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Algorithms For...

Max Partial Vertex Cover

Problem: How many edges can be covered by set

of k vertices?

Red Blue Partial Dominating Set

Problem: Are there k vertices dominating ≥ tred

red and ≥ tblue blue vertices?

Fair Dominating Matching

Problem: Is there a matching of size k that

dominates twice as many red as blue vertices?

Half Triangle Deletion

Problem: Can we destroy half of the triangles

and squares by deleting k vertices?

On graph classes

• Of bounded treewidth

• Of bounded degree

• Planar Graphs
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We give one algorithm for that!
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We give one meta-algorithm for that!
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Algorithmic Meta-Theorems

“Every problem expressible in logic L

can be solved efficiently on graph class C.”

MSO on

treewidth

FO on

nowhere dense
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Model-Checking

MC (L, C)

Input: A graph G ∈ C and a sentence φ ∈ L

Problem: Is φ true in G? (G |= φ?)

Parameter: |φ|

MC (FO,G) is hard (PSPACE-hard and AW[*]-hard)

Goal: Find classes C and logic L where MC (L, C) is FPT (time complexity of fC(|φ|)nd)

logic

φ = ∃x1 . . . ∃xk [. . . ]
length depends on k

k-independent set

k-dominating set

. . .

model-checking

f (|φ|)nd = g(k)nd

algorithm
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Sparse Graph Classes

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a 
topological minor

Bounded expansion

Outerplanar

Planar

Bounded 
genus

Linear forests

Bounded degree

Locally bounded 
treewidth

Locally excluding 
a minor

Forests

r

rr

∇∇ Locally bounded 
expansion

Nowhere dense

∇∇
r

ωω
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Bounded Expansion

Class has bounded expansion if:

there is a function f s.t.
|E |
|V |

≤ f (r)

for every r -shallow minor

of every graph in C

Many other characterizations:

copwidth game, weak coloring numbers,

neighborhood complexity, treedepth

colorings, neighborhood covers, ...

5



Bounded Expansion

Class has bounded expansion if:

there is a function f s.t.
|E |
|V |

≤ f (r)

for every r -shallow minor

of every graph in C

Many other characterizations:

copwidth game, weak coloring numbers,

neighborhood complexity, treedepth

colorings, neighborhood covers, ...

5



First-Order with Some Counting: FO({>0})

Definition of FO({>0}) (Dreier, Rossmanith, ’21)

Built recursively using

• the rules of FO

• #y φ(y , x1, . . . , xk) ≥ m for every m ∈ N and FO({>0}) formula φ

Fragment of FO(P) and FOC(P) (Kuske, Schweikardt ’17)

PartDomSet:

∃x1 . . . ∃xk#y
( ∨
1≤i≤k

E (y , xi ) ∨ y = xi
)
≥ t

h-index:

#mypaper

(
#otherpaper cite(mypaper, otherpaper) ≥ h

)
≥ h
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Known Results for FO({>0})

Model-checking of FO({>0}) is hard on forests of depth 4

Theorem (Dreier, Rossmanith ’21)

On classes of bounded expansion, in linear FPT time
1. (1 + ε)-approximation of FO({>0}),
2. Exact evaluation of formulas ∃x1 . . . ∃xk#y φ(y , x1, . . . , xk)︸ ︷︷ ︸

FO w/o #

≥ m

Theorem (Dreier, M., Rossmanith ’23)

On nowhere dense classes, in almost linear FPT time:

Exact evaluation of formulas ∃x1 . . . ∃xk#y φ(y , x1, . . . , xk)︸ ︷︷ ︸
quantifier-free

≥ m

⇒ PartDomSet in (almost) linear FPT time on bounded expansion & nowhere dense
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Other variants

Red Blue Partial Dominating Set

Input: A graph G and k , tred, tblue ∈ N
Problem: Are there k vertices dominating ≥ tred red and ≥ tblue blue vertices?

Parameter: k

G |= ∃x1 . . . ∃xk#y Red(y) ∧ dom(y , x̄) ≥ tred ∧#y Blue(y) ∧ dom(y , x̄) ≥ tblue

Exact Partial Dominating Set
...

Problem: Are there k vertices dominating exactly t vertices?

G |= ∃x1 . . . ∃xk#y dom(y , x1, . . . , xk) = t

Our goal: Lift result to ∃x1 . . . ∃xk
∨∧

(#y φi (y x̄) ≥ mi )︸ ︷︷ ︸
boolean combination of ℓ counting terms
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Our Results



Algorithmic Result

Theorem (Our Positive Result)

On classes of bounded expansion, we can decide in time f (k, ℓ)nℓ+1 polylog n whether

G |= ∃x1 . . . ∃xkP
(
#y φ1(y x̄)︸ ︷︷ ︸

FO w/o #

, . . . ,#y φℓ(y x̄)
)

where P is some efficiently computable predicate over Nℓ.

Moreover, we can count the number of such solutions.

=⇒ Exact Partial Dominating Set in time f (k)n2 on bounded expansion.

=⇒ Red Blue Partial Dominating Set in time f (k)n3 on bounded expansion

(can be improved to f (k)n2).
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From k-Sum to Lower Bounds

k-Sum Problem: given m numbers x1, . . . , xm; target T

Find k numbers that add up to exactly T

Algorithms known for k-Sum: • Õ(Tm) • O(m⌈k/2⌉)

Theorem (Abboud et al. ’21)

For every ε > 0, k-Sum is not in time T 1−εmo(k) (under SETH).

Theorem (Our Lower Bound)

On star forests, for formulas of the form

∃x1 . . . ∃xk(#y φ1(y , x1 . . . xk) = t1 ∧ · · · ∧#y φℓ(y , x1 . . . xk) = tℓ)

there is no model-checking algorithm in time f (k , ℓ)nℓ−ε, for any function f or ε > 0.
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Reduction

Example: T = 100; k = 3

x1 = 32, x2 = 42, x3 = 53, x4 = 15.

Reduction to model-checking of our fragment (on star forests):

v1 v2 v3 v4

G |= ∃x1∃x2∃x3#y Red(y) ∧ dom(y , x̄) = 9 ∧#y Blue(y) ∧ dom(y , x̄) = 10
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Conclusion

Our results: Model-checking of FO(P) formulas

G |= ∃x1 . . . ∃xkP(#y φ1(y x̄)︸ ︷︷ ︸
first-order

, . . . ,#y φℓ(y x̄))

on classes of bounded expansion

• in time f (k , ℓ)nℓ+1 polylog n

• not in time f (k , ℓ)nℓ−ε for all ε > 0 under SETH

Outlook:

• Close the gaps

• Lift to (structurally) nowhere dense classes

Thank you!
mock@cs.rwth-aachen.de

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a 
topological minor

Bounded expansion

Outerplanar

Planar

Bounded 
genus

Linear forests

Bounded degree

Locally bounded 
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Appendix



Partial Dominating Set

PartDomSet

Input: A graph G and k , t ∈ N
Problem: Are there k vertices dominating ≥ t vertices?

Parameter: k

• DomSet: ∃x1 . . . xk∀y(
∨

E (y , xi ) ∨ y = xi )

• PartDomSet cannot be expressed as an short FO-formula (requires ∃y1 . . . ∃yt)

• W[1]-hard for 2-degenerate graphs

• Can be solved on H-minor free graphs in time (g(H)k)knO(1)

• Can be solved on classes C of bounded expansion in time fC(k)n

• Can be solved on nowhere dense classes C in time fC(k)n
1+ε
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Step 1: Reduction to a Simpler Problem

Original Problem: → Simpler Problem

G ∈ C of bounded expansion → G⃗ ∈ C′ of bounded expansion

FO-formulas


φ1

...

φℓ

→

c1
...

cℓ

 vertex weight fcts

For all ū = u1 . . . uk ∈ V (G )k :

G |= #y φ1(y ū) ≥ t1 c1(u1) + · · ·+ c1(uk) ≥ t1

∧
... ⇐⇒

...

∧#y φℓ(y ū) ≥ tℓ cℓ(u1) + · · ·+ cℓ(uk) ≥ tℓ

G⃗ |= ω(ū) (quantifier-free)

14



Courcelle with Semiring Homomorphisms

Often don’t want one satisfying assignment but computing a property of the set of

satisfying assignments

Example: Set of all vertex covers 7→ minimum weight VC, number of VCs, all VCs...

Definition

A problem P is an MSO-evaluation problem if it can be expressed as computing

h(sat(φ,G )) for some homomorphism h into a semiring and MSO-formula φ.

Example: min. weight VC: (R ∪ {∞},min,+,∞, 0), h maps set to sum of weights

Theorem (Courcelle, Mosbah ’93)

An MSO-evaluation problem P can be solved in time fP(tw)nt on graphs of

treewidth tw where t is the time complexity of the semiring operations.

15



Courcelle with Semiring Homomorphisms

Often don’t want one satisfying assignment but computing a property of the set of

satisfying assignments

Example: Set of all vertex covers 7→ minimum weight VC, number of VCs, all VCs...

Definition

A problem P is an MSO-evaluation problem if it can be expressed as computing

h(sat(φ,G )) for some homomorphism h into a semiring and MSO-formula φ.

Example: min. weight VC: (R ∪ {∞},min,+,∞, 0), h maps set to sum of weights

Theorem (Courcelle, Mosbah ’93)

An MSO-evaluation problem P can be solved in time fP(tw)nt on graphs of

treewidth tw where t is the time complexity of the semiring operations.

15



Courcelle with Semiring Homomorphisms

Often don’t want one satisfying assignment but computing a property of the set of

satisfying assignments

Example: Set of all vertex covers 7→ minimum weight VC, number of VCs, all VCs...

Definition

A problem P is an MSO-evaluation problem if it can be expressed as computing

h(sat(φ,G )) for some homomorphism h into a semiring and MSO-formula φ.

Example: min. weight VC: (R ∪ {∞},min,+,∞, 0), h maps set to sum of weights

Theorem (Courcelle, Mosbah ’93)

An MSO-evaluation problem P can be solved in time fP(tw)nt on graphs of

treewidth tw where t is the time complexity of the semiring operations.

15



kSum

k-Sum Problem: given m numbers x1, . . . , xm; target T

Find k numbers that add up to exactly T

Algorithms known for k-Sum: • Õ(Tm) • O(m⌈k/2⌉)

Theorem (Abboud et al. ’21)

For every ε > 0, k-Sum is not in time T 1−εmo(k) (under SETH).
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Reduction to model-checking of our fragment (on star forests):
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G |= ∃x1∃x2∃x3#y Red(y) ∧ dom(y , x̄) = 9 ∧#y Blue(y) ∧ dom(y , x̄) = 10
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Reduction: Parameters

Theorem (Reminder)

For every ε > 0, k-Sum is not in time T 1−εmo(k) (under SETH).

In our example: Parameter ℓ = 2, size |G | ≤ 2
√
Tm.

=⇒ quadratic lower bound for model-checking

In general: ℓ freely choosable =⇒ |G | = O( ℓ
√
T ℓm)

Have to “guess carry-overs”: only f (k, ℓ) many choices

Theorem (Our Lower Bound)

On star forests, for formulas of the form

∃x1 . . . ∃xk(#y φ1(y , x1 . . . xk) = t1 ∧ · · · ∧#y φℓ(y , x1 . . . xk) = tℓ)

there is no model-checking algorithm in time f (k , ℓ)nℓ−ε, for any function f or ε > 0.
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