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Algorithms For...

Max Partial Vertex Cover
Problem: How many edges can be covered by set
of k vertices?

Red Blue Partial Dominating Set
Problem: Are there k vertices dominating > f,q
red and > 1), blue vertices?

Fair Dominating Matching
Problem: Is there a matching of size k that
dominates twice as many red as blue vertices?

Half Triangle Deletion
Problem: Can we destroy half of the triangles
and squares by deleting k vertices? 1
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We give one algorithm for that!



We give one meta-algorithm for that!



Algorithmic Meta-Theorems

“Every problem expressible in logic L
can be solved efficiently on graph class C."”
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Model-Checking

MC(L,C)

Input: A graph G € C and a sentence ¢ € L
Problem: Is ¢ true in G? (G |= ¢?)
Parameter: |¢|

MC(FO,G) is hard (PSPACE-hard and AW[*]-hard)
Goal: Find classes C and logic L where MC(L,C) is FPT



Model-Checking

MC(L,C)

Input: A graph G € C and a sentence ¢ € L
Problem: Is ¢ true in G? (G |= ¢?)
Parameter: |¢|

MC(FO,G) is hard (PSPACE-hard and AW[*]-hard)
Goal: Find classes C and logic L where MC(L,C) is FPT

k-independent set

\

k-dominating set ———  logic ———— model-checking

@ =3y ...Axg][. . .] f(le))n? = g(k)n?
length depends on k algorithm



Sparse Graph Classes
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Bounded Expansion

Class has bounded expansion if:
there is a function f s.t.

13}

< f(r)
V| = |
for every r-shallow minor
of every graph in C




Bounded Expansion

Class has bounded expansion if:

t‘hge| is a function f s.t.
< f(r)

V| = |

for every r-shallow minor

of every graph in C

Many other characterizations:

copwidth game, weak coloring numbers,
neighborhood complexity, treedepth

colorings, neighborhood covers, ...



First-Order with Some Counting: FO({>0})

Definition of (Dreier, Rossmanith, '21)

Built recursively using

e the rules of FO

o #yp(y,x1,...,xx) > m for every m € N and formula ¢

Fragment of FO(P) and FOC(P) (Kuske, Schweikardt '17)
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First-Order with Some Counting: FO({>0})

Definition of (Dreier, Rossmanith, '21)

Built recursively using

e the rules of FO

o #yp(y,x1,...,xx) > m for every m € N and formula ¢

Fragment of FO(P) and FOC(P) (Kuske, Schweikardt '17)

PARTDOMSET:

Ixp ... Ixk \/ E(y,xi)Vy=x
1<i<k

h-index:

#mypaper <#otherpapercite(mypaper, otherpaper) > h> >h
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Known Results for FO({>0})

Model-checking of is hard on forests of depth 4

Theorem (Dreier, Rossmanith '21)

On classes of bounded expansion, in linear FPT time
1. (1 + e)-approximation of

’

2. Exact evaluation of formulas 3x; ... Ixx#y p(y, x1,...,Xk) > m
—— ——

FO w/o #

Theorem (Dreier, M., Rossmanith ’23)

On classes, in almost linear FPT time:
Exact evaluation of formulas 3x; ... Ixk#y (¥, X1,...,Xk) = m
—_——

quantifier-free

= PARTDOMSET in (almost) linear FPT time on bounded expansion & 7
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Input: A graph G and k, tred, thlue € N
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G = 3xi ... IxkF#y Red(y) A dom(y,X) > tred A #y Blue(y) A dom(y, X) > toiue
Exact Partial Dominating Set
Problem: Are there k vertices dominating exactly t vertices?

G| 3xy...Ixk#Hy dom(y, x1,...,x¢) =t

be expressed as Ixy ... Ixk#y (v, x1,...,Xk) = m
———

FO w/o #



Other variants

Red Blue Partial Dominating Set

Input: A graph G and k, tred, thlue € N
Problem: Are there k vertices dominating > tyeq red and > tp,e blue vertices?
Parameter: k

G = 3xi ... IxkF#y Red(y) A dom(y,X) > tred A #y Blue(y) A dom(y, X) > toiue
Exact Partial Dominating Set

Problem: Are there k vertices dominating exactly t vertices?

G| 3xy...Ixk#Hy dom(y, x1,...,x¢) =t

Lift result to 3xq ... Ixk \/ /\(#y wi(yx) > m;)

boolean combination of ¢ counting terms




Our Results




Algorithmic Result

Theorem (Our Positive Result)

On classes of bounded expansion, we can decide in time f(k,¢)n""* polylog n whether

G Ixa... P (#y p1(yX) ... #y u(yX))
~——
FO w/o #

where P is some efficiently computable predicate over N¥.

Moreover, we can count the number of such solutions.



Algorithmic Result

Theorem (Our Positive Result)

(+1

On classes of bounded expansion, we can decide in time f(k,¢)n""" polylog n whether

G Ixa... P (#y p1(yX) ... #y u(yX))
~——
FO w/o #

where P is some efficiently computable predicate over N¥.

Moreover, we can count the number of such solutions.

= Exact Partial Dominating Set in time f(k)n? on bounded expansion.

— Red Blue Partial Dominating Set in time f(k)n3 on bounded expansion
(can be improved to f(k)n?).



