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The work so far
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Residence hall

e Student in ANU Hall
®<e Friendship

Collected via interviews
by Cynthia Webster,
ranked as “best friend”,




Y2H union (yeast)

® Proteins of Brewer's yeast
®<e Interaction

Proteins interact in vitro,
combination of several
datasets.




Diseasome

o Gene / Genetic disorder |
*<e Correlahon expressmn/dsease 4] |
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Exnet water’
® Junction, reservoir, or tank
®<e Pipe

Water distribution
network at

Exeter University



Degree distributions

Huge fraction of
vertices have small
degree.

But: the distribution
has a long tail!

netscience
columbia-social
ca-CondMat
codeminer
~ Yeast
diseasome
polblogs
twittercrawl
soc-hamsterster

reactome
soc-advogato
marvel

web-EPA
email-Enron

More extreme in large networks!



Real vertex cover
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Real treewidth
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Real treedepth

X technology X friendship X infrastructure % biology

.. N/10: 54% networks
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Real wcols

X technology % friendship % infrastructure % biology
100000 - . N/10: 74% networks
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Random model sparsity
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Real structural sparseness
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W. Nadara, M. Pilipczuk, R. Rabinovich, FR, S. Siebertz:
Empirical Evaluation of Approximation Algorithms for
Generalized Graph Coloring and Uniform Quasi-Wideness.
SEA 2018: 14:1-14:16



A hard-learnt lesson
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No one
cares.

*not enough people
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A false dichotomy
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Solvers vs Solutions



Solvers vs Solutions
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Solvers vs Solutions

Diffuse problems

Competing views

Often sceptical of
new approaches

((’ Must be very

user-friendly

‘ High maintenance

Concrete problems
Single perspective

Appreciate new
approaches

Usable for
stakeholder

Maintenance by
stakeholder
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The hammer scale
. L\
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wcol,
o 6 o o o

A™(Gy)
. s @ &
e . FO model
- checking

r-Dominating  splitter games
Set approx.

Usability H Usability
In practice in theory



Big hammers don't implement
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Medium hammers don't scale

O'Brien MP, Sullivan BD.

Experimental evaluation of counting subgraph isomorphisms
in classes of bounded expansion.

arXiv preprint arXiv:1712.06690. 2017 Dec 18.



Small hammers might just work!

Nadara W, Pilipczuk M, Rabinovich R, Reidl F, Siebertz S.

Empirical evaluation of approximation algorithms for generalized graph
coloring and uniform quasi-wideness.

Journal of Experimental Algorithmics (JEA). 2019 Dec 10;24:1-34.

Brown CT, Moritz D, O’Brien MP, Reidl F, Reiter T, Sullivan BD. github.com/
Exploring neighborhoods in large metagenome assembly spacegraphcats/
graphs using spacegraphcats reveals hidden sequence spacegraphcats
diversity. Genome biology. 2020 Dec;21(1):1-6.

Reidl F, Sullivan BD. A color-avoiding approach to subgraph github.com/
counting in bounded expansion classes. theoryinpractice/
arXiv preprint arXiv:2001.05236. 2020 Jan 15. mandoline



Weak colouring & bounded expansion

Wg(v) ST
. D X
» UU \

u is weakly r-reachable from v if there exists a
path from v to u of length at most r such that
U is the path's leftmost vertex.

weol,. (G) = Génﬂl(nG) meac);dWG( v)|

':"" A graph class has bounded
k-e expansion iff itis wcol,-bounded.



dtf-augmentations
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Distances under dtf-augmentations

Let wand v be at distance d in G :

,
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G Gr w, +twy, =d

Pairs at distance at most r in the original
graph have distance at most two
in the r'" augmentation.



B.E. & dtf-augmentations

There exist two (horrible) polynomials
P and Q such that:

xr(G) < P<v(2logr)r (G)>
A (G,) < Q(V (G)A(Gh))

&85 A graph class has bounded
"ﬂ. !

3" expansion iff itis A~(G,)-bounded.

