
Improved Upper Bounds for

Partial Vertex Cover⋆

Joachim Kneis, Alexander Langer, Peter Rossmanith

Dept. of Computer Science, RWTH Aachen University, Germany

Abstract. The Partial Vertex Cover problem is to decide whether
a graph contains at most k nodes covering at least t edges. We present
deterministic and randomized algorithms with run times of O∗(1.396t)
and O∗(1.2993t), respectively. For graphs of maximum degree three, we
show how to solve this problem in O∗(1.26t) steps. Finally, we give an
O∗(3t) algorithm for Exact Partial Vertex Cover, which asks for at
most k nodes covering exactly t edges.

1 Introduction

The widely known problems Vertex Cover and Dominating Set are among
the most important graph-theoretical optimization problems: Find a small set
of nodes that cover all edges, or dominate the whole graph, respectively. These
NP-complete problems are well studied with respect to approximability [13, 16],
exact algorithms [8, 18], and parameterized complexity [6, 7]. Recently, partial

variants of these and similar problems came into a broader research focus [2–5,
9–12, 14, 15]: Instead of covering all edges or dominating all nodes, it is sufficient
to cover t edges or dominate t nodes, where t is an additional parameter. Being
generalizations of Vertex Cover and Dominating Set, these problems are
NP-complete.

In this paper, we study the complexity of Partial Vertex Cover defined
as:

Input: A graph G = (V, E), positive integers k, t
Question: Is there a C ⊆ V , |C| ≤ k, such that C covers at least t edges?

The best known constant approximation factor with respect to k is 2 and
there are several algorithms that achieve an approximation factor of 2− o(1) [2,
4, 9, 11, 12]. Since this coincides with the best result for Vertex Cover (see,
e.g., [16]), a significant improvement seems to be unlikely. With respect to t, it
is easy to see that a simple greedy algorithm already has an approximation ratio
of at least 2.

We can expect that Partial Vertex Cover is a harder problem than
Vertex Cover: Many algorithms exploit the fact that if each edge {u, v} must
be covered, one of u or v must be part of the solution. This simple observation

⋆ Supported by the DFG under grant RO 927/7-1

already gives us a 2-approximation and an O∗(2k) algorithm.1 In the partial
case, however, one does not know if an edge is being covered at all. Thus, the
2-approximation factor for Partial Vertex Cover is harder to prove, and
we cannot expect an O∗(f(k)) algorithm for Partial Vertex Cover, as this
implies FPT = W[1] [10].

The more interesting question is whether there is an fpt algorithm for the
case that t rather than only k is small, i.e., an algorithm with run time bounded
by f(t)poly(n). Bläser answered this question positively even for Partial Set

Cover [3], which is a generalization of Partial Vertex Cover. His random-
ized algorithm is based on color coding, achieving a run time of O∗(5.437t),
and can be derandomized into a deterministic algorithm. The base in the expo-
nential function is rather huge, though. A faster and much simpler randomized
algorithm developed recently [14] achieves a run time of O∗(2.09t). While this is
a significant improvement, derandomizing it would result in a time complexity
that is not exponential in t.

In this paper, we present a deterministic algorithm with run time bounded
by O∗(1.396t), which even beats the best known randomized methods. As the
latter are based on the many witnesses paradigm, they cannot directly be effi-
ciently derandomized. We overcome this obstacle by a new method that scans
the possible witnesses in a special order. This way, either a good witness is found
early on or the time spent on false witnesses is small. For graphs of maximum
degree three, we devise a special algorithm with run time O∗(1.26t).

Moreover, we present a randomized algorithm for Partial Vertex Cover

with a run time bounded by O∗(1.2993t) improving all previous results. While
the algorithm is very simple — it basically selects either a node of maximum
degree or two of its neighbors— the analysis is rather involved.

We also consider the variant of Partial Vertex Cover, where exactly t
edges must be covered and introduce the new technique of random orientations.
A randomized algorithm based on this technique solves this variant with a run
time bounded by O∗(3t).

Due to space constraints, some of the proofs are omitted in the paper.

2 Preliminaries

Let G = (V, E) be a graph and U = {v1, . . . , vu} ⊆ V . For v ∈ V , the set
of neighbors of v is denoted by N(v), and N [v] := N(v) ∪ {v}. By deg(U)
we denote the degree sequence (d1, . . . , du) = (deg(vi1), deg(vi2), . . . , deg(viu

)),
where (i1, . . . , iu) is a permutation of (1, . . . , u), such that d1 ≥ d2 ≥ · · · ≥ du.
By E(U) we denote the set of edges that are incident to some v ∈ U , and
||U || := |E(U)|. We call C ⊆ V a (t, k)-vertex cover for G iff |C| ≤ k and
||C|| ≥ t. We define the relation ≻ on all instances of Partial Vertex Cover

as (G, k, t) ≻ (G′, k′, t′) iff t > t′ or t = t′ ∧ |G| > |G′|.
A branching vector (x1, x2, · · · , xl) is a short notation for a recursive function

T (n) of the form T (n) = T (n− x1) + T (n− x2) + · · ·+ T (n− xl) for n > 1 and

1 The O∗ notation suppresses polynomial factors.

T (n) = 1 for n ≤ 1. The corresponding branching number c can be used to bound
T (n) by O(cn) and can easily be computed using characteristic polynomials.
For more information about branching vectors and the corresponding branching
numbers, see [17].

Let s = (s1, . . . , sl) and t = (t1, . . . , tl) be two branching vectors. We say s
dominates t (denoted by s D t or t E s), iff si ≥ ti for 1 ≤ i ≤ l. If s D t, then the
branching number for s is smaller than the branching number for t.

Let u, v ∈ V be adjacent nodes of degree at least two. If N [v] ⊆ N [u],
we say u dominates v. We call G reduced, if there are no such nodes in G. For
Partial Vertex Cover, we can assume G is reduced without loss of generality,
otherwise the operation depicted in Figure 1 can be applied.

v u v uv′

Fig. 1. Domination in graphs can be resolved by small modifications.

The following lemmata can easily be deduced from a simple node exchange
argument.

Lemma 1. Let G = (V, E) a graph and v a node of maximum degree d. If

v 6∈ C for any (t, k)-vertex cover C ⊆ V , then for each (t, k)-vertex cover C
holds i := |C ∩N(v)| > d− di + 1, where deg(C ∩N(v)) = (d1, . . . , di).

Lemma 2. Let G be a graph, v be a node of maximum degree d and N(v) =
{v1, . . . , vd}, such that deg(v1) ≥ · · · ≥ deg(vd). If there is some i, such that for

all (t, k)-vertex cover C we have C ∩ {v, v1, . . . , vi} = ∅, but deg(vi) ≤ i, then G
does not contain any (t, k)-vertex cover at all.

Lemma 3. Let G be a graph, v be a node of maximum degree d and C a (t, k)-
vertex cover for G. Let N(v) = {v1, . . . , vd} with deg(v1) ≥ · · · ≥ deg(vd).
If there is no (t, k)-vertex cover containing any node from v, v1, . . . , vd−2, then

there is a (t, k)-vertex cover C′ for G containing both vd−1 and vd and we have

deg(vd−1) + deg(vd) > d.

3 A Fast Algorithm on Graphs of Maximum Degree

Three

In this section, we present a new deterministic algorithm for Partial Ver-

tex Cover on graphs of maximum degree three with a run time bounded by
O∗(1.26t). The algorithm always branches on a node of degree three and some
of its neighbors, thereby avoiding any node that has three neighbors of degree

three if possible. Since we are only forced to select such a node in a three-regular
graph, this can be avoided in any but the first step.

The branching itself depends on the degree of the neighbors and the edges
between them, leading to a large case distinction. In order to increase the read-
ability, we do not present the algorithm explicitly, but describe its behavior
in the upcoming lemmata. Lemma 4 shows the possible branching operations if
there is some triangle containing a node of degree three. Lemma 5 establishes the
branching operations needed in triangle-free graphs of maximum degree three.

v

u1 u2

u3

v

u1 u2

u3

v

u1 u2

u3

Fig. 2. Possible neighborhoods of a node v of maximum degree three being part of a
triangle.

Lemma 4. Let G be a reduced graph of maximum degree three and v be a node

of maximum degree that is part of a triangle (v, u1, u2). Then there is a branching

with a branching vector of at least (3, 3).

