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Linear kernels in sparse graphs



Overview

• Framework for planar graphs
Guo and Niedermeier: Linear problem kernels for NP-hard problems on planar
graphs

• Meta-result for graphs of bounded genus
Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta)
Kernelization

• Meta-result for graphs excluding a fixed graph as a minor
Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels

• Our contribution: general result for graphs excluding a
fixed graph as a topological minor



Reduction via protrusions



Protrusion anatomy

Definition
X ⊆ V(G) is a t-protrusion if

1 |∂(X)| = |N(X) \ X| 6 t (small boundary)

2 tw(G[X]) 6 t (small treewidth)



We want to replace a large protrusion by something smaller.
Requires that the problem...

1 ...can be solved by dynamic programming on graphs of
bounded treewidth

2 ...admits small gadgets (finite integer index)

Note: the reduction can decrease the parameter.
This is the only reduction.
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(Topological) Minors
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Graph relations
(now with contractions!)

Relation Operations

induced subgraph delete vertices

subgraph delete vertices and edges

topological minor delete vertices and edges,
contract edges incident to a
degree-2 vertex

minor delete vertices and edges,
contract edges



Properties of
H-topological-minor-free graphs



Let G be a graph excluding H as a topological minor.

• Not interested in structure of H, but its size r = |H|

• In particular: Kr not a topological minor of G

Important properties:

1 m 6 1
2βr

2n (for some β < 10)

2 #cliques 6 2τr log rn (for some τ < 4.51)

3 Closed under taking topological minors



Let G be a graph excluding H as a topological minor.
• Not interested in structure of H, but its size r = |H|

• In particular: Kr not a topological minor of G

Important properties:

1 m 6 1
2βr

2n (for some β < 10)

2 #cliques 6 2τr log rn (for some τ < 4.51)

3 Closed under taking topological minors



Let G be a graph excluding H as a topological minor.
• Not interested in structure of H, but its size r = |H|

• In particular: Kr not a topological minor of G

Important properties:

1 m 6 1
2βr

2n (for some β < 10)

2 #cliques 6 2τr log rn (for some τ < 4.51)

3 Closed under taking topological minors



Let G be a graph excluding H as a topological minor.
• Not interested in structure of H, but its size r = |H|

• In particular: Kr not a topological minor of G

Important properties:

1 m 6 1
2βr

2n (for some β < 10)

2 #cliques 6 2τr log rn (for some τ < 4.51)

3 Closed under taking topological minors



Let G be a graph excluding H as a topological minor.
• Not interested in structure of H, but its size r = |H|

• In particular: Kr not a topological minor of G

Important properties:

1 m 6 1
2βr

2n (for some β < 10)

2 #cliques 6 2τr log rn (for some τ < 4.51)

3 Closed under taking topological minors



Let G be a graph excluding H as a topological minor.
• Not interested in structure of H, but its size r = |H|

• In particular: Kr not a topological minor of G

Important properties:

1 m 6 1
2βr

2n (for some β < 10)

2 #cliques 6 2τr log rn (for some τ < 4.51)

3 Closed under taking topological minors



Let G be a graph excluding H as a topological minor.
• Not interested in structure of H, but its size r = |H|

• In particular: Kr not a topological minor of G

Important properties:

1 m 6 1
2βr

2n (for some β < 10)

2 #cliques 6 2τr log rn (for some τ < 4.51)

3 Closed under taking topological minors



Our result and how it works



Requirements
(besides the ones mentioned before)

Definition (Treewidth bounding)
A parameterized graph problem Π is called treewidth bounding
if for every (G,k) ∈ Π it holds that there exists a set S ⊆ V(G)
such that

1 |S| 6 ck

2 tw(G− S) 6 t

for constants c, t only depending on Π.

• S usually is the solution set
• VERTEX COVER, FEEDBACK VERTEX SET in general

graphs
• CHORDAL VERTEX DELETION in graphs with bounded

clique-size
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A little bit of notation

S

G-S
A

We write DS(A) = |{u ∈ S | v ∈ A : uv ∈ E(G)}| for the number
of vertices in S that have neighbours in A (for disjoint sets S,A)



A decomposition

S
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 large small



A decomposition

S

G-S

 large small

Reduced instance: large protrusions are gone



Small-degree components
S

G-S

• DS(C) < r, therefore boundary of size r

• C has constant treewidth (problem is treewidth bounding)

⇒ Each small-degree component has constant size (reduced
instance)

• What about the number of small-degree components?
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• Is it exhaustive?
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Small-degree components

S

• Components now connected to cliques (or not finished)

• G[S] is H-topological minor free, therefore...
... O(|S|) = O(k) cliques
... O(|S|) = O(k) edges

• Constant number of vertices in components connected to a
common clique (or large protrusion in G)
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50% done!
(not)

O(k) vertices in small-degree
components



Large-degree components

Very technical. Two ingredients:

1 At most O(k) connected subgraphs with DS > r

2 Tree-decomposition allows us to find many such subgraphs
of constant size
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Large-degree components
Ingredient one

S

• Same idea as before: contract connected subgraphs into
edges in S

• Exhaustive, else Kr as a subgraph in S and thus H as a
topological minor in G
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Large-degree components
Ingredient two

• Walk along path-decomposition
• Small degree⇒ Small boundary
• If more than $(2t+ r) vertices seen: subgraph has large

degree wrt S
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Conclusion



The result

We have shown that problems. . .
1 . . . that can be solved in polynomial time via

dynamic programming on graphs of bounded
treewidth

2 . . . that have finite integer index
3 . . . and that are treewidth bounding

admit linear kernels on graphs excluding a fixed
topological minor.



Examples



Trade-off: class of instances vs.
problem requirements



Open questions

• What about graphs excluding a fixed induced
minor /contraction /immersion? Which other notions of
sparse graphs allow such a theorem?

• Can we do this for DOMINATING SET and similar
problems? (Grohe & Marx -decomposition!)

• Are there interesting polynomially treewidth bounding
problems? (We looked at linear treewidth bounding)

Thank you!
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