We can compute dtf-augmenations in
linear time (in bounded expansion classes)



Applications & Algorithms

0‘.::‘.}'\‘
PIAAL A (G)
e .
=< -
| e
@ ®

[ ]
/N w
</ = ¢ eXT’ # r-Dominating

[ ] o
FO model checking ) r-neighb.  Set approx.
counting

o
7 //\o [\ N
e p #o\ y !‘
fast local search  motif counting local genome
centrality ~ neighborhoods



Exhibit A
CATLAS

CIN 854S

3

- \
a ’ ) w

\,,< ¥ a A\
('», ve o

-~ -
' &

Metagenome exploration
using hierarchical domination
of de-Bruijn graphs

Joint work with C. Titus Brown, Dominik Moritz,
Michael P. O'Brien, Taylor Reiter, Blair D. Sullivan



Metagenomics




Metagenomics




Metagenomics




Metagenomics




De-Bruijn graphs
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CATLAS Overview

r-DTFAs

Dvorak's
Algorithm*

G fda

r-Domset

pa
de-Bruijn
graphs




Reminder: Dvorak's algorithm

while @ undominated:
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CATLAS-1 Results

strain recovery
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What really matters

The efficient computation of
dominating sets will open up a
whole new range of possibilities
in bioinformatics.

C. Titus Brown, Associate Professor at UC Davis

spacegraphcats will transform
the way biologists interact with
genome assemblies.

It allows us to access previously
discarded sequencing information
thereby allowing more robust
functional characterization.

Taylor Reiter, his much more eloquent post-doc




Engineering: efficiency

Lesson: Stick to the 'sparsity methodology'

Example: computing partition from r-domset

We cando thisin linear time
e using the already computed
® dtf-augmentation



Engineering: efficiency
Lesson: Practical issues inspire theoretical questions.

'Delay' taking
in-neighbours

while @ undominated:

V) D
wcolg, o o
T e : O
X D o .
G, suffices! . ' é
D A
’D| < CT|A‘ .. ] o. ° ° .

r-dominating set r-scattered set




Collaboration

Lesson: Expect roles to shift over time.

Then
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Next steps

@ rosterlanguage
Believe it or not, sofar thisis alldone in Python!

@® |mprove network partition
E.g.consider additional constraints

@® \\/hatever our collaborators need! g

@ Contracted de-Bruijn graphs

These graphs have bounded degree,
but probably much more structure that
we could exploit!



Exhibit B
Mandoline

Motif counting using
generalized colourings

Joint work with Blair D. Sullivan
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Graphlets

We want to count all (connected) induced
subgraphs up to a given size.
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1010 109 10 107 10ﬁ 105 104 104 105 10 107 10a 109 1010
The graphlet degree distribution or the graphlet

degree can be used to compare networks.

Przulj N, Corneil DG, Jurisica .

Modeling interactome: scale-free or geometric?.

Bioinformatics. 2004 Jul 29:20(18):3508-15

Przulj N. Biological network comparison using graphlet degree distribution.
Bioinformatics. 2007 Jan 15;23(2):e177-83.



Let's start with something easy!

We count cliques in a d-degenerate graph.

Observation: every clique is contained in the left-
neighbourhood of its last vertex.

H~K,
(@ G )

V(H) € Ng (v)



Let's start with something easy!

We count cliques in a d-degenerate graph.

Observation: every clique is contained in the left-
neighbourhood of its last vertex.

H~K,
(@ G )

V(H) € Ng (v)

Therefore we can enumerate all cliques by
enumerating all cliques in N—(v) forallv € G'!

O(2%n) time!



Does it blend?
Can we ‘lift" this algorithm to wcol?

H~K,
G e |/ (H) C Ng (v)
G e H C W((v)
H

@ \\/hat is the ‘last’ vertex of H?
Enumerate all orderings H of H.



Does it blend?
Can we ‘lift" this algorithm to wcol?

H~K,
G e |/ (H) C Ng (v)
G e H C W((v)
H

@ \\/hat is the ‘last’ vertex of H?
Enumerate all orderings H of H.

@ Does H C W (v) actually hold?
Only sometimes!



Two ways to order a P,

(%

G



Two ways to order a P,

a b cdef Wiw) o
00 0 0 ° -G

o-0-0-0-0"



Two ways to order a P,

b c de f W& (v) v
—-0—0-0-0-0 G
WE?G (f)! L = N
d b cef
® 00000



Two ways to order a P,

a bcdef W) v
o000 0 ° L
WE{?G (f)! L = N
adbcef H_—
P S
O O 060 0 ° G
N XS



Two ways to order a P,

b C d e ]C WE(v) v

00000 L
WE?G (f)! o000’
b c e f H_—
XY Y -



Two ways to order a Pg

bcdef Wiw) e
o000 0 G
We. (f)! s Y
dbcef e
o oo -
WE,(F) .. B AP

Is there a nice formalization
of this property?

G



Decomposition!

ad/b_c\ef
f.@..—o
e f e f a d e f
32/..’32/..’....
T e m ey

We can count
linear pieces!

Progress! These
pieces are linear!



Count & combine!

C1 a d e f
wcol,. o 0090
C2
wcol,. ./_.><.\—'
a d b c
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weol,. ® i\.



a d e f
o—0-0

Count & combine!

C1

wcol,

Co

wcol,.

C1XCo— > ...

wcol,.



Count & combine!

C1 a d e f
wcol,. o 0090
C
wcol,. 2 ./_.><.\—.
a d b c
o—o
Cc1XCa —) .. a d/

SN
(@]

a d/ a d/ How do we count
.M .i\\‘ these graphs?



Decomposition!
a d b c e f
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Decomposition!
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Counting P,s using wcols

Lemma 6. Let H € H be a (non-linear) pattern relaxation and let Hy &z Hy =

H. Fiz an ordered vertex set § € G such that H[T] ~ G[g].

# (H,G) = # (H1,G) # (Hy,G)— Y
a:»—)y a:»—)y IP—)y

RN

e o < . ¢ o—o—0
0] (1] (2
4122:
7]

NG ¢
7 (8] 9
VPR TN
—eo o0 ~_o—e—
NG
14 15 16
. SN LD
21 22 23

DeD(H,,Hz)

Then

7#7(Hy D | le H?) 7#7(D7 G)
T T—=y

# (D,D)

T—=T

4
A0\

[} .\?;. .—.\?;. [ ] .\—\f;.
1 12 13
.Q’;. ./.}._. *—0—0
18 19 20



Counting P,s using wcols

Lemma 6. Let H € H be a (non-linear) pattern relaxation and let Hy &z Hy =
H. Fiz an ordered vertex set § € G such that H[T] ~ G[g].

# (H.G) = # (H1,6) # (HaG) = =
7 DeD% ) iﬁi(D, D)
ol = eee X /D._(@.+/Q/) Not shown:
9 24 13 19 .<:_.
52: = oo X o—eo—o — (é%o/o—{— o@ ) :_.
15 20 16 23
8] @ 1(/&.){/.3.)-(.6.\_.4-1/.3.)
2 24 24 10 2 24

Then

# (HyD | HlyHQ) # (DvG)




Counting P,s using wcols

18 11 - 12 22
A 4
7 |T|
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L] 172
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24

< H—1/2 . >
8 —I 9 13

This 'counting-DAG' has bounded depth
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[V [V
G Count linear
<o patterns directly
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o \. K > A‘.@.:ﬁ(._.x._.)_(._.+2.4.\_.)

Compute composite
pattern counts

Subgraih counting using wcol,.

Aggregate



Engineering: memory
Lesson: \We cannot ignore memory locality.

But this is really hard when working with graphs.

@ Flatten everything
Il N ] |

W3) W2(v) Wi(v) v
Weakly reachable sets Index  Vertex data



Engineering: memory
Lesson: \We cannot ignore memory locality.

But this is really hard when working with graphs.

