sets-def measure-space-def sigma-sigma-algebra)

with Isdest-indep [of Suc (r—m)]

have ... = P ((fst o Isdest (Suc (r—m))) —* {l. l(r—m) = b r}) =
P (Nree{r2. 2 € S A r <r2}.
{s. fst (Isdest (n — Suc (r—m)) s) ! ((r@—m) — Suc (r—m)) = b r2})
by (rule indep-fn-prob)

also
{ from le-refl[of Suc (r—m)] have
P ({s. fst (Isdest (Suc (r—m)) s)!{(r—m) =0br}) =1/2
by (rule lsdest-prob) }
hence ... =1/2 %
P (Nr2e{r2. 2 € S Ar < r2}.
{s. fst (lsdest (n — Suc (r—m)) s) ! ((r2—m) — Suc (r—m)) = b r2})
by simp

also
{ from mr have Ar2. r2€{r2. r2 € S A r < r2} =
(r2—m) — Suc (r—m) = r2 — Suc r
by arith
hence (N r2e{r2. r2 € S A r < r2}.
{s. fst (Isdest (n — Suc (r—m)) s) ! (r2—m) — Suc (r—m)) = b r2}) =
(Nr2e{r2. r2 € S A r < r2}
{s. fst (lsdest (n — Suc (r—m)) s) ! ((r2 — Suc r)) = b r2})
by auto
}
hence ... =1/2 « P (Nr2e{r2. r2 € S A r < r2}.
{s. fst (Isdest (n — Suc (r—m)) s) ! ((r2 — Suc r)) = b r2})
by simp

also

from prems Sr2 have finite (insert r {r2. r2 € S A r < r2})
by simp

hence fin2:finite {r2. r2 € S A r < r2}
by (simp only: finite-insert)

with prems Sr2 have ?this and card (insert r {r2. r2 € S A r < r2}) = Suck
by simp-all



THEORY Lsdest 83

hence c2:card {r2. 12 € SAr <r2} =k
by (simp add: card-insert)

{fix d assume d € {r2. r2 € S A r < 12}
hence d € S and rd:r < d

by simp-all

with prems have i:Suc (d — m) < n and #i:m < d
by simp-all

from i rd mr 7 have Suc (d— Suc r) < (n—Suc (r—=m)) A Suc r < d
by arith

}
hence Vde{r2. r2 € S A r < r2}.

Suc (d—(Suc r)) < (n—Suc (r—m)) A Suc r < d
by simp

with fin2 c¢2 prems have nn:0<k = P ((r2€{r2. r2 € S A r < r2}.
{s. fst (Isdest (n — Suc (r—m)) s) ! (r2 — Sucr)=0br2}) =(1/2)"%k
by simp

have P (r2€{r2. r2 € S A r < r2}.
{s. fst (lsdest (n — Suc (r—m)) s)! (r2 — Sucr) =0br2}) =(1/2)"k
proof (cases k)
case (
with fin2 c2 have {r2. r2 € S Ar <12} ={}
by simp
hence ((r2e{r2. r2 € S A r < r2}.
{s. fst (Isdest (n — Suc (r—m)) s) ! (r2 — Suc r) = b r2}) = UNIV
by auto
hence P ((Nr2e{r2. 12 € S A r < r2}.
{s. fst (Isdest (n — Suc (r—m)) s) ! (r2 — Sucr) =0br2}) =1
by (simp add: UNIV-prob)
with 0 show %thesis by simp
next
case (Suc g)
hence 0<k by simp
with nn show ?thesis by simp
qged

finally show ?case by simp
qed

lemma [sdest-probs:
shows [finite S; card S = k; VreS. Suc r < n]
= P ((reS. {s. (fst (Isdest n s))lr =br}) = (1/2)"k

end
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4.3 The first moment method

theory kSAT = Integral+ Lsdest:

As you can see from the theory line, we finally get to use the integral along
with the new primitive just developed. Surprisingly, the end result will be a
combinatorial statement about the existence of an assignment for a k-SAT
instance. Notwithstanding, probability and expectation properties of some
randomized programs are going to lead us there. The technique employed
— known as the first moment method — is a standard one in the field of
randomized algorithms; it may be found in the authoritative textbook on
the subject by Motwani and Raghavan [14].