Proof. Let u3 be the remaining third neighbor of v. Since G is reduced, every
node is part of at most one triangle, and each triangle does not contain any node
of degree two. Therefore, the neighborhood of v is one of the three cases depicted
in Figure 2.

Since v is of maximum degree, either v or some of its neighbors belong to
some (t, k)-vertex cover, if such a cover exists. If v does not belong to any (t, k)-
vertex cover, each cover C covers at least four edges with nodes from N(v),
because otherwise we could replace C ∩N(v) with {v}. Thus, at least two nodes
from N(v) must be part of a (t, k)-vertex cover, if v is not.

– Let deg(u3) = 1 and C be a (t, k)-vertex cover. Without loss of generality,
u3 /∈ C. If {u1, u2} ⊆ C but v /∈ C, C ∪ {v} \ {u2} is a valid (t, k)-vertex
cover. Thus, we can safely add v to C and no branching is necessary.

– Let deg(u3) = 2 and C be a (t, k)-vertex cover containing u1 and u3 but
neither v nor u2. Then C ∪ {v} \ {u3} covers t edges with k nodes. If C
contains only {u1, u2}, we can replace u2 by v. Therefore, either v is part of
some (t, k)-vertex cover for G, or all nodes in {u1, u2, u3} belong to such a
cover, which results in a branching vector of (3, 7).

– Let deg(u3) = 3. Similar to previous case, a cover containing only {u1, u2}
can be replaced by a cover containing {u1, v}. Hence, either v or u3 is part
of an optimal solution, which yields the branching vector (3, 3).

Lemma 5. Let G be a graph of maximum degree three that is not three-regular

and v a node of maximum degree that has a neighbor of degree two. Then there

is a branching on nodes from N [v] which yields a branching vector of at least

(3, 3).

Proof. Recall that if no (t, k)-vertex cover contains v, at least two nodes from
N(v) are part of any (t, k)-vertex cover, since v is of maximum degree. Let
furthermore ∆i := |{ u ∈ N(v) | deg(u) = i }|.

– If ∆1 ≥ 1 and ∆3 ≤ 1, v must be part of some (t, k)-vertex cover. Since
|N(v) ∩ C| ≥ 2, at least one neighbor of degree at most two must be part
of some (t, k)-vertex cover. Thus, Lemma 1 implies that there exists a (t, k)-
vertex cover containing all neighbors of v, and since at least one ui is of
degree one, we can replace it with v.

– Let ∆1 = 1 and ∆3 = 2. Then both neighbors of degree three are contained in
some (t, k)-vertex cover, because otherwise the node with degree one would
be part of some (t, k)-vertex cover. But then, this node could be replaced by
v. This implies a branching vector of (3, 6).

– In the following we can assume that no node in N(v) is of degree one. Let
∆2 = 3. Since v is not part of any (t, k)-vertex cover, Lemma 1 implies that
N(v) belongs to some (t, k)-vertex cover. Again, we obtain the branching
vector (3, 6).

– Now let 1 ≤ ∆2 ≤ 2 and ∆3 = 3 −∆2. Let u1 ∈ N(v) be a node of degree
three. Either we have directly u1 is part of some (t, k)-vertex cover or both
other neighbors. But since one of these is of degree two, Lemma 1 implies
that u1 is part of some (t, k)-vertex cover too. Therefore, the corresponding
branching vector is (3, 3).

Combining these lemmata, we obtain a run time bound of O∗(1.26t).

Theorem 1. Partial Vertex Cover on graphs of maximum degree three can

be solved in O∗(1.26t).

Proof. Let us first consider the case that G is a connected graph of maximum de-
gree three. If G is not three-regular, it is easy to see that applying the branching
operations or the reduction rule does not lead to a connected three-regular graph.
Even more, if the branching operation splits the graph into several components,
each of these components is not three-regular as well. Hence, the three-regular
case can only occur at the beginning. A simple branch for each v ∈ V , where
membership in the (t, k)-vertex cover is tested, increases the run time by a factor
n, but leaves us with a graph that is not three-regular.

The algorithm always chooses a node of degree three with at least one neigh-
bor of degree two or less. Thus, by Lemma 4 and Lemma 5, its branching vector
is at least (3, 3) in t, i.e., its running time is in O∗(1.26t).

If G is not connected, let G0, . . . , Gs be its components. For each component
Gj and each k′ ≤ k we compute the maximum number tj,k′ of edges that can be
covered in Gj with k′ nodes. Each component Gj is connected, hence t calls of

the branching algorithm with parameter 0 ≤ t′ ≤ t are sufficient per component.
We can then use dynamic programming to compute the maximum number of
edges t1···j,k′ , 2 ≤ j ≤ n that can be covered with k′ nodes, if only nodes from
components G1, . . . , Gj are allowed: For each 2 ≤ j ≤ s and each 0 ≤ k′ ≤ k, we
have

t1···j,k′ := min{ t1···(j−1),p + tj,q | p + q = k′ }.

The branching algorithm takes time 1.26t ·poly(n), and is called s · t ·k times.
Dynamic programming takes O(s ·k2) steps, hence we obtain an overall run time
bound of O∗(1.26t) for arbitrary graphs of maximum degree three.

If we replace the actual branching with a randomized selection of the re-
spective branching node(s), we obtain a simple randomized version of above
algorithm.

Corollary 1. There is a randomized algorithm RPVC3 deciding Partial Ver-

tex Cover on graphs of maximum degree three with success probability of at

least (1/1.26)t.

4 A deterministic algorithm

In this section, we introduce a deterministic algorithm for arbitrary graphs. This
algorithm, shown in Table 1, basically behaves as follows. A node of maximum
degree is tested for membership in the (t, k)-vertex cover. If this test fails, one
of its neighbors must be part of the solution, and the algorithm tests them in
the decreasing order of their degrees.

Algorithm PVC(G, k, t):
Input: Graph G, k, t

select a node v of maximum degree d

let N(v) = {v1, . . . , vd} and deg(v1) ≥ . . . ≥ deg(vd)
if deg(v) ≤ 3 then apply branching rules for graphs of maximum degree three
else for i = 1, . . . , d − 1 do

if i ≥ deg(vi) then return “no”
else if (i < d − 1) and PVC(G − {v}, k − 1, t − d) then return “yes”
else return PVC(G − {vd−1, vd}, k − 2, t − deg(vd−1) − deg(vd))

Table 1. A deterministic algorithm for Partial Vertex Cover.

Theorem 2. Partial Vertex Cover can be solved in at most O∗(1.396t)
steps by Algorithm PVC.

Proof. Let G be a graph of maximum degree d. By Lemmata 2 and 3, Algorithm 1
solves Partial Vertex Cover. As for the run time, we first note that each
recursive call only takes polynomial time. Now, we bound the number of recursive

calls by a function of t. To do so, we measure how t decreases in each branch
and evaluate the corresponding branching vectors. If d ≤ 3, Partial Vertex

Cover can be solved in O∗(1.26t) by Theorem 1. The corresponding branching
vector is (3, 3). If d > 3, either the ith recursive call in the loop returns “yes”
and we obtain the branching vector

(
d, deg(v1), . . . , deg(vi−1)

)
D

(
d, i, . . . , i

)
D

(
i + 1, i, . . . , i

)
.

Otherwise, each of these calls returns “no”, so i = d and we obtain the branching
vector

(
d, deg(v1), . . . , deg(vd−2), deg(vd−1) + deg(vd)

)
D

(
i, i, . . . , i, i + 1

)
.

For i ≥ 5, we may estimate the branching with the simpler branching vector
(

i, . . . , i
︸ ︷︷ ︸

i times

)
E

(
i + 1, i, . . . , i

︸ ︷︷ ︸

i−1 times

)
.

The characteristic polynomial of this vector is zi − i with largest positive real
root i1/i ≤ 51/5 ≤ 1.38. For i < 5, we obtain the branching numbers 1.325 for
the vector (5, 4, 4, 4) and 1.396 for the vector (4, 3, 3) by a short computation.
Thus, the number of recursive calls in Algorithm 1 is bounded by 1.396t.

5 A randomized algorithm

In this section, we present a randomized algorithm for Partial Vertex Cover.
Again, a node v of maximum degree is chosen deterministically, but either v or
two of its neighbors are added to the (t, k)-vertex cover with certain probabilities.
This technique leads to a polynomial-time algorithm with success probability of
at least 1/1.2993t.

Fix α = (
√

41−1
20)1/5 > 1/1.2993 and let pd = αd for each d ∈ N. The

algorithm, see Table 2, is straight-forward and handles a only small number of
border cases. We begin with an estimation that will be required later.

Lemma 6. For d = 4 and 3 ≤ i ≤ d, and for each 5 ≤ d ∈ N and each i ∈ N,

such that 2 ≤ i ≤ d, we have

(1− αd)

(
i

2

)

≥ α2d−2i+4

(
d

2

)

.

Proof. It is sufficient to show that

1 ≤ g(d, i) := (1− αd)α2i−2d−4 i(i− 1)

d(d− 1)

for all relevant d, i. For d = 4 and i ∈ {3, 4} this is easily confirmed. Hence, fix
5 ≤ d ∈ N. We first consider the cases g(d, 2) and g(d, d). The function

h1(z) :=
1

z(z − 1)
α−2z

is strictly increasing on [5,∞), since

d

dz
ln

(1

z(z − 1)
α−2z

)

= −
1

z
−

1

z − 1
− 2 lnα > 0

for z ≥ 5. This implies

h2(z) := g(z, 2) = (1 − αz)
2

z(z − 1)
α−2z = 2(1− αz)h1(z)

is strictly increasing on [5,∞). Furthermore, h2(5) ≥ 1— with equality for d =
5— and therefore g(d, 2) ≥ 1 for each 5 ≤ d ∈ N. Similarly, let

h3(z) := g(z, z) = (1− αz)α−4.

Here, α−4 ≈ 2.849, and αz ≤ 1
2 for z ≥ 5. Hence h3(z) = g(z, z) > 1 for z ≥ 5.

What remains to show is that g(d, i) ≥ 1 for i ∈ (2, d). We consider

fd(z) := ln g(d, z) = ln
(

(1− αd)α2z−2d−4 z(z − 1)

d(d− 1)

)

.

Of course g(d, i) ≥ 1 iff fd(i) ≥ 0. However, fd(z) is convex on [2, d], because

f ′′
d (z) = −

1

z2
−

1

(z − 1)2
< 0.

With fd(2) = ln g(d, 2) ≥ 0 and fd(d) = ln g(d, d) ≥ 0, we conclude fd(z) ≥ 0 on
[2, d] and hence g(d, i) ≥ 1 for all i ∈ N with 2 ≤ i ≤ d.

The correctness of RPVC and its success probability is due to the following
lemma.

Lemma 7. Let G = (V, E) a graph. RPVC(G, k, t) runs in polynomial time. If

there is no (t, k)-vertex cover for G, then RPVC(G, k, t) answers “no”. Otherwise

RPVC(G, k, t) answers “yes” with probability at least αt.

Proof. If there is no (t, k)-vertex cover for G, then RPVC(G, k, t) clearly an-
swers “no”. Otherwise, we use induction over the order ≻ on instances.

For t = 0, RPVC(G, k, t) answers “yes” with probability 1 = α0. If t > 0 and
G is not connected, let G0, . . . , Gs be its components, and let (k0, t0), . . . , (ks, ts),
such that k0 + · · · + ks = k, t0 + · · · + ts = t, and for each 0 ≤ i ≤ s there is
a (ti, ki)-vertex cover for Gi. For all 0 ≤ i ≤ s, we have (G, k, t) ≻ (Gi, ki, ti).
Hence, by hypothesis RPVC(Gi, ki, ti) answers “yes” with probability at least
αti . Therefore, with probability at least

αt0αt1 · · ·αts = αt

the dynamic programming approach is successful and RPVC(G, k, t) answers
“yes”. For correctness and run time of the dynamic programming approach, see
the proof of Theorem 1.

Algorithm RPVC(G, k, t):
Input: Graph G, k, t

if k < 0 then return “no”
if t ≤ 0 then return “yes”
if G is not connected then

Compute optimal solutions for all t′ ≤ t for every component of G.
Combine the solutions using dynamic programming.
Return whether there is a global solution for G.

if G has maximum degree three then return RPVC3(G, k, t)
if G is four-regular then

choose arbitrary v ∈ V

if “yes” ∈ {RPVC(G − u, k − 1, t − 4) | u ∈ N [v] } then return “yes”
else return “no”.

else choose v ∈ V of maximum degree d, so that deg(N(v)) 6= (4, 4, 4, 4)
X :=

`

N(v)
2

´

if deg(N(v)) = (4, 4, 4, 3) then

X := {x ∈ X | deg(x) = (4, 4) }
else if deg(N(v)) = (4, 4, 3, 3) then

X := {x ∈ X | deg(x) 6= (3, 3) }
Uniformly choose C ∈ X.

Return

(

RPVC(G − v, k − 1, t − d) with probability pd

RPVC(G − C, k − 2, t − ||C||) with probability 1 − pd

Table 2. A randomized algorithm for (t, k)-vertex cover

From now, we assume G is connected. If G has maximum degree three, by
Corollary 1 RPVC3(G, k, t) answers “yes” with probability at least (1/1.26)t >
αt.

If G is four-regular, let v be the node chosen by the algorithm. We know that
there is a solution containing at least one u ∈ N [v]. Calling RPVC(G − u, k −
1, t − 4) for each u ∈ N [v] adds factor of five to the run time. Similar to the
three-regular case, it is easy to see that the respective G will be four-regular at
most once on any path in the recursive call tree.

If otherwise G is not four-regular, but contains a node of degree four or larger,
let v be the node of maximum degree d > 3 that was chosen by the algorithm.
Note that it is always possible to choose v with deg(N(v)) 6= (4, 4, 4, 4), since
G is not four-regular. Let C be a (t, k)-vertex cover with v ∈ C, then there is a
(k−1, t−d)-vertex cover for G−v. With probability αd the algorithm chooses v
and calls RPVC(G−v, k−1, t−d). Hence, by induction hypothesis, the algorithm
answers “yes” with probability at least αdαt−d = αt.

If otherwise there is no (t, k)-vertex cover containing v, we know that |C ∩
N(v)| ≥ 2 for each (t, k)-vertex cover C. Fix such a (t, k)-vertex cover C for G
and let D := C ∩ N(v), i := |D|, and deg(D) = (d1, . . . , di). By Lemma 1, we
know i ≥ d− di + 2, or di ≥ d− i + 2. We begin with the two special cases that
are distinguished by the algorithm:

1. If d = 4 and deg(N(v)) = (4, 4, 4, 3), then

deg(D) ∈ { (4, 4), (4, 4, 3), (4, 4, 4), (4, 4, 4, 3)}.

With probability (1− α4) we do not choose v, and with probability at least 1/3
we find the correct nodes v1, v2 ∈ N(v). These nodes cover at least seven edges,
and hence the probability to answer “yes” is, by induction, at least

(1 − α4)
1

3
αt−7 =

αt−7 − αt−4

3
> αt.

2. If d = 4 and deg(N(v)) = (4, 4, 3, 3), then

deg(D) ∈ { (4, 4), (4, 3, 3), (4, 4, 3, 3)},

i.e., we know at least one node of degree four is in any (t, k)-vertex cover. If i = 2,
then deg(D) = (4, 4), and we furthermore know that there is no edge between
these neighbors (otherwise we can construct a (t, k)-vertex cover containing v, a
contradiction). Hence, at least eight edges are being covered, and the probability
to answer “yes” is, by induction, at least

(1 − α4)
1

5
αt−8 =

αt−8 − αt−4

5
> αt.

If otherwise 3 ≤ i ≤ 4, we can only guarantee that six edges are being
covered, but we gain an improved probability to pick two neighbors in D. We
obtain a probability to answer “yes” of at least

(1− α4)
1

5

(
i

2

)

αt−6 =
αt−6 − αt−2

5

(
i

2

)

> αt.

The remaining cases are d ≥ 5, or d = 4 and

deg(N(v)) 6∈ { (4, 4, 3, 3), (4, 4, 4, 3), (4, 4, 4, 4) }.

The latter enforces i = |D| ≥ 3 due to the minimum degree di in D. With
probability (1− αd), the algorithm does not choose v. With probability

(
i
2

)
/
(
d
2

)

the algorithm chooses two correct nodes v1, v2 ∈ D ⊆ N(v). Furthermore, v1 and
v2 cover at least 2(d− i + 2) edges: This is clear if v1 and v2 are not connected
or neither v1 nor v2 are of degree d − i + 2. However, if at least one node, say
v1, is of degree d− i + 2, and v1 and v2 are connected, then a (t, k)-vertex cover
containing v can be constructed from C by replacing v1 with v—a contradiction.

By induction, the probability that RPVC(G − {v1, v2}, k − 2, t − 2(d − i +
2)) returns “yes” is at least αt−2(d−i+2). Therefore, the success probability of
RPVC(G, k, t) is at least

(1− αd)
i(i− 1)

d(d − 1)
αt−2(d−i+2) ≥ α2(d−i+2)αt−2(d−i+2) = αt,

using the estimation from Lemma 6.

6 Exact Partial Vertex Cover

We define the parameterized problem Exact Partial Vertex Cover as fol-
lows:

Input: A graph G = (V, E), positive integers k, t
Question: Is there a C ⊆ V , |C| ≤ k, such that C covers exactly t edges?

The algorithms from the previous sections cannot be adapted to solve this
problem, since there are solutions that do contain neither a node of maximum
degree nor any of its neighbors.

While the first algorithm for Partial Vertex Cover by Bläser [3] might
be modified to solve Exact Partial Vertex Cover as well, the random sep-
aration method by Cai, Chan, and Chan [5] solves this problem more efficiently
in O∗(2k+t) = O∗(4t) steps.

We use a similar and—to our best knowledge—new technique that we call
random orientation: First randomly choose an orientation for each edge {v, u}:
v → u (to u), v ← u (to v), or v −− u (undirected). An inner node v is a node
such that all edges incident to v are either undirected or point to v. An inner

component U is a minimal, nonempty set U of inner nodes, such that u← v for
each edge {u, v} with u ∈ U and v /∈ U .

Theorem 3. Let G = (V, E) be a graph and C a solution of the Exact Partial

Vertex Cover instance (G, k, t). Then C is a union of some inner components

for a random orientation of E with probability at least 3−t.

After randomly choosing an orientation for a graph, compute all inner com-
ponents. Note that no edge is incident to more than one inner component, thus
we can use dynamic programming to test, whether some of these components
contain together at most k nodes and cover exactly t edges. The overall run time
is polynomial in t, k, and G. Obviously, the success probability is at least 3−t.
We easily obtain the following result:

Theorem 4. Exact Partial Vertex Cover can be solved by a randomized

algorithm in O∗(3t) with constant error probability.

Note that this algorithm can be derandomized by using t-independent hash
functions [1] yielding a run time of O∗(ct) for some constant c.

The method of random orientation can easily be used for other variants of
Partial Vertex Cover, including several weighted problems. However, note
that some variants are W [1] hard, especially if we look for a (t, k)-vertex cover
whose weight is exactly a given number (by a reduction from Subset Sum).

References

1. N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
2. R. Bar-Yehuda. Using homogenous weights for approximating the partial cover

problem. In Proc. of 10th SODA, pages 71–75, 1999.

3. M. Bläser. Computing small partial coverings. Inf. Proc. Letters, 85:327–331, 2003.
4. N. H. Bshouty and L. Burroughs. Massaging a linear programming solution to

give a 2-approximation for a generalization of the vertex cover problem. In Proc.

of 15th STACS, number 1373 in LNCS, pages 298–308. Springer, 1998.
5. L. Cai, S. M. Chan, and S. O. Chan. Random separation: A new method for solving

fixed-cardinality optimization problems. In Proc. of 2nd IWPEC, number 4169 in
LNCS, pages 239–250. Springer, 2006.

6. J. Chen, I. A. Kanj, and G. Xia. Simplicity is beauty: Improved upper bounds for
vertex cover. Technical Report TR05-008, School of CTI, DePaul University, 2005.

7. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness.
Congressus Numerantium, 87:873–921, 1992.

8. F. Fomin, F. Grandoni, and D. Kratsch. A measure & conquer approach for the
analysis of exact algorithms. Technical Report 359, Department of Informatics,
University of Bergen, July 2007.

9. R. Gandhi, