Kernelization using structural parameters on sparse graph classes

(or: Structural Parameters—a necessary evil)

Jakub Gajarský¹ Petr Hliněný¹ Jan Obdržálek¹ Sebastian Ordyniak¹ Felix Reidl² Peter Rossmanith ²

Fernando Sánchez Villaamil ² Somnath Sikdar ²

¹Faculty of Informatics

²Theoretical Computer Science

TACO-Day 2013

Contents

The story so far

Beyond exluded minors

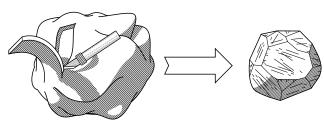
The exemplary obstacle: TREEWIDTH-t-DELETION

Structural parameterization to the rescue

Linear kernels in sparse graphs

The story so far

Kernelization



- Problem is fixed-parameter tractable iff it has a kernelization algorithm
- Goal: to obtain polynomial or even linear kernels.

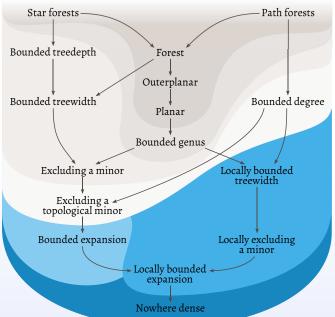
Basic technique of kernelization:

Devise *reduction rules* that preserve equivalence of instances; apply exhaustively, prove kernel size.

Algorithmic meta-results: nail down as many problems as possible

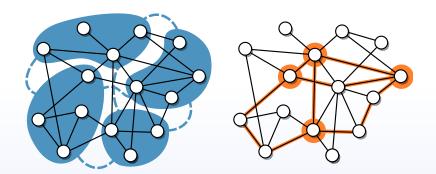
Previous work

- Framework for planar graphs
 Guo and Niedermeier: Linear problem kernels for NP-hard problems on planar graphs
- Meta-result for graphs of bounded genus
 Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta)
 Kernelization
- Meta-result for graphs excluding a fixed graph as a minor Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels
- Meta-result for graphs excluding a fixed graph as a topological minor
 Kim, Langer, Paul, R., Rossmanith, Sau and Sikdar: Linear kernels and single-exponential algorithms via protrusion decompositions
- Our contribution: Meta-result for graphs of bounded expansion, local bounded expansion and nowhere-dense graphs using structural parameterization

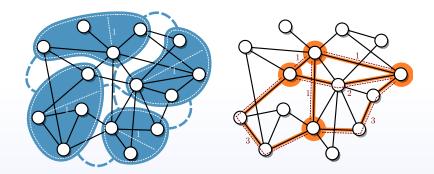


Beyond exluded minors

Minors, top-minors



Shallow minors, top-minors



Bounded expansion

For a graph G we denote by $G \nabla r$ the set of its r-shallow minors.

Definition (Grad, Expansion)

For a graph G, the *greatest reduced average density* is defined as

$$\nabla_r(G) = \max_{H \in G \, \forall \, r} \frac{|E(H)|}{|V(H)|}$$

For a graph class G the *expansion* of G is defined as

$$\nabla_r(\mathcal{G}) = \sup_{G \in \mathcal{G}} \nabla_r(G)$$

A graph class \mathcal{G} has bounded expansion if there exists a function f such that $\nabla_r(\mathcal{G}) \leq f(r)$ for all $r \in \mathbf{N}$.

d-degenerate (depening on excluded minor)

Linear number of edges
No large cliques
No large clique-minors
Closed under taking minors

f(0)-degenerate (depening on expansion)

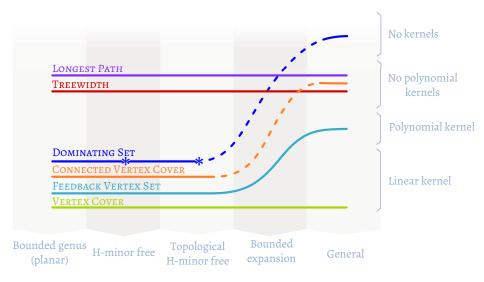
Linear number of edges
No large cliques
Can contain large clique minors
"Closed" under taking shallow minors

Degeneracy of every minor is d

Degeneracy of minors depends on its "size"

Techniques from result on H-topological-minor-free graphs stop working because they use large (non-shallow) topological minors.

Why we must run into trouble



The exemplary obstacle:

TREEWIDTH-t-DELETION

The problem

Treewidth-t Deletion

Input: A graph G, an integer k

Problem: Is there a set $X \subseteq V(G)$ of size at most k such that

 $\mathbf{tw}(G-X) \leq t$?

- Treewidth-1 Deletion = Feedback Vertex Set
- Model problem for previous results
- ullet $k^{f(t)}$ -kernel on general graphs
- \Rightarrow Probably none of size $O(f(t)k^c)$ (c independent of t)

Kernel on bounded expansion graphs implies same kernel on general graphs

From general to sparse

- Treewidth closed under subdivision of edges
- ⇒ Treewidth-modulator closed under subdivision of edges
- \Rightarrow Instances of Treewidth-t Deletion closed under subdivision of edges
- ② Subdividing each edge of a graph |G| yields a graph of bounded expansion

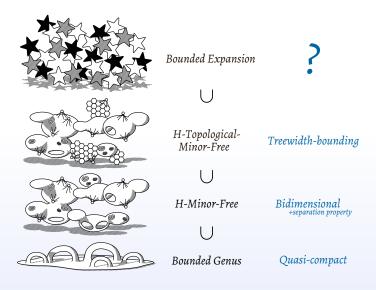
General kernel from sparse kernel:

Reduce (G,k) to (\tilde{G},k) by subdividing every edge |G| times, output kernel of (\tilde{G},k) .

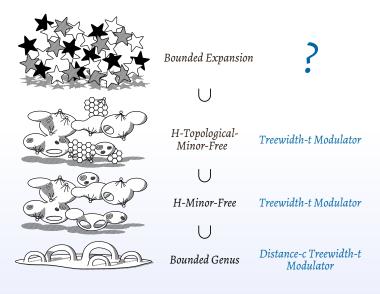
If we want a kernel, we need a parameter that is not closed under edge subdivision

Structural parameterization to the rescue

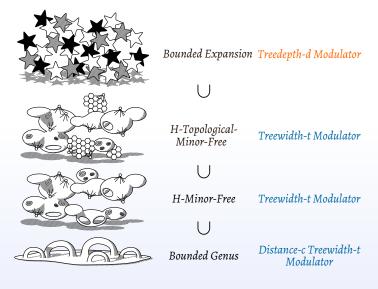
The natural view



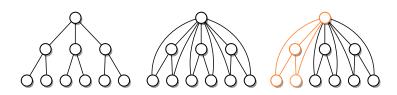
The structural view



The structural view



Treedepth?

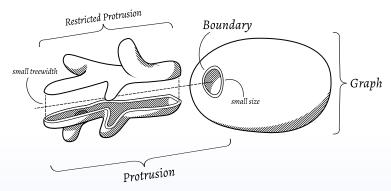


For a graph G with $td(G) \leq d$:

- G embeddable in closure of tree (forest) of depth d
- Graph does not contain path of length 2^d
- $\operatorname{tw}(G) \le \operatorname{pw}(G) \le d 1$

If X is a treedepth-d-modulator, G-X does not contain long paths

Protrusion anatomy



Definition

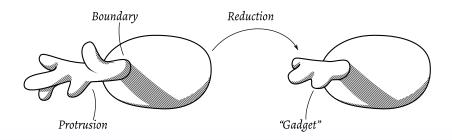
 $X \subseteq V(G)$ is a *t-protrusion* if

$$2 \operatorname{tw}(G[X]) \le t$$

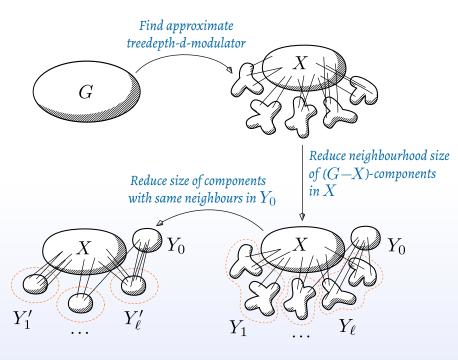
(small boundary)

(small treewidth)

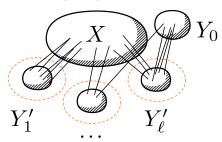
The magic reduction rule



- We want to replace a large protrusion by something smaller
- Possible if problem has finite integer index
- Recursive structure of graphs of small treewidth (i.e. protrusion) helps
- Lots of technicalities omitted...



Using sparseness



- $Y_i, 1 \le i \le \ell$ have constant size after protrusion reduction
- $|Y_0| = O(|X|)$ (follows from degeneracy of 2^d -shallow minors)
- $\ell = O(|Y_0|) = O(|X|)$ (ditto)
- Hidden constants depend on expansion $\nabla_{2^d}(\mathcal{G}) \leq f(2^d)$

The result

Theorem

Any graph-theoretic problem that has finite integer index on graphs of constant treedepth* admits linear kernels on graphs of bounded expansion if parameterized by a modulator to constant treedepth.

- Kernelization possible in linear time
- * Structural parameter enables us to relax the FII condition
- ⇒ Kernels for problems like Treewidth and Longest Path
 - Structural parameter helps to include decision problems like 3-Colorability and Hamiltionian Path
 - Quadratic kernels on graphs of locally bounded expansion
 - Polynomial kernels on nowhere dense graphs

Consequences

The problems...

Dominating Set, Connected Dominating Set, r-Dominating Set, Efficient Dominating Set, Connected Vertex Cover, (Connected) Vertex Cover, Hamiltonian Path/Cycle, 3-Colorability, Independent Set, Feedback Vertex Set, Edge Dominating Set, Induced Matching, Chordal Vertex Deletion, Interval Vertex Deletion, Odd Cycle Transversal, Induced d-Degree Subgraph, Min Leaf Spanning Tree, Max Full Degree Spanning Tree, Longest Path/Cycle, Exact s,t-Path, Exact Cycle, Treewidth, Pathwidth

- ... parameterized by a treedepth-modulator have ...
 - … linear kernels on graphs of bounded expansion
 - ... quadratic kernels on graphs of locally bounded expansion
 - ...polynomial kernels on nowhere-dense graphs

Conclusion

Our interpretation:

- Larger graph classes need stronger parameters
- Transition to structural parameters opens up a lot of possibilities
- Treedepth-modulator is a useful parameter (also works well on general graphs as a relaxation of vertex cover)

Open questions:

- Problem categories: closed under subdivision vs. not closed. Weaker parameterization for latter?
- Linear kernels for graphs with locally bounded treewidth?
- Lower bounds!

Thanks!