Linear kernels for graphs excluding a topological minor

Alexander Langer, **Felix Reidl**, Somnath Sikdar, Peter Rossmanith

Lehr- und Forschungsgebiet Theoretische Informatik

RWTHAACHEN

January 31, 2012

Contents

Linear kernels in sparse graphs

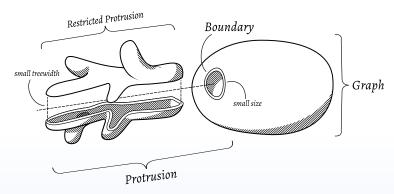
Reduction via protrusions

(Topological) Minors

Properties of H-topological-minor-free graphs

Our result and how it works

Conclusion

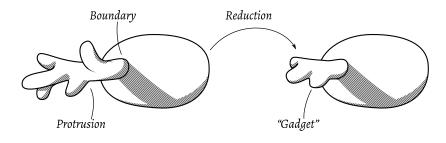

Linear kernels in sparse graphs

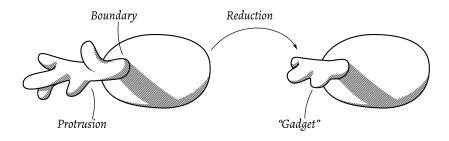
Overview

- Framework for planar graphs
 Guo and Niedermeier: Linear problem kernels for NP-hard problems on planar graphs
- Meta-result for graphs of bounded genus
 Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta)
 Kernelization
- Meta-result for graphs excluding a fixed graph as a minor Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels
- Our contribution: general result for graphs excluding a fixed graph as a topological minor

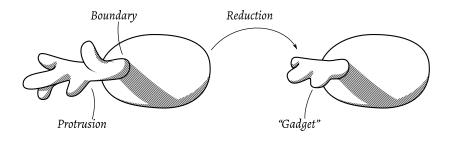
Reduction via protrusions

Protrusion anatomy

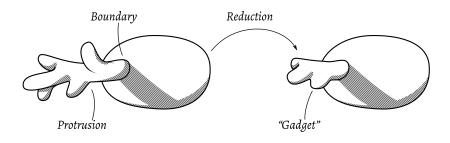



Definition

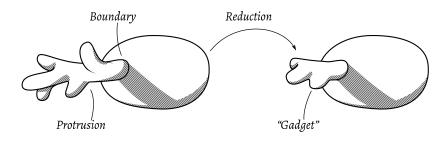
 $X \subseteq V(G)$ is a t-protrusion if


2
$$\mathbf{tw}(G[X]) \leqslant t$$

(small boundary)
(small treewidth)



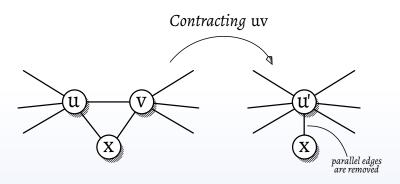
 ...can be solved by dynamic programming on graphs of bounded treewidth



- ...can be solved by dynamic programming on graphs of bounded treewidth
- 2 ...admits small gadgets (finite integer index)

- ...can be solved by dynamic programming on graphs of bounded treewidth
- 2 ...admits small gadgets (finite integer index)

Note: the reduction can decrease the parameter.


- ...can be solved by dynamic programming on graphs of bounded treewidth
- 2 ...admits small gadgets (finite integer index)

Note: the reduction can decrease the parameter.

This is the only reduction.

(Topological) Minors

Edge contraction

Relation Operations

induced subgraph delete vertices

subgraph

topological minor

minor

Relation	Operations
induced subgraph	delete vertices
subgraph	delete vertices and edges
topological minor	

minor

Relation	Operations
induced subgraph	delete vertices
subgraph	delete vertices and edges
topological minor	
minor	delete vertices and edges, contract edges

Relation	Operations
induced subgraph	delete vertices
subgraph	delete vertices and edges
topological minor	delete vertices and edges, contract edges <i>incident to a</i> <i>degree-2 vertex</i>
minor	delete vertices and edges, contract edges

Properties of H-topological-minor-free graphs

• Not interested in structure of H, but its size r = |H|

- Not interested in structure of H, but its size r = |H|
- In particular: K_r not a topological minor of G