@ Be o5 specific as possible
Vertex ids  (int16) int32 int64

~ ~ g All Id
( = ok ~ 4.3hio ev\grenceoeud
Node ids = 3 bit 4 bit char
All we could
ever need

Tough design
choices



Engineering: data structures

Lesson: Common data structures not enough

® Design special-purpose data structures

B -A ‘A D Wi

EERIE /N /N

Store tuples 'Forget' Combine



Engineering: data structures

Lesson: Common data structures not enough

® Design special-purpose data structures

B -A ‘A D Wi

EERIE /N /N

Store tuples 'Forget' Combine

Our solution: specialized trie. Better options?



Next steps
@ Morefeatures

Count coloured graphs, sum-of-weights, other types
of embeddings (homomorphisms, non-induced, etc.)

@ [mplement for col,.(G)

We know how todo thisin theory and col,.(G) seems
tobe smallerinpractice.

@ Preprocessing!

Simple preprocessing rules (based e.g.
min-degree of pattern) helpalot. Can ’
we generate more elaborate, pattern- ((
dependentrules?

W

w



Solvers vs Solutions
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The big open question
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Local centrality measures
via neighbourhood surveys

(Secret slides)



Close-to-Closeness Centralities

C(U) r-Local version
—1 1
Closeness (Z dist(u,’u)) ( Z dist(v, u )
ueG uENT[v]
Harmonic Z dist(u,v) ! Z dist(v,u)~
ueG uENT[v]
{u | dist(u,v) < oo}? [N [v]?
Lin's index ST dist(u, v) > dist(v, u)
dist(u,v)<oo uENT[v]

All three measures can be computed quickly
if we know |N4(v)| for1 <d <

Can we compute this
quickly in sparse graphs?



Warm-up: Counting with degeneracy
Let GG be (d-1)-degenerate.

1 Compute orientation G with A~(G) < d
in linear time.

2 Initialize counter Clv]=0 forallv € G.

3 Foreveryve @G, increment Clv] and Clu|
for every in-neighbouru € N—(v).

+1 ®
+1 I\



Degeneracy to dtf-augmentations

Thm. Given a graph G and an integer r, we
can compute the size of [N%(v)| forallv € G

and 1 < d < r in total time 0(22 (G+)p).

. C
AN o—

o 3N ST

s N4(w)

G, T e = Cplld)
G,



Counting using dtf-augmentations
We compute the size of the r'" nbhds:

1 Compute dtf-augm. G, with smaIIA_(@r)
in linear time.



Counting using dtf-augmentations

We compute the size of the r'" nbhds:
1 Compute dtf-augm.G, with small A~(G,)
in linear time.

2 Initialize counter C[v][d] =0 for all
veGandd <



Counting using dtf-augmentations
We compute the size of the r'" nbhds:

1 Compute dtf-augm. G, with smaIIA_(@)
in linear time.

2 Initialize counter C[v][d] =0 for all
veGand d <

3 For everyv e G, increment Clv]|d] and
Clu][d] for every in-neighbouru € Ny (v).

+1
o/
+1 D



Counting using dtf-augmentations
P
o O

The counting so far takes care of the
first two cases, but what about the
indirect neighbours?

v o--o

This is where the algorithm
becomes interesting.



Counting using dtf-augmentations
N (v)

v needs to know how

many indirect neighbours X
at distance 2 <d < r

there are.

Indirect neigh-
bours connect 0
viaN (v).




Counting using dtf-augmentations
v needs to know how N?“_(v)
many indirect neighbours X
atdistance 2 <d<r
there are.

Indirect neigh-
bours connect 0
viaN, (v).

We compute the distance betweenv,u as follows:
dist(u, v) = min (dist(v, X) + dist(u, X))



Counting using dtf-augmentations
Ny (v)

e We need to compute for

every set X C N, (v) and

every possible dist.-vector

d € [r]IXI the number of
® \ertices u such that:

1 N-(u)NN-(v) =X

SY

® 2 dist(u, X) =d



Counting using dtf-augmentations
Ny (v)

e We need to compute for

every set X C N, (v) and

every possible dist.-vector

d € [r]IXI the number of
® \ertices u such that:

p 1 N-(u)NN-(v) =X

SY

® 2 dist(u, X) =d

Let us call this number ¢(v, X, d). Our
first goal is to compute it for every vertex.