Let the problem be defined first.

consts
absdistinct:: int list = bool
clauseeval:: int list = bool list = bool
CNFeval:: (int list) list = bool list = bool

primrec
absdistinct [| = True
absdistinct (z#xs) = (z ¢ set xs N —x ¢ set xs N absdistinct s)

constdefs
nvarkclauses:: nat = nat = int list set (- var - clauses)
n var k clauses = {ls. length lIs = k A
(Vz € setls. £0 A |z| < int n) A absdistinct Is}

nvarksat:: nat = nat = ((int list) list) set (- var - SAT)
nvar k SAT = {A. Vis € set A. Is € n var k clauses}

lemma assumes a € set C' and b € set C
and absdistinct C' and —a#a
shows clause-dist: —a # b using prems
by (induct C) auto

lemma clauses-card:
assumes (' absdistinct C
shows card (set C') = length C using C
by (induct C) auto

Thus formulas are modeled as lists of clauses, which in turn are represented
by lists of integers. The absolute value of a number stands for the variable
name, the sign signifying negation of the literal. For an illustrative in-
stance,—4 means the 4th variable inverted, and 0 is not allowed. A variable
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may not appear twice in any clause, as ensured by the absdistinct predicate.
Looking at the following example might clarify the notation.

theorem [[1,2,3],[—4,—2,1]] € 4 var 3 SAT
by (simp add: nvarksat-def nvarkclauses-def)

Formulas can be evaluated at an assignment, that is a list of booleans, by
primitive recursive functions.

primrec
clauseeval || | = False
clauseeval (z#xs) | = (if (0<z) then (I!nat (z+—1) V clauseeval s 1)
else if (x<0) then (=(I!lnat (—1+—1)) V clauseeval xs 1)
else True)

primrec
CNFeval [| | = True
CNFeval (z#xs) | = (clauseeval z I N CNFeval xs 1)

lemma CNF-clause: CNFeval F'l = (VY C&(set F). clauseeval C' 1)
by (induct F) auto

Now we may randomize these functions, obtaining just the simple programs
described in 4.2. In addition, an indicator variable is defined that takes the
value 1 for exactly those elementary events — or rather bit sequences —
where the argument clause is not satisfied.

constdefs
randCNFeval:: (int list) list = nat = bool seq = (bool * (bool seq))
randCNFeval F n s = (CNFeval F (stake n s), sdrop n s)

randclauseeval:: int list = nat = bool seq = (bool * (bool seq))
randclauseeval C n = bind (lsdest n) (Al. Pair (clauseeval C 1))

indicator:: int list = nat = bool seq = real
indicator C n = x{s. = fst (randclauseeval C n s)}

lemma randCNFeval-bind-Pair: randCNFeval F'n s =
bind (lsdest n) (M. Pair (CNFeval F' 1)) s
by (simp add: randCNFeval-def bind-def Isdesttakedrop)

lemma rand-CNF-clause: fst (randCNFeval F n s) =
(V Ceset F. fst (randclauseeval C n s))
by (simp add:
CNF-clause randCNFeval-bind-Pair randclauseeval-def bind-def split-def)

We just saw that both randclauseeval and randCNFeval can be built from
Pair, bind and sdest alone. Hence they are strongly independent functions.
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In particular, indicator is a characteristic function for an event.

lemma rce-indep: randclauseeval C' n € indep-fn
by (simp add: lsdest-indep bind-indep Pair-indep randclauseeval-def)

lemma rce-events: {s. = fst (randclauseeval C n s)} € Epsilon
proof —
from rce-indep have (fst o randclauseeval C n) —* {False} € Epsilon
by (simp add: rce-indep indep-fn-def measurable-def)
thus %thesis
by (simp add: vimage-def)
qed

The next step is to compute the measure of this event, the probability that
a given clause is not satisfied. In spite of the preparatory work on lsdest, the
greatest difficulty lies in here. Though a rough idea should have emerged
until now, it is technically demanding to arrive at a setup where Isdest-probs
may be applied instantly. No general insight is gained from the proofs, so
they are left out.

lemma clauseeval-ing:
assumes cont: (Az. if 0<x then nat (z+—1) else nat (—1+—x)) p
= (A\z. if 0<x then nat (z+—1) else nat (—1+—x)) r
and r0: v # 0 and p0: p # 0
showsp=rvVv —p=r

lemma not-clauseeval:
AC. C € nvar k clauses =
3b. VI. (= clauseeval C' 1) =
(1 € (Nre((Az. if 0<z then nat (z+—1) else nat (—1+—=x))‘set C).

{l.Ulr=10r}))

theorem assumes C: C € n var k clauses
shows rce-prob: P {s. = fst (randclauseeval C'n s)} = (1/2)°k

We should take a moment to appreciate this first result. It embodies the gist
of the probabilistic analysis for the randclauseeval randomized algorithm.
What is more, it enables the primal application of integration in the following
theorem.

theorem assumes C € n var k clauses
shows ind-int: [ (indicator C' n) & (Epsilon, P) = (1/2) "k
and integrable (indicator C n) (Epsilon, P)
using prems
by (auto simp add: ms-bern measurable-sets-def rce-events
ree-prob integral-char indicator-def measure-def)
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Here we encounter an expectation in the true sense for the first time in this
thesis. Like any expectation it sums up easily.

lemma nat-lessThan-card:
card {..(k:nat)(} =k
by (induct k) (auto simp add: lessThan-Suc)

theorem sum-ind-int:
assumes sat: F' € n var k SAT
shows
| (As. >°me{..(length F)(}. indicator (F'm) n s) d(Epsilon, P)
= real (length F)/2"k
and integrable (As. > me{..(length F)(}. indicator (F!m) n s)(Epsilon, P)

The result just obtained contributes all the information about probabilistic
programs we will need: The expected number of unsatisfied clauses with our
simplistic algorithm is the total number of clauses divided by 2*. It is only
now that the first moment method comes into play. The point put forward
by this proposition is that if the expected value of nonnegative random
variable is less than 1, then there must be an event witnessing this. The
proof turns out to be rather elementary from the Markov inequation.

theorem first-moment-method:
assumes intl: integrable f M and nn: nonnegative f and nt2: [ f O M < 1
shows law M f {1..} < I
proof —
from nn have eq: f = (At. |f¢] 1)
by (simp-all add: nonnegative-def abs-eql1)
with int! have 0<(1::real) and integrable (At. |ft|"1) M
by simp-all
with int! have law M f {1.} < [ (At. |ft|"1)d M / (1°1)
by (rule markov-ineq)
also from eq int2 have ... < 1
by simp
finally show ?thesis .
qed

corollary fmm:
assumes intl: integrable f M and nt2: [ f O M < 1
and ps: prob-space M
shows Js. fs < 1
proof (cases nonnegative f)
case Fulse

then obtain s where - 0< fs
by (auto simp add: nonnegative-def )
hence fs < 1 by arith
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thus ?thesis by fast
next
case True
from int! True int2 have law M f {(1:real)..} < 1
by (rule first-moment-method)
with intl ps have (f —¢ {(1::real)..}) # UNIV
by (auto simp add: integrable-rv prob-space-def distribution-def)
then obtain s where = 1 < fs
by auto
hence fs < 1 by arith
thus ?thesis
by fast
qed

In the application we have in mind, a random bit-stream that makes the
indicator variables sum to a value less than 1 corresponds to a satisfying
assignment.

lemma assumes nk: F € n var k SAT and
sum: (> me{..(length F)(}. indicator (Flm) n env) < 1
shows satisfy: CNFeval F' (stake n env)
proof —
have fin: finite {..(length F)(}
by simp
{
fix i assume i € {..(length F)(}
and indicator (Fi) n env = 1
with sum fin have (> me{..(length F)(}—{i}. indicator (Flm) n env) < 0
by (simp add: setsum-diff-real)
also have Vje{..(length F)(}—{i}. 0 < indicator (Flj) n env
by (simp add: indicator-def characteristic-function-def)
hence 0 < (> me{..(length F)(}—{i}. indicator (F!m) n env)
by (rule setsum-ge0-real)

finally have Fulse by simp
}
hence Vi € {..(length F)(}. fst (randclauseeval (F ! i) n env)
by (auto simp add: indicator-def characteristic-function-def if-def)
hence V C € set F. fst (randclauseeval C n env)
by (auto simp add: set-conv-nth)
hence fst (randCNFeval F n env)
by (simp add: rand-CNF-clause)
thus ?thesis
by (simp add: randCNFeval-def)
qed
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In the end we have shown that a satisfying assignment always exists if there
are less than 2* clauses in a k-CNF formula.

theorem assumes nk:F € n var k SAT and [:real(length F) < 2°k
shows existence: 31. CNFeval F' |
proof —
from nk have int:
integrable (Xs. Y me{..(length F)(}. indicator (F!m) n s) (Epsilon, P)
by (rule sum-ind-int)
from nk have
| (As. >°me{..(length F)(}. indicator (F'm) n s) (Epsilon, P)
= real (length F)/2"k
by (rule sum-ind-int)
also
have (0::real) < 2°k
by (simp add: realpow-gt-zero)
with [ have (real (length F')/2°k < 1)
by (simp add: pos-real-divide-less-eq)
finally have
| (Xs. X" me{..(length F)(}. indicator (F'm) n s) 8(Epsilon, P) < 1 .

with int ps-bern obtain env where
(3= med{..(length F)(}. indicator (F!m) n env) < 1
by (force simp add: fmm)
with nk have CNFeval F (stake n env)
by (rule satisfy)
thus ?thesis ..
qed

The final result is a purely combinatorial fact, serving as an example for the
application of probability and integration in an apparently unrelated field.
There are stronger versions, requiring more intricate algorithms and tools?.
Anyhow, this one should suffice to display the power of the basic integral
properties.

end

4The Lovasz Local Lemma is a prominent example.



Chapter 5
Epilogue

To come to a conclusion, a few words shall subsume the work done and point
out opportunities for future research at the same time.

What has been achieved in this thesis? After opening with some intro-
ductory notes, we began translating the language of measure theory into
machine checkable text. For the material in section 2.1, this had been done
before. Besides laying the foundation for the development, the style of pre-
sentation should make it noteworthy.

It is a particularity of the present work that its theories are written in the
Isar language, a declarative proof language that aims to be “intelligible”.
This is not a novelty, nor is it the author’s merit. Still, giving full formal
proofs in a text intended to be read by people is in a way experimental.
Clearly, it is bound to put some strain on the reader. Nevertheless, for the
reasons given in section 1.1, I hope that we have made a little step towards
formalizing mathematical knowledge in a way that is equally suitable for
computation and understanding. One aim of the research done has been to
demonstrate the viability of this approach. Unquestionably, there is plenty
room for improvement regarding the quality of presentation. The language
itself has, in my opinion, proven to be fit for a wide range of applications,
including the classical mathematics we used it for.

Returning to a more content-centered viewpoint, we discussed the measura-
bility of real-valued functions in section 2.2. As explained there, earlier schol-
arship has resulted in related theories for the MIZAR environment though
the development seems to have stopped. Anyway, the mathematics covered
should be new to HOL-based systems.

More functions could obviously be demonstrated to be random variables. We
shortly commented on an alternative approach in the section just mentioned.
It is applicable to continuous functions, proving these measurable all at
once. Efforts on topological spaces would be required, but they constitute
an interesting field themselves, so it is probably worth the while.

90



CHAPTER 5. EPILOGUE 91

In the third chapter, integration in the Lebesgue style has been looked at
in depth. To my knowledge, no similar theory had been developed in a
theorem prover up to this point. We managed to systematically establish the
integral of increasingly complex functions. Simple or nonnegative functions
ought to be treated in sufficient detail by now. Of course, the repository
of potential supplementary facts is vast. Convergence theorems, as well as
the interrelationship with differentiation or concurrent integral concepts, are
but a few examples. They leave ample space for subsequent work.

In this respect, research is always incomplete. In spite of everything, it is a
pity that some theorems in this chapter could not be finished in time, even
if it was for days only. This will naturally be made up for very soon. The
delay was caused in part by the abortive paths to integration described in
section 3.1. The issue of finding the deeper reason for the latter failure is
still unresolved.

