
Solving a Family of

Multivariate Optimization and Decision Problems

on Classes of Bounded Expansion

Daniel Mock

Joint work with Peter Rossmanith

AlgoOpt 2023, November 14, Aachen

Algorithms For...

Max Partial Vertex Cover

Problem: How many edges can be covered by set

of k vertices?

Red Blue Partial Dominating Set

Problem: Are there k vertices dominating ≥ tred

red and ≥ tblue blue vertices?

Fair Dominating Matching

Problem: Is there a matching of size k that

dominates twice as many red as blue vertices?

Half Triangle Deletion

Problem: Can we destroy half of the triangles

and squares by deleting k vertices?

On graph classes

• Of bounded treewidth

• Of bounded degree

• Planar Graphs

1

Algorithms For...

Max Partial Vertex Cover

Problem: How many edges can be covered by set

of k vertices?

Red Blue Partial Dominating Set

Problem: Are there k vertices dominating ≥ tred

red and ≥ tblue blue vertices?

Fair Dominating Matching

Problem: Is there a matching of size k that

dominates twice as many red as blue vertices?

Half Triangle Deletion

Problem: Can we destroy half of the triangles

and squares by deleting k vertices?

On graph classes

• Of bounded treewidth

• Of bounded degree

• Planar Graphs

1

We give one algorithm for that!

1

We give one meta-algorithm for that!

1

Algorithmic Meta-Theorems

“Every problem expressible in logic L

can be solved efficiently on graph class C.”

MSO on

treewidth

FO on

nowhere dense

2

Algorithmic Meta-Theorems

“Every problem expressible in logic L

can be solved efficiently on graph class C.”

MSO on

treewidth

FO on

nowhere dense

2

Model-Checking

MC (L, C)

Input: A graph G ∈ C and a sentence φ ∈ L

Problem: Is φ true in G? (G |= φ?)

Parameter: |φ|

MC (FO,G) is hard (PSPACE-hard and AW[*]-hard)

Goal: Find classes C and logic L where MC (L, C) is FPT (time complexity of fC(|φ|)nd)

logic

φ = ∃x1 . . . ∃xk [. . .]
length depends on k

k-independent set

k-dominating set

. . .

model-checking

f (|φ|)nd = g(k)nd

algorithm

3

Model-Checking

MC (L, C)

Input: A graph G ∈ C and a sentence φ ∈ L

Problem: Is φ true in G? (G |= φ?)

Parameter: |φ|

MC (FO,G) is hard (PSPACE-hard and AW[*]-hard)

Goal: Find classes C and logic L where MC (L, C) is FPT (time complexity of fC(|φ|)nd)

logic

φ = ∃x1 . . . ∃xk [. . .]
length depends on k

k-independent set

k-dominating set

. . .

model-checking

f (|φ|)nd = g(k)nd

algorithm
3

Sparse Graph Classes

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Outerplanar

Planar

Bounded
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forests

r

rr

∇∇ Locally bounded
expansion

Nowhere dense

∇∇
r

ωω

By Felix Reidl 4

Bounded Expansion

Class has bounded expansion if:

there is a function f s.t.
|E |
|V |

≤ f (r)

for every r -shallow minor

of every graph in C

Many other characterizations:

copwidth game, weak coloring numbers,

neighborhood complexity, treedepth

colorings, neighborhood covers, ...

5

Bounded Expansion

Class has bounded expansion if:

there is a function f s.t.
|E |
|V |

≤ f (r)

for every r -shallow minor

of every graph in C

Many other characterizations:

copwidth game, weak coloring numbers,

neighborhood complexity, treedepth

colorings, neighborhood covers, ...