A data structure for c(v, X, d)

1 ForeveryveG,, X C N-(v)and d e [r]X],
initialize R[X][d] = 0.



A data structure for c(v, X, d)

1 ForeveryveG,, X C N-(v)and d e [r]X],
initialize R[X][d] = 0.

2 ForeveryveG,,X C N (v), increment
R[X][dist(v, X)]
by one.



A data structure for c(v, X, d)

1 ForeveryveG,, X C N-(v)and d e [r]X],
initialize R[X][d] = 0.

2 ForeveryveG,,X C N (v), increment
R[X][dist(v, X)]
by one.

Claim.

c(,X,d)= Y ()X " R[y][d].

XCYCN, (v) d:d'|x=d



Counting using dtf-augmentations

Given c(v, @ ,@) we can now count the number of
indirect neighbours of v. For every subset X C N~ (v)
and distance-vector d € [r]/X] apply the update:

C[v][min(d + dist(v, X))] += ¢ (v, X, d)

Since the above counts v as a neighbour of itself, we
apply the following correction:

Cv][min(dist(v, X) 4 dist(v, X))] —= 1

There are a few more corrections
concerning direct neighbours, see paper.



Counting using dtf-augmentations
d
\ » / \ -» o0

.\/ ./ Populate C[@][®]

.
= for direct neighbours
Gg,r G )
C iy S 4
V() 4K

= Cv][d]

Update C'[e][®] Populate
using R to count R[.][.]
indirect neighbours



Counting using dtf-augmentations
[ ] *—e

. D . D
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C
V)| G
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Counting using dtf-augmentations

— d
. - 0—o
.\./ Populate C[e][®]

G, r for direct neighbours ’
O(A~(G,)n)
IN¢(v)| 4K

= Cv]ld]



Counting using dtf-augmentations
o—¢o

Yo D »

o //

G r O (2“@“)”))
R

C
V)| G o

= Cv]ld]

Populate
Rle] o]



Counting using dtf-augmentations

o—
R )
\./ .
G7 T O(QA (Gr)n)
R
C c(o,o,o)' d
IN¢(w) 4K ®
= Clolfd]

Update C'[o][®]
using R to count
indirect neighbours

)



Counting using dtf-augmentations

Thm. Given a graph G and an integer 7, we
can compute the size of [N%(v)| forallv € G

and 1 < d < r in total time 0(22 (&),

* Exponential vs quadratic?

* Does not scale to on®
nowhere dense graphs! "

Can we do better?



Can we do better?
CLOSED 2-NEIGHBOURHOOD SIZES

Input: A graph G.
Output: |N?[v]| forevery v € G.

Thm. Unless SETH fails, 2-CNBS cannot be
solved in time

@ O(G*)
@ O(zo(A_(éz))n2—6)

Gutin G, Mertzios GB, Reidl F.
Lower and Upper Bound for Computing the Size of All Second Neighbourhoods.
arXiv preprint arXiv:1805.01684. 2018 May 4



Engineering: compromises

Lesson: \\We cannot be too idealistic.
Some vertices will have large in-neighbourhoods.

@ Mixalgorithms

Conduct regular bfs for vertices with large in-
neighbourhood, use dtf-magicfor everythingelse.

Luckily, these two approaches mix!



Next steps
@ Morefeatures

We can easily count the weights of neighbourhoods
or neighbourhoods restricted to certain colours.
@® Optimize forsmallr

Most real-world caseswill be for small distances. In
particular for r=2we cansimplify the algorithm.

@® \owheredense?

Combine with neighbourhood complexity, handle
large intersections differently.

® /pproximate? ,((’

The Mdbiusinversionisthe bottleneck.
Sacrifice precisionfor speed? ‘