- Not interested in structure of H, but its size r = |H|
- In particular: K_r not a topological minor of G

Important properties:

- Not interested in structure of H, but its size r = |H|
- In particular: K_r not a topological minor of G

Important properties:

- Not interested in structure of H, but its size r = |H|
- In particular: K_r not a topological minor of G

Important properties:

2 #cliques
$$\leq 2^{\tau r \log r} n$$
 (for some $\tau < 4.51$)

- Not interested in structure of H, but its size r = |H|
- In particular: K_r not a topological minor of G

Important properties:

2 #cliques
$$\leqslant 2^{\tau r \log r} n$$
 (for some $\tau < 4.51$)

3 Closed under taking topological minors

Our result and how it works

(besides the ones mentioned before)

Definition (Treewidth bounding)

A parameterized graph problem Π is called *treewidth bounding* if for every $(G,k)\in\Pi$ it holds that there exists a set $S\subseteq V(G)$ such that

- 2 $\mathbf{tw}(G S) \leqslant t$

for constants c, t only depending on Π .

(besides the ones mentioned before)

Definition (Treewidth bounding)

A parameterized graph problem Π is called *treewidth bounding* if for every $(G,k)\in\Pi$ it holds that there exists a set $S\subseteq V(G)$ such that

- 2 $\mathbf{tw}(G S) \leqslant t$

for constants c, t only depending on Π .

S usually is the solution set

(besides the ones mentioned before)

Definition (Treewidth bounding)

A parameterized graph problem Π is called *treewidth bounding* if for every $(G,k)\in\Pi$ it holds that there exists a set $S\subseteq V(G)$ such that

- 2 $\mathbf{tw}(G S) \leqslant t$

for constants c, t only depending on Π .

- S usually is the solution set
- Vertex Cover, Feedback Vertex Set in general graphs

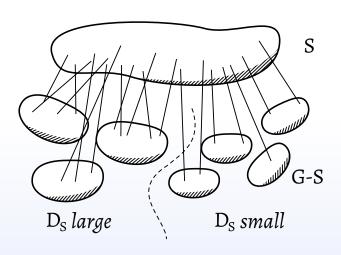
(besides the ones mentioned before)

Definition (Treewidth bounding)

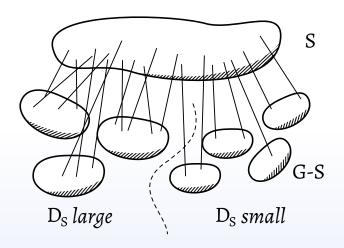
A parameterized graph problem Π is called *treewidth bounding* if for every $(G,k)\in\Pi$ it holds that there exists a set $S\subseteq V(G)$ such that

- 2 $\mathbf{tw}(G S) \leqslant \mathbf{t}$

for constants c, t only depending on Π .

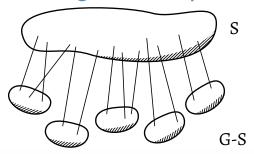

- S usually is the solution set
- VERTEX COVER, FEEDBACK VERTEX SET in general graphs
- CHORDAL VERTEX DELETION in graphs with bounded clique-size

A little bit of notation

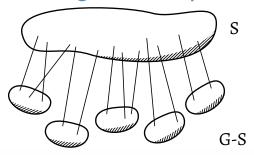


We write $D_S(A) = |\{u \in S \mid v \in A : uv \in E(G)\}|$ for the number of vertices in S that have neighbours in A (for disjoint sets S, A)

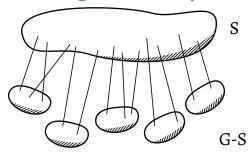
A decomposition



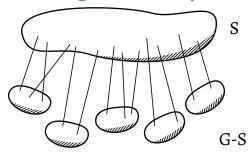
A decomposition

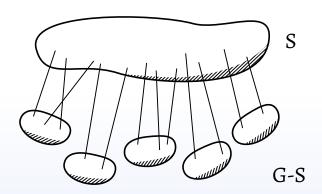

Reduced instance: large protrusions are gone

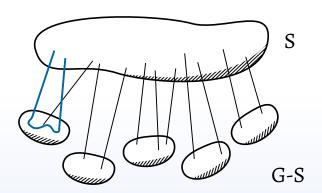
Small-degree components

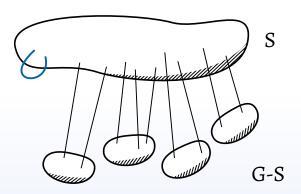


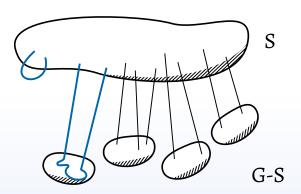
 $\bullet \ \ D_S(C) < r, \ therefore \ boundary \ of \ size \ r$