Another shortcoming of the present development lies in the lack of user
assistance. Greater care could be taken to ensure automatic application
of appropriate simplification rules — or to design such rules in the first
place. Likewise, the principal requirement of integrability might hinder easy
usage of the integral. Fixing a default value for undefined integrals could
possibly make some case distinctions obsolete. Facets like these have not
been addressed in their due extent.

To my mind, the example application conveys its point in a satisfactory
manner. As a side effect, another building block for functional probabilistic
programming, or what is more, its essential properties, could be obtained.
Without a doubt, there is an infinite amount of further examples, including
more involved varieties of the first moment method or the run-time analysis
of probabilistic quicksort. They lend themselves to continued work demon-
strating the power of interactive proof systems. Hopefully, some of this
future work may benefit from the foundations laid in the present thesis.



Appendix A

Auxiliary Theories

A.1 Rational numbers

theory Rats = Real:

A dense and countable subset of the real type was needed for some measur-
ability proofs. That is why I developed this theory.

To begin with, an injective function from N? to N is defined!. Its inverse
is then a surjective mapping into N?. Another iteration yields three natu-
ral numbers, one for enumerator, denominator, and sign respectively. The
rationals are now exactly the range of the resulting function on N, which
already proves them countable, without even defining this concept.

Much to my delight, these functions could be reused for the simple function
integral properties.

constdefs
n2-to-n:: (nat * nat) = nat
n2-to-n pair = let (n,m) = pair in (n+m) * Suc (n+m) div 2 + n

n-to-n2:: nat = (nat * nat)

n-to-n2 = inv n2-to-n

n3-to-rat:: nat = nat = nat = real
n3-to-rat a b ¢ = if 2 dvd a then real b / real c else — real b /real c

n-to-rat:: nat = real
n-to-rat n = let (a,x) = n-to-n2n ; (b,c) = n-to-n2 x in
n3-to-rat a b ¢

!The function as well as the proofs are derived from [18] p. 85.
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Rats:: real set (@)
Q = range n-to-rat

lemma dvd2-a-z-suc-a: 2 dvd a * (Suc a)

lemma assumes eq: n2-to-n (u,v) = n2-to-n (z,y)
shows n2-to-n-help: u+v < z+y
proof (rule classical)
assume — “thesis
hence contrapos: z+y < u+v
by simp
have n2-to-n (z,y) < (z+y) * Suc (z+y) div 2 + Suc (z + y)
by (unfold n2-to-n-def) (simp add: Let-def)

also have ... = (z+y)*Suc(z+y) div 2 + 2 * Suc(z+y) div 2
by (simp only: div-mult-self1-is-m)
also have ... = (z+y)*Suc(z+y) div 2 + 2 * Suc(z+y) div 2

+ ((z+y)*Suc(z+y) mod 2 + 2 * Suc(z+y) mod 2) div 2
proof —
have 2 dvd (z+y)*Suc(z+y)
by (rule dvd2-a-z-suc-a)
hence (z+y)xSuc(z+y) mod 2 = 0
by (simp only: dvd-eq-mod-eq-0)
also
have 2 % Suc(z+y) mod 2 = 0
by (rule mod-mult-self1-is-0)
ultimately have

((z+y)*Suc(z+y) mod 2 + 2 x Suc(z+y) mod 2) div 2 = 0

by simp
thus ?thesis
by simp
qed
also have ... = ((z+y)*Suc(z+y) + 2xSuc(z+y)) div 2
by (rule div-add1-eq| THEN sym))
also have ... = ((z+y+2)*Suc(z+y)) div 2
by (simp only: add-mult-distrib] THEN sym))
also from contrapos have ... < ((Suc(u+v))*(u+v)) div 2
by (simp only: mult-le-mono div-le-mono)
also have ... < n2-to-n (u,v)
by (unfold n2-to-n-def) (simp add: Let-def)
finally show ?thesis
by (simp only: eq)
qged
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lemma n2-to-n-inj: inj n2-to-n
proof —
{fix u v z y assume n2-to-n (u,v) = n2-to-n (z,y)
hence u+v < z+y by (rule n2-to-n-help)
also from prems|[THEN sym| have z+y < u+v
by (rule n2-to-n-help)
finally have eq: u+v = z+vy .
with prems have uz: u=zx
by (simp add: n2-to-n-def Let-def)
with eq have vy: v=y
by simp
with uz have (u,v) = (z,y)
by simp
}
hence Az y. n2-to-n z = n2-to-n y = =y
by auto
thus ?thesis
by (unfold inj-on-def) simp
qed

