Kernelization using structural
parameters on sparse graph classes

(or: Structural Parameters—a necessary evil)
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The story so far



Kernelization

» Problem is fixed-parameter tractable iff it has a
kernelization algorithm

o Goal: to obtain polynomial or even linear kernels.

Basic technique of kernelization:
Devise reduction rules that preserve equivalence of instances;
apply exhaustively, prove kernel size.

Algorithmic meta-results: nail down as many
problems as possible



Previous work

Framework for planar graphs
Guo and Niedermeier: Linear problem kernels for NP-hard problems on planar
graphs

Meta-result for graphs of bounded genus
Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta)
Kernelization

Meta-result for graphs excluding a fixed graph as a minor
Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels

Meta-result for graphs excluding a fixed graph as a

topological minor
Kim, Langer, Paul, R., Rossmanith, Sau and Sikdar: Linear kernels and
single-exponential algorithms via protrusion decompositions

Our contribution: Meta-result for graphs of bounded
expansion, local bounded expansion and nowhere-dense
graphs using structural parameterization



Star forests ‘\ / Path forests

Bounded treedepth Forest
Outerplanar
Bounded treewidth Bounded degree
Planar
Bounded genus

Excluding a minor

Excluding a
topological minor
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Beyond exluded minors



Minors, top-minors




Shallow minors, top-minors




Bounded expansion

For a graph G we denote by G v r the set of its r-shallow
minors.

Definition (Grad, Expansion)

For a graph G, the greatest reduced average density is defined
as

_ |E(H)|
VirlG) = max S

For a graph class G the expansion of G is defined as

V(G) = sup V.(G)

A graph class G has bounded expansion if there exists a
function f such that V,.(G) < f(r) forall r € N.



Excluded minors w Bounded expansion

d-degenerate (depening on ex- f(0)-degenerate (depening on ex-

cluded minor) pansion)

Linear number of edges Linear number of edges

No large cliques No large cliques

No large clique-minors Can contain large clique minors

Closed under taking minors “Closed” under taking shallow mi-
nors

Degeneracy of every minor is d Degeneracy of minors depends on
its “size”

Techniques from result on H-topological-minor-free graphs stop
working because they use large (non-shallow) topological
minors.



Why we must run into trouble

LONGEST PATH

TREEWIDTH

DOMINATING SFT

CONNECTED VERTEX COVER

FEEDBACK VERTEX SET

VERTEX COVER

Bounded genus

H-minor free
(planar)

Topological

H-minor free

Bounded
expansion

General

No kernels

No polynomial
kernels

Polynomial kernel

Linear kernel



The exemplary obstacle:
TREEWIDTH-t-DELETION



The problem

TREEWIDTH-t DELETION

Input: A graph G, an integer k

Problem: Is there a set X C V(G) of size at most & such that
tw(G - X) <t?

e TREEWIDTH-1 DELETION = FEEDBACK VERTEX SET
» Model problem for previous results
« kf()kernel on general graphs

= Probably none of size O(f(¢)k®) (c independent of )

Kernel on bounded expansion graphs implies same
kernel on general graphs




From general to sparse

@ Treewidth closed under subdivision of edges
= Treewidth-modulator closed under subdivision of edges
= Instances of TREEWIDTH-t DELETION closed under
subdivision of edges
® Subdividing each edge of a graph |G| yields a graph of
bounded expansion
General kernel from sparse kernel:
Reduce (G, k) to (G, k) by subdividing every edge |G| times,
output kernel of (G, k).

If we want a kernel, we need a parameter that is not
closed under edge subdivision



Structural parameterization to the
rescue



The natural view

Bounded Expansion

Y

U

H-Topological-
Minor-Free

U

H-Minor-Free Bidimensional
+separation property

Bounded Genus Quasi-compact

Treewidth-bounding




The structural view

Bounded Expansion

Y

U

H-Topological-
Minor-Free

U

Treewidth-t Modulator

© H-Minor-Free Treewidth-t Modulator
©
7

Y= g

ZzzzzZ__4

Distance-c Treewidth-t
Modulator

Bounded Genus



The structural view

U

H-Topological-
Minor-Free

U

H-Minor-Free

U

Bounded Genus

Bounded Expansion Treedepth-d Modulator

Treewidth-t Modulator

Treewidth-t Modulator

Distance-c Treewidth-t
Modulator



Treedepth?

For a graph G with td(G) < d:
e (G embeddable in closure of tree (forest) of depth d
« Graph does not contain path of length 2¢
o tw(G) <pw(G)<d-1

If X is a treedepth-d-modulator, G — X does not
contain long paths



Protrusion anatomy

RestViCted Protrusio”

small treewidth N

protrusion

Definition

X C V(G) is a t-protrusion if
© 0(X)| = [N(X)\ X[ <t
O tw(G[X]) <t

Boundary

small size

(small boundary)
(small treewidth)



The magic reduction rule

Boundary Reduction

Protrusion

We want to replace a large protrusion by something
smaller

Possible if problem has finite integer index

Recursive structure of graphs of small treewidth (i.e.
protrusion) helps

Lots of technicalities omitted. . .



Find approximate
treedepth-d-modulator

Reduce neighbourhood size

of (G —X)-components
in X

Reduce size of components
with same neighbours in Yy




Using sparseness

Y;, 1 <1 < /¢ have constant size after protrusion reduction
|Yo| = O(]X]) (follows from degeneracy of 2¢-shallow minors)
¢ = 0(|Y%l) = O(IX]) (ditto)

Hidden constants depend on expansion V..(G) < f(24)



The result

Theorem

Any graph-theoretic problem that has finite integer index on
graphs of constant treedepth” admits linear kernels on graphs
of bounded expansion if parameterized by a modulator to
constant treedepth.

» Kernelization possible in linear time
* Structural parameter enables us to relax the Fll condition
= Kernels for problems like TREEWIDTH and LONGEST PATH

o Structural parameter helps to include decision problems
like 3-COLORABILITY and HAMILTIONIAN PATH

» Quadratic kernels on graphs of locally bounded expansion
« Polynomial kernels on nowhere dense graphs



Consequences

The problems. ..

DOMINATING SET, CONNECTED DOMINATING SET, r-DOMINATING SET,
EFFICIENT DOMINATING SET, CONNECTED VERTEX COVER,
(CoNNECTED) VERTEX COVER, HAMILTONIAN PATH/CYCLE,
3-COLORABILITY, INDEPENDENT SET, FEEDBACK VERTEX SET, EDGE
DOMINATING SET, INDUCED MATCHING, CHORDAL VERTEX DELETION,
INTERVAL VERTEX DELETION, ODD CYCLE TRANSVERSAL, INDUCED
d-DEGREE SUBGRAPH, MIN LEAF SPANNING TREE, MAX FULL DEGREE
SPANNING TREE, LONGEST PATH/CYCLE, EXACT s, ¢-PATH, EXACT
CycCLE, TREEWIDTH, PATHWIDTH

...parameterized by a ireedepth-modulator have . ..
e ...linear kernels on graphs of bounded expansion
e ...quadratic kernels on graphs of locally bounded expansion

e ...polynomial kernels on nowhere-dense graphs



Conclusion



Our interpretation:
» Larger graph classes need stronger parameters
o Transition to structural parameters opens up a lot of
possibilities
» Treedepth-modulator is a useful parameter (also works well
on general graphs as a relaxation of vertex cover)

Open questions:

¢ Problem categories: closed under subdivision vs. not
closed. Weaker parameterization for latter?

o Linear kernels for graphs with locally bounded treewidth?
e Lower bounds!

Thanks!
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