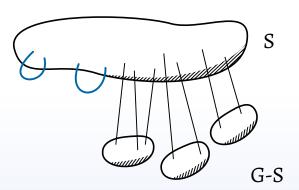

Small-degree components

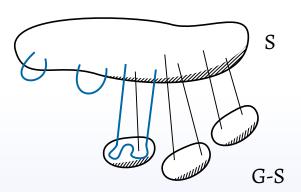

- $\bullet \ D_S(C) < r, \, \text{therefore boundary of size} \, \, r \\$
- C has constant treewidth (problem is treewidth bounding)

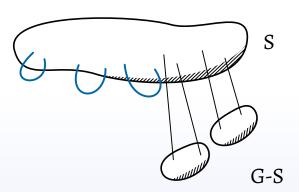


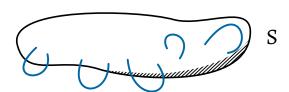

- $D_S(C) < r$, therefore boundary of size r
- C has constant treewidth (problem is treewidth bounding)
- ⇒ Each small-degree component has constant size (reduced instance)

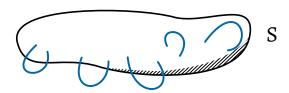


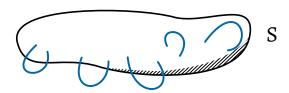

- $D_S(C) < r$, therefore boundary of size r
- C has constant treewidth (problem is treewidth bounding)
- ⇒ Each small-degree component has constant size (reduced instance)
 - What about the number of small-degree components?

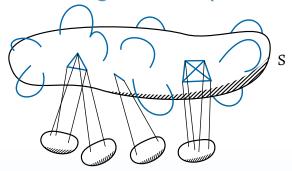




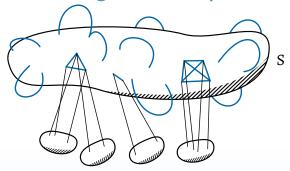




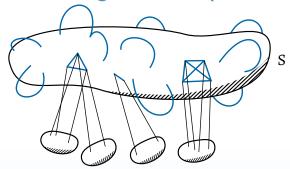



G-S

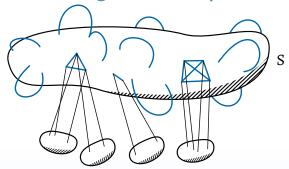
• How often can we do this?



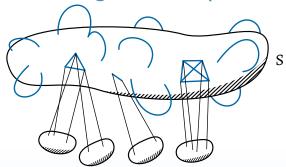
G-S


- How often can we do this?
- Is it exhaustive?

Components now connected to cliques (or not finished)



- Components now connected to cliques (or not finished)
- G[S] is H-topological minor free, therefore...



- Components now connected to cliques (or not finished)
- G[S] is H-topological minor free, therefore...

...
$$O(|S|) = O(k)$$
 cliques

- Components now connected to cliques (or not finished)
- G[S] is H-topological minor free, therefore...
 - ... O(|S|) = O(k) cliques
 - ... O(|S|) = O(k) edges

- Components now connected to cliques (or not finished)
- G[S] is H-topological minor free, therefore...
 - ... O(|S|) = O(k) cliques
 - ... O(|S|) = O(k) edges
- Constant number of vertices in components connected to a common clique (or large protrusion in G)

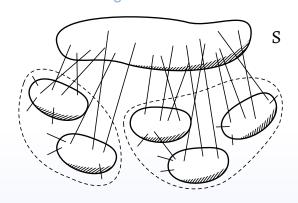
50% done!