lemma n-to-n2-surj: surj n-to-n2
by (simp only: n-to-n2-def n2-to-n-inj inj-imp-surj-inv)

theorem nat-nat-rats: real (a::nat)/real (b:nat) € Q
proof —
from n-to-n2-surj obtain z where (a,b) = n-to-n2 x
by (auto simp only: surj-def)
also from n-to-n2-surj obtain n where (0,2) = n-to-n2 n
by (auto simp only: surj-def)
moreover have n3-to-rat 0 a b = real a/real b
by (simp add: n3-to-rat-def)
ultimately have real a/real b = n-to-rat n
by (auto simp add: n-to-rat-def Let-def split: split-split)
hence real a/real b € range n-to-rat
by (auto simp add: image-def)
thus ?thesis
by (simp add: Rats-def)
qed
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theorem minus-nat-nat-rats: — real (a::nat)/real (b::nat) € Q
proof —
from n-to-n2-surj obtain z where (a,b) = n-to-n2 x
by (auto simp only: surj-def)
also from n-to-n2-surj obtain n where (1,z) = n-to-n2 n
by (auto simp only: surj-def)
moreover have n3-to-rat 1 a b = — real a/real b
by (simp add: n3-to-rat-def)
ultimately have — real a/real b = n-to-rat n
by (auto simp add: n-to-rat-def Let-def split: split-split)
hence — real a/real b € range n-to-rat
by (auto simp add: image-def)
thus %thesis
by (simp add: Rats-def)
qged

The following lemmata do not seem to exist in the RealAbs theory, but I
think they should. The proof is of unexpected complexity, since there are a
number of theorems on abs, conversion from int to real, etc. missing.

lemma real-of-int-abs: |real (z::int)| = real |z|
lemma real-abs-div: |(a::real)/b| = |a|/|b]
lemma not-neg-abs: - neg |al

theorem int-int-rats: real (a::int)/real (b::int) € Q
proof (cases real a/real b < 0)

case Fulse
hence (real a/real b) = |real a/real b|
by arith
also have ... = real |a|/real |b]
by (simp only: real-abs-div real-of-int-abs)
also have ... = real (nat |a|)/real (nat |b|)

by (simp add: not-neg-abs real-of-nat-real-of-int)
finally show ?thesis
by (simp only: nat-nat-rats)

next
case True
hence (real a/real b) = —|real a/real b|
by arith
also have ... = — real (nat |a|)/real (nat |bl|)

by (simp add:
real-abs-div real-of-int-abs not-neg-abs real-of-nat-real-of-int)
finally show ?thesis

by (simp only: minus-nat-nat-rats)
qed
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theorem assumes a: z € Q

shows rats-int-int: 3 x y. z = real (z::int)/real (y::int)

theorem assumes a: z €

shows rats-int-intnot0: 3 = y. z = real (x:int)/real (y:int) A y#0

theorem assumes a: ¢ € Q and b: b € Q
shows rats-plus-rats: a+b € @
proof —
from a obtain z y where a = real (z::int)/real (y::int) A y#£0
by (force simp add: rats-int-intnot0)
also from b obtain zb yb where b = real (zb::int)/real (yb::int) A yb#0
by (force simp add: rats-int-intnot0)

ultimately have yn0: y#0 and ybn0: yb#0
and eq: a+b = real x/real y + real xb/real yb
by auto

note eq also from yn0 ybn0
have ... = real yb * real  / (real yb * real y) +
real y * real xb / (real yb * real y) (is - = ?X /%72 + ?Y /?7)
by (simp add: real-mult-div-cancell [THEN sym] real-mult-commute)
also have ... = (?X + ?Y)/?Z
by (rule real-add-divide-distrib| THEN sym])
also have ... = real (ybxz + y*zb) / real (ybxy)
by (simp only: real-of-int-mult real-of-int-add)

finally show ?thesis by (simp only: int-int-rats)
qed

The density proof was first to be adapted from a Mizar document [12]. Alas,
it depends on a Gauss bracket (or floor function) that could not be found
anywhere in Isabelle/HOL; and it turned out many lemmata are missing
about the relation between integers and reals. Fortunately, a much more
elementary proof was discovered in “Real Analysis” by H.L. Royden ([22] p.
32 ff). It directly employs the axiom of Archimedes, which is already in the
RComplete theory.
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lemma assumes nn: 0<z and ord: z<y
shows rats-dense-in-nn-real: 3r € Q. xz<r A r<y
proof —
from ord have 0 < y—zx ..
with reals-Archimedean obtain g::nat
where ¢: inverse (real q) < y—x and gpos: 0 < real q
by auto

def p = LEAST n. y < real (Suc n)/real q

from reals-Archimedean2 obtain n::nat where y * real ¢ < real n
by auto

with gpos have ex: y < real n/real q (is P n)
by (simp add: pos-real-less-divide-eq THEN sym])

also from nn ord have — y < real (0::nat) / real q
by simp

ultimately have main: (LEAST n. y < real n/real q) = Suc p
by (unfold p-def) (rule Least-Suc)

also from ez have ?P (LEAST x. ?P 1)
by (rule Leastl)

ultimately have suc: y < real (Suc p) / real q
by simp

def r = real p/real q

have z=y—(y—z)

by simp

also from suc q have ... < real (Suc p)/real ¢ — inverse (real q)
by arith

also have ... = real p / real q

by (simp only: real-inverse-eq-divide real-diff-def real-of-nat-Suc
real-minus-divide-eq[ THEN sym] real-add-divide-distrib[ THEN sym]) simp
finally have 1: z<r
by (unfold r-def)

have p<Suc p .. also note main[THEN sym)|
finally have = 7P p

by (rule not-less-Least)
hence 2: r<y

by (simp add: r-def)

from r-def have r € Q
by (simp only: nat-nat-rats)

with 1 2 show ?thesis by fast
qed
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theorem assumes ord: z<y
shows rats-dense-in-real: Ar € Q. z<r A r<y
proof —

from reals-Archimedean? obtain n::nat where —x < real n
by auto

hence 0 < z + real n
by arith

also from ord have z + real n < y + real n
by arith

ultimately have dr € Q. z + realn < r Ar <y + real n
by (rule rats-dense-in-nn-real)

then obtain r where r1: r € Q and 72: z + real n < r
and r3: r < y + real n
by blast

have r — real n = r + real (int n)/real (—1::int)
by (simp add: real-of-int-real-of-nat)

also from r! have r + real (int n)/real (—1::int) € Q
by (simp only: int-int-rats rats-plus-rats)

also from 72 have z < r — real n
by arith

moreover from r3 have r — real n < y
by arith

ultimately show ?thesis
by fast
qed

end
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A.2 Finite sum properties

theory SetsumThms = SEQ:

This theory is but a collection of simple properties of the setsum operator.
Most of them are unproven for lack of time, but all of them should be rather
obvious.

lemma setsum-diff-real: finite A = (setsum f (A — {a}) :: real) =
(if a:A then setsum f A — f a else setsum f A)
by (erule finite-induct) (auto simp add: insert-Diff-if)

lemma setsum-times-real: (a::real) * (D i€R. fi) = (D 4€R. axfi)
sorry

lemma assumes fin: finite X
shows setsum-image: setsum f (s * X) = setsum (f o s) X
sorry

lemma setsum-mono-real:
assumes le: \i. i€K = fi < (g i:real)
shows (D" ieK. fi) < (> ieK. g1i)
sorry

lemma limseq-setsum:

assumes n: An.n€ S = Xn—-———>1Ln
shows (Am. > neS. Xnm) ————> (D_neS. L n)
sorry

lemma setsum-const-real:
finite A = (D> k€A. a) = real (card A)xa
sorry

lemma setsum-ge0-real:
assumes f: Vi e S. 0 < fi
shows (0::real) < (3 1€S. f4)
proof —
from f have (> i€S. 0) < (D> i€S. fi)
by (simp add: setsum-mono-real)
thus “thesis
by (simp add: setsum-0)
qed

end
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