From k-Sum to Lower Bounds

k-SuM Problem: given m numbers xq, ..., Xn; target T
Find k numbers that add up to exactly T

Algorithms known for k-SUM: e 5( Tm) e O(mlk/21)
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From k-Sum to Lower Bounds

k-SuM Problem: given m numbers xq, ..., Xn; target T
Find k numbers that add up to exactly T

Algorithms known for k-SuM: e O(Tm) e O(mlk/21)

Theorem (Abboud et al. '21)

For every € > 0, k-SUM is not in time T*~*m°K) (under SETH).
Theorem (Our Lower Bound)

On , for formulas of the form

Ixt . Ixk(#y o1(y, X oxk) = A Ay ooy xa o xi) = te)
there is no model-checking algorithm in time f(k,£)n" =, for any function f or e > 0.

10



Example: T =100;k =3
x1 = 32, Xxp = 42, x3 = b3, x4 = 15.

Reduction to model-checking of our fragment (on star forests):
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Reduction

Example: T =100;k =3
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\

Reduction to model-checking of our fragment (on star forests)
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Reduction

Example: T =100;k =3

x1 = 32, Xxp = 42, x3 = b3, x4 = 15.
Reduction to model-checking of our fragment (on star forests)

AR AN

G = Ix1IxeIxz#y Red(y) A dom(y,x) =9 A #y Blue(y) A dom(y,x) = 10
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Conclusion

Our results: Model-checking of FO(PP) formulas
G E3x ... IP(F#y &(Qw--,#yw(yi))
first-order

on classes of bounded expansion

e in time f(k,£)n""! polylog n

e not in time f(k,£)n"~* for all £ > 0 under SETH
Outlook:

e Close the gaps

e Lift to (structurally) nowhere dense classes

Thank you!

mock@cs.rwth-aachen.de
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Partial Dominating Set

PARTDOMSET
Input: A graph G and k,t € N
Problem: Are there k vertices dominating > t vertices?

Parameter: k
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Partial Dominating Set

PARTDOMSET
Input: A graph G and k,t € N
Problem: Are there k vertices dominating > t vertices?

Parameter: k

e DomSet: Ix; .. .kay(\/ E(y,xi)Vy =xi)
e PARTDOMSET cannot be expressed as an short FO-formula (requires Jy; ... Jy:)
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Partial Dominating Set

PARTDOMSET
Input: A graph G and k,t € N
Problem: Are there k vertices dominating > t vertices?

Parameter: k

DomSet: 3x; .. .kay(\/ E(y,xi)Vy =x)
PARTDOMSET cannot be expressed as an short FO-formula (requires Jy; ... Jy;)

W(1]-hard for 2-degenerate graphs

Can be solved on H-minor free graphs in time (g(H)k)*n°®)

Can be solved on classes C of bounded expansion in time fz(k)n

Can be solved on nowhere dense classes C in time fz(k)n'*e

13



Step 1: Reduction to a Simpler Problem

Original Problem: — Simpler Problem
G € C of bounded expansion — G € C’ of bounded expansion

©1 (4]

FO-formulas < : — : vertex weight fcts

Pe Ce

Forall i =uy...u € V(G)k:
GE #yp(yd) >t a(u) + -+ a(u) >t
A : S :
Nty o(yd) = to (-;é(ul) + -t cuk) >t
G = w() (quantifier-free)

14



Courcelle with Semiring Homomorphisms

Often don't want one satisfying assignment but computing a property of the set of
satisfying assignments

Example: Set of all vertex covers — minimum weight VC, number of VCs, all VCs...
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Courcelle with Semiring Homomorphisms

Often don't want one satisfying assignment but computing a property of the set of
satisfying assignments

Example: Set of all vertex covers — minimum weight VC, number of VCs, all VCs...
Definition

A problem P is an MSO-evaluation problem if it can be expressed as computing
h(sat(y, G)) for some homomorphism h into a semiring and MSO-formula .

Example: min. weight VC: (R U {oo}, min, 4+, 00,0), h maps set to sum of weights
Theorem (Courcelle, Mosbah ’93)

An MSO-evaluation problem P can be solved in time fp(tw)nt on graphs of
treewidth tw where t is the time complexity of the semiring operations.
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k-SuM Problem: given m numbers xi, ..., Xxn; target T
Find k numbers that add up to exactly T

Algorithms known for k-SUM: e 5( Tm) e O(mlk/21)
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Reduction: Parameters

Theorem (Reminder)

For every € > 0, k-SuM is not in time T*~*m°K) (under SETH).

In our example: Parameter £ = 2, size |G| < 2v/Tm.
—> quadratic lower bound for model-checking
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Reduction: Parameters

Theorem (Reminder)

For every € > 0, k-SuM is not in time T*~*m°K) (under SETH).

In our example: Parameter £ = 2, size |G| < 2v/Tm.
—> quadratic lower bound for model-checking

In general: / freely choosable = |G| = O(~/T{m)

Have to “guess carry-overs”: only f(k,¥) many choices

Theorem (Our Lower Bound)

On star forests, for formulas of the form

I Ix(Fy ey, xa - oxk) =t A Ay ooy, xa o xi) = t)
there is no model-checking algorithm in time f(k,£)n=¢, for any function f ore > 0.
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