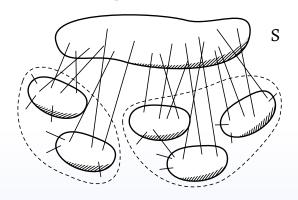
O(k) vertices in small-degree components

Large-degree components

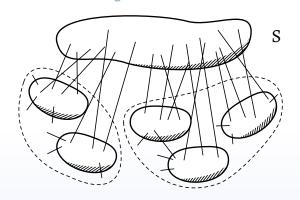
Very technical. Two ingredients:

Large-degree components

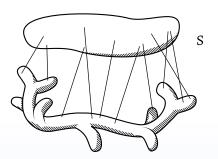

Very technical. Two ingredients:

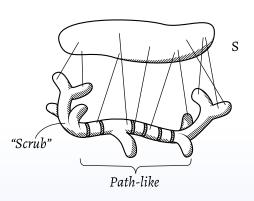

1 At most O(k) connected *subgraphs* with $D_S \geqslant r$

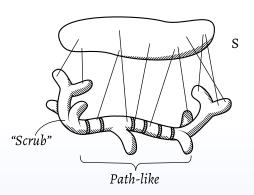
Large-degree components

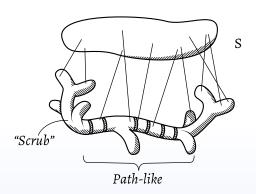

Very technical. Two ingredients:

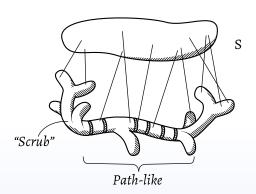
- **1** At most O(k) connected *subgraphs* with $D_S \geqslant r$
- Tree-decomposition allows us to find many such subgraphs of constant size

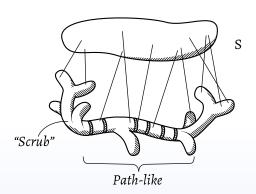





 Same idea as before: contract connected subgraphs into edges in S


- Same idea as before: contract connected subgraphs into edges in S
- Exhaustive, else K_τ as a subgraph in S and thus H as a topological minor in G

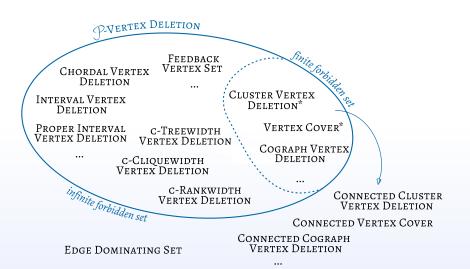



Walk along path-decomposition

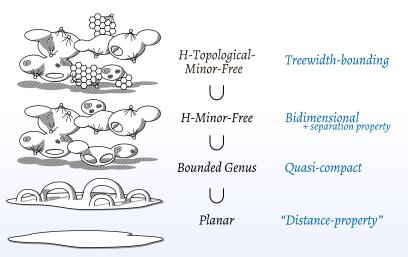
- Walk along path-decomposition
- Small degree ⇒ Small boundary

- Walk along path-decomposition
- Small degree ⇒ Small boundary
- If more than $\varpi(2t+r)$ vertices seen: subgraph has large degree wrt S

- Walk along path-decomposition
- Small degree ⇒ Small boundary
- If more than $\varpi(2t+r)$ vertices seen: subgraph has large degree wrt S


Conclusion

The result


We have shown that problems...

- that can be solved in polynomial time via dynamic programming on graphs of bounded treewidth
- ... that have finite integer index
- admit linear kernels on graphs excluding a fixed topological minor.

Examples

Trade-off: class of instances vs. problem requirements

Open questions

- What about graphs excluding a fixed induced minor/contraction/immersion? Which other notions of sparse graphs allow such a theorem?
- Can we do this for DOMINATING SET and similar problems? (Grohe & Marx -decomposition!)
- Are there interesting polynomially treewidth bounding problems? (We looked at linear treewidth bounding)

Open questions

- What about graphs excluding a fixed induced minor/contraction/immersion? Which other notions of sparse graphs allow such a theorem?
- Can we do this for DOMINATING SET and similar problems? (Grohe & Marx -decomposition!)
- Are there interesting polynomially treewidth bounding problems? (We looked at *linear* treewidth bounding)

Thank you!