5

First-Order with Some Counting: FO({>0})

Definition of FO({>0}) (Dreier, Rossmanith, ’21)

Built recursively using

• the rules of FO

• #y φ(y , x1, . . . , xk) ≥ m for every m ∈ N and FO({>0}) formula φ

Fragment of FO(P) and FOC(P) (Kuske, Schweikardt ’17)

PartDomSet:

∃x1 . . . ∃xk#y
(∨
1≤i≤k

E (y , xi) ∨ y = xi
)
≥ t

h-index:

#mypaper

(
#otherpaper cite(mypaper, otherpaper) ≥ h

)
≥ h

6

First-Order with Some Counting: FO({>0})

Definition of FO({>0}) (Dreier, Rossmanith, ’21)

Built recursively using

• the rules of FO

• #y φ(y , x1, . . . , xk) ≥ m for every m ∈ N and FO({>0}) formula φ

Fragment of FO(P) and FOC(P) (Kuske, Schweikardt ’17)

PartDomSet:

∃x1 . . . ∃xk#y
(∨
1≤i≤k

E (y , xi) ∨ y = xi
)
≥ t

h-index:

#mypaper

(
#otherpaper cite(mypaper, otherpaper) ≥ h

)
≥ h

6

First-Order with Some Counting: FO({>0})

Definition of FO({>0}) (Dreier, Rossmanith, ’21)

Built recursively using

• the rules of FO

• #y φ(y , x1, . . . , xk) ≥ m for every m ∈ N and FO({>0}) formula φ

Fragment of FO(P) and FOC(P) (Kuske, Schweikardt ’17)

PartDomSet:

∃x1 . . . ∃xk#y
(∨
1≤i≤k

E (y , xi) ∨ y = xi
)
≥ t

h-index:

#mypaper

(
#otherpaper cite(mypaper, otherpaper) ≥ h

)
≥ h

6

Known Results for FO({>0})

Model-checking of FO({>0}) is hard on forests of depth 4

Theorem (Dreier, Rossmanith ’21)

On classes of bounded expansion, in linear FPT time
1. (1 + ε)-approximation of FO({>0}),
2. Exact evaluation of formulas ∃x1 . . . ∃xk#y φ(y , x1, . . . , xk)︸ ︷︷ ︸

FO w/o #

≥ m

Theorem (Dreier, M., Rossmanith ’23)

On nowhere dense classes, in almost linear FPT time:

Exact evaluation of formulas ∃x1 . . . ∃xk#y φ(y , x1, . . . , xk)︸ ︷︷ ︸
quantifier-free

≥ m

⇒ PartDomSet in (almost) linear FPT time on bounded expansion & nowhere dense

7

Known Results for FO({>0})

Model-checking of FO({>0}) is hard on forests of depth 4

Theorem (Dreier, Rossmanith ’21)

On classes of bounded expansion, in linear FPT time
1. (1 + ε)-approximation of FO({>0}),
2. Exact evaluation of formulas ∃x1 . . . ∃xk#y φ(y , x1, . . . , xk)︸ ︷︷ ︸

FO w/o #

≥ m

Theorem (Dreier, M., Rossmanith ’23)

On nowhere dense classes, in almost linear FPT time:

Exact evaluation of formulas ∃x1 . . . ∃xk#y φ(y , x1, . . . , xk)︸ ︷︷ ︸
quantifier-free

≥ m

⇒ PartDomSet in (almost) linear FPT time on bounded expansion & nowhere dense

7

Known Results for FO({>0})

Model-checking of FO({>0}) is hard on forests of depth 4

Theorem (Dreier, Rossmanith ’21)

On classes of bounded expansion, in linear FPT time
1. (1 + ε)-approximation of FO({>0}),
2. Exact evaluation of formulas ∃x1 . . . ∃xk#y φ(y , x1, . . . , xk)︸ ︷︷ ︸

FO w/o #

≥ m

Theorem (Dreier, M., Rossmanith ’23)

On nowhere dense classes, in almost linear FPT time:

Exact evaluation of formulas ∃x1 . . . ∃xk#y φ(y , x1, . . . , xk)︸ ︷︷ ︸
quantifier-free

≥ m

⇒ PartDomSet in (almost) linear FPT time on bounded expansion & nowhere dense 7

Other variants

Red Blue Partial Dominating Set

Input: A graph G and k , tred, tblue ∈ N
Problem: Are there k vertices dominating ≥ tred red and ≥ tblue blue vertices?

Parameter: k

G |= ∃x1 . . . ∃xk#y Red(y) ∧ dom(y , x̄) ≥ tred ∧#y Blue(y) ∧ dom(y , x̄) ≥ tblue

Exact Partial Dominating Set
...

Problem: Are there k vertices dominating exactly t vertices?

G |= ∃x1 . . . ∃xk#y dom(y , x1, . . . , xk) = t

Our goal: Lift result to ∃x1 . . . ∃xk
∨∧

(#y φi (y x̄) ≥ mi)︸ ︷︷ ︸
boolean combination of ℓ counting terms

8

Other variants

Red Blue Partial Dominating Set

Input: A graph G and k , tred, tblue ∈ N
Problem: Are there k vertices dominating ≥ tred red and ≥ tblue blue vertices?

Parameter: k

G |= ∃x1 . . . ∃xk#y Red(y) ∧ dom(y , x̄) ≥ tred ∧#y Blue(y) ∧ dom(y , x̄) ≥ tblue

Exact Partial Dominating Set
...

Problem: Are there k vertices dominating exactly t vertices?

G |= ∃x1 . . . ∃xk#y dom(y , x1, . . . , xk) = t

Our goal: Lift result to ∃x1 . . . ∃xk
∨∧

(#y φi (y x̄) ≥ mi)︸ ︷︷ ︸
boolean combination of ℓ counting terms

8

Other variants

Red Blue Partial Dominating Set

Input: A graph G and k , tred, tblue ∈ N
Problem: Are there k vertices dominating ≥ tred red and ≥ tblue blue vertices?

Parameter: k

G |= ∃x1 . . . ∃xk#y Red(y) ∧ dom(y , x̄) ≥ tred ∧#y Blue(y) ∧ dom(y , x̄) ≥ tblue

Exact Partial Dominating Set
...

Problem: Are there k vertices dominating exactly t vertices?

G |= ∃x1 . . . ∃xk#y dom(y , x1, . . . , xk) = t

Our goal: Lift result to ∃x1 . . . ∃xk
∨∧

(#y φi (y x̄) ≥ mi)︸ ︷︷ ︸
boolean combination of ℓ counting terms

8

Other variants

Red Blue Partial Dominating Set

Input: A graph G and k , tred, tblue ∈ N
Problem: Are there k vertices dominating ≥ tred red and ≥ tblue blue vertices?

Parameter: k

G |= ∃x1 . . . ∃xk#y Red(y) ∧ dom(y , x̄) ≥ tred ∧#y Blue(y) ∧ dom(y , x̄) ≥ tblue

Exact Partial Dominating Set
...

Problem: Are there k vertices dominating exactly t vertices?

G |= ∃x1 . . . ∃xk#y dom(y , x1, . . . , xk) = t

Cannot be expressed as ∃x1 . . . ∃xk#y φ(y , x1, . . . , xk)︸ ︷︷ ︸
FO w/o #

≥ m

Our goal: Lift result to ∃x1 . . . ∃xk
∨∧

(#y φi (y x̄) ≥ mi)︸ ︷︷ ︸
boolean combination of ℓ counting terms

8

Other variants

Red Blue Partial Dominating Set

Input: A graph G and k , tred, tblue ∈ N
Problem: Are there k vertices dominating ≥ tred red and ≥ tblue blue vertices?

Parameter: k

G |= ∃x1 . . . ∃xk#y Red(y) ∧ dom(y , x̄) ≥ tred ∧#y Blue(y) ∧ dom(y , x̄) ≥ tblue

Exact Partial Dominating Set
...

Problem: Are there k vertices dominating exactly t vertices?

G |= ∃x1 . . . ∃xk#y dom(y , x1, . . . , xk) = t

Our goal: Lift result to ∃x1 . . . ∃xk
∨∧

(#y φi (y x̄) ≥ mi)︸ ︷︷ ︸
boolean combination of ℓ counting terms

8

Our Results

Algorithmic Result

Theorem (Our Positive Result)

On classes of bounded expansion, we can decide in time f (k, ℓ)nℓ+1 polylog n whether

G |= ∃x1 . . . ∃xkP
(
#y φ1(y x̄)︸ ︷︷ ︸

FO w/o #

, . . . ,#y φℓ(y x̄)
)

where P is some efficiently computable predicate over Nℓ.

Moreover, we can count the number of such solutions.

=⇒ Exact Partial Dominating Set in time f (k)n2 on bounded expansion.

=⇒ Red Blue Partial Dominating Set in time f (k)n3 on bounded expansion

(can be improved to f (k)n2).

9

Algorithmic Result

Theorem (Our Positive Result)

On classes of bounded expansion, we can decide in time f (k, ℓ)nℓ+1 polylog n whether

G |= ∃x1 . . . ∃xkP
(
#y φ1(y x̄)︸ ︷︷ ︸

FO w/o #

, . . . ,#y φℓ(y x̄)
)

where P is some efficiently computable predicate over Nℓ.

Moreover, we can count the number of such solutions.

=⇒ Exact Partial Dominating Set in time f (k)n2 on bounded expansion.

=⇒ Red Blue Partial Dominating Set in time f (k)n3 on bounded expansion

(can be improved to f (k)n2).

9

From k-Sum to Lower Bounds

k-Sum Problem: given m numbers x1, . . . , xm; target T

Find k numbers that add up to exactly T

Algorithms known for k-Sum: • Õ(Tm) • O(m⌈k/2⌉)

Theorem (Abboud et al. ’21)

For every ε > 0, k-Sum is not in time T 1−εmo(k) (under SETH).

Theorem (Our Lower Bound)

On star forests, for formulas of the form

∃x1 . . . ∃xk(#y φ1(y , x1 . . . xk) = t1 ∧ · · · ∧#y φℓ(y , x1 . . . xk) = tℓ)

there is no model-checking algorithm in time f (k , ℓ)nℓ−ε, for any function f or ε > 0.

10

From k-Sum to Lower Bounds

k-Sum Problem: given m numbers x1, . . . , xm; target T

Find k numbers that add up to exactly T

Algorithms known for k-Sum: • Õ(Tm) • O(m⌈k/2⌉)

Theorem (Abboud et al. ’21)

For every ε > 0, k-Sum is not in time T 1−εmo(k) (under SETH).

Theorem (Our Lower Bound)

On star forests, for formulas of the form

∃x1 . . . ∃xk(#y φ1(y , x1 . . . xk) = t1 ∧ · · · ∧#y φℓ(y , x1 . . . xk) = tℓ)

there is no model-checking algorithm in time f (k , ℓ)nℓ−ε, for any function f or ε > 0.

10

From k-Sum to Lower Bounds

k-Sum Problem: given m numbers x1, . . . , xm; target T

Find k numbers that add up to exactly T

Algorithms known for k-Sum: • Õ(Tm) • O(m⌈k/2⌉)

Theorem (Abboud et al. ’21)

For every ε > 0, k-Sum is not in time T 1−εmo(k) (under SETH).

Theorem (Our Lower Bound)

On star forests, for formulas of the form

∃x1 . . . ∃xk(#y φ1(y , x1 . . . xk) = t1 ∧ · · · ∧#y φℓ(y , x1 . . . xk) = tℓ)

there is no model-checking algorithm in time f (k , ℓ)nℓ−ε, for any function f or ε > 0.

10

Reduction

Example: T = 100; k = 3

x1 = 32, x2 = 42, x3 = 53, x4 = 15.

Reduction to model-checking of our fragment (on star forests):

v1 v2 v3 v4

G |= ∃x1∃x2∃x3#y Red(y) ∧ dom(y , x̄) = 9 ∧#y Blue(y) ∧ dom(y , x̄) = 10

11

Reduction

Example: T = 100; k = 3

x1 = 32, x2 = 42, x3 = 53, x4 = 15.

Reduction to model-checking of our fragment (on star forests):

v1 v2 v3 v4

G |= ∃x1∃x2∃x3#y Red(y) ∧ dom(y , x̄) = 9 ∧#y Blue(y) ∧ dom(y , x̄) = 10

11

Reduction

Example: T = 100; k = 3

x1 = 32, x2 = 42, x3 = 53, x4 = 15.

Reduction to model-checking of our fragment (on star forests):

v1 v2 v3 v4

G |= ∃x1∃x2∃x3#y Red(y) ∧ dom(y , x̄) = 9 ∧#y Blue(y) ∧ dom(y , x̄) = 10
11

Conclusion

Our results: Model-checking of FO(P) formulas

G |= ∃x1 . . . ∃xkP(#y φ1(y x̄)︸ ︷︷ ︸
first-order

, . . . ,#y φℓ(y x̄))

on classes of bounded expansion

• in time f (k , ℓ)nℓ+1 polylog n

• not in time f (k , ℓ)nℓ−ε for all ε > 0 under SETH

Outlook:

• Close the gaps

• Lift to (structurally) nowhere dense classes

Thank you!
mock@cs.rwth-aachen.de

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Outerplanar

Planar

Bounded
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forests

r

rr

∇∇ Locally bounded
expansion

Nowhere dense

∇∇
r

ωω

12

mailto:mock@cs.rwth-aachen.de

Appendix

Partial Dominating Set

PartDomSet

Input: A graph G and k , t ∈ N
Problem: Are there k vertices dominating ≥ t vertices?

Parameter: k

• DomSet: ∃x1 . . . xk∀y(
∨

E (y , xi) ∨ y = xi)

• PartDomSet cannot be expressed as an short FO-formula (requires ∃y1 . . . ∃yt)

• W[1]-hard for 2-degenerate graphs

• Can be solved on H-minor free graphs in time (g(H)k)knO(1)

• Can be solved on classes C of bounded expansion in time fC(k)n

• Can be solved on nowhere dense classes C in time fC(k)n
1+ε

13

Partial Dominating Set

PartDomSet

Input: A graph G and k , t ∈ N
Problem: Are there k vertices dominating ≥ t vertices?

Parameter: k

• DomSet: ∃x1 . . . xk∀y(
∨

E (y , xi) ∨ y = xi)

• PartDomSet cannot be expressed as an short FO-formula (requires ∃y1 . . . ∃yt)

• W[1]-hard for 2-degenerate graphs

• Can be solved on H-minor free graphs in time (g(H)k)knO(1)

• Can be solved on classes C of bounded expansion in time fC(k)n

• Can be solved on nowhere dense classes C in time fC(k)n
1+ε

13

Partial Dominating Set

PartDomSet

Input: A graph G and k , t ∈ N
Problem: Are there k vertices dominating ≥ t vertices?

Parameter: k

• DomSet: ∃x1 . . . xk∀y(
∨

E (y , xi) ∨ y = xi)

• PartDomSet cannot be expressed as an short FO-formula (requires ∃y1 . . . ∃yt)

• W[1]-hard for 2-degenerate graphs

• Can be solved on H-minor free graphs in time (g(H)k)knO(1)

• Can be solved on classes C of bounded expansion in time fC(k)n

• Can be solved on nowhere dense classes C in time fC(k)n
1+ε

13

Step 1: Reduction to a Simpler Problem

Original Problem: → Simpler Problem

G ∈ C of bounded expansion → G⃗ ∈ C′ of bounded expansion

FO-formulas


φ1

...

φℓ

→

c1
...

cℓ

 vertex weight fcts

For all ū = u1 . . . uk ∈ V (G)k :

G |= #y φ1(y ū) ≥ t1 c1(u1) + · · ·+ c1(uk) ≥ t1

∧
... ⇐⇒

...

∧#y φℓ(y ū) ≥ tℓ cℓ(u1) + · · ·+ cℓ(uk) ≥ tℓ

G⃗ |= ω(ū) (quantifier-free)

14

Courcelle with Semiring Homomorphisms

Often don’t want one satisfying assignment but computing a property of the set of

satisfying assignments

Example: Set of all vertex covers 7→ minimum weight VC, number of VCs, all VCs...

Definition

A problem P is an MSO-evaluation problem if it can be expressed as computing

h(sat(φ,G)) for some homomorphism h into a semiring and MSO-formula φ.

Example: min. weight VC: (R ∪ {∞},min,+,∞, 0), h maps set to sum of weights

Theorem (Courcelle, Mosbah ’93)

An MSO-evaluation problem P can be solved in time fP(tw)nt on graphs of

treewidth tw where t is the time complexity of the semiring operations.

15

Courcelle with Semiring Homomorphisms

Often don’t want one satisfying assignment but computing a property of the set of

satisfying assignments

Example: Set of all vertex covers 7→ minimum weight VC, number of VCs, all VCs...

Definition

A problem P is an MSO-evaluation problem if it can be expressed as computing

h(sat(φ,G)) for some homomorphism h into a semiring and MSO-formula φ.

Example: min. weight VC: (R ∪ {∞},min,+,∞, 0), h maps set to sum of weights

Theorem (Courcelle, Mosbah ’93)

An MSO-evaluation problem P can be solved in time fP(tw)nt on graphs of

treewidth tw where t is the time complexity of the semiring operations.

15

Courcelle with Semiring Homomorphisms

Often don’t want one satisfying assignment but computing a property of the set of

satisfying assignments

Example: Set of all vertex covers 7→ minimum weight VC, number of VCs, all VCs...

Definition

A problem P is an MSO-evaluation problem if it can be expressed as computing

h(sat(φ,G)) for some homomorphism h into a semiring and MSO-formula φ.

Example: min. weight VC: (R ∪ {∞},min,+,∞, 0), h maps set to sum of weights

Theorem (Courcelle, Mosbah ’93)

An MSO-evaluation problem P can be solved in time fP(tw)nt on graphs of

treewidth tw where t is the time complexity of the semiring operations.

15

kSum

k-Sum Problem: given m numbers x1, . . . , xm; target T

Find k numbers that add up to exactly T

Algorithms known for k-Sum: • Õ(Tm) • O(m⌈k/2⌉)

Theorem (Abboud et al. ’21)

For every ε > 0, k-Sum is not in time T 1−εmo(k) (under SETH).

16

kSum

k-Sum Problem: given m numbers x1, . . . , xm; target T

Find k numbers that add up to exactly T

Algorithms known for k-Sum: • Õ(Tm) • O(m⌈k/2⌉)

Theorem (Abboud et al. ’21)

For every ε > 0, k-Sum is not in time T 1−εmo(k) (under SETH).

16

Reduction

Example: T = 100; k = 3

x1 = 32, x2 = 42, x3 = 53, x4 = 15.

Reduction to model-checking of our fragment (on star forests):

v1 v2 v3 v4

G |= ∃x1∃x2∃x3#y Red(y) ∧ dom(y , x̄) = 9 ∧#y Blue(y) ∧ dom(y , x̄) = 10

17

Reduction

Example: T = 100; k = 3

x1 = 32, x2 = 42, x3 = 53, x4 = 15.

Reduction to model-checking of our fragment (on star forests):

v1 v2 v3 v4

G |= ∃x1∃x2∃x3#y Red(y) ∧ dom(y , x̄) = 9 ∧#y Blue(y) ∧ dom(y , x̄) = 10

17

Reduction

Example: T = 100; k = 3

x1 = 32, x2 = 42, x3 = 53, x4 = 15.

Reduction to model-checking of our fragment (on star forests):

v1 v2 v3 v4

G |= ∃x1∃x2∃x3#y Red(y) ∧ dom(y , x̄) = 9 ∧#y Blue(y) ∧ dom(y , x̄) = 10
17

Reduction: Parameters

Theorem (Reminder)

For every ε > 0, k-Sum is not in time T 1−εmo(k) (under SETH).

In our example: Parameter ℓ = 2, size |G | ≤ 2
√
Tm.

=⇒ quadratic lower bound for model-checking

In general: ℓ freely choosable =⇒ |G | = O(ℓ
√
T ℓm)

Have to “guess carry-overs”: only f (k, ℓ) many choices

Theorem (Our Lower Bound)

On star forests, for formulas of the form

∃x1 . . . ∃xk(#y φ1(y , x1 . . . xk) = t1 ∧ · · · ∧#y φℓ(y , x1 . . . xk) = tℓ)

there is no model-checking algorithm in time f (k , ℓ)nℓ−ε, for any function f or ε > 0.

18

Reduction: Parameters

Theorem (Reminder)

For every ε > 0, k-Sum is not in time T 1−εmo(k) (under SETH).

In our example: Parameter ℓ = 2, size |G | ≤ 2
√
Tm.

=⇒ quadratic lower bound for model-checking

In general: ℓ freely choosable =⇒ |G | = O(ℓ
√
T ℓm)

Have to “guess carry-overs”: only f (k, ℓ) many choices

Theorem (Our Lower Bound)

On star forests, for formulas of the form

∃x1 . . . ∃xk(#y φ1(y , x1 . . . xk) = t1 ∧ · · · ∧#y φℓ(y , x1 . . . xk) = tℓ)

there is no model-checking algorithm in time f (k , ℓ)nℓ−ε, for any function f or ε > 0.

18

	Our Results
	Appendix
	Algorithmical Results
	Lower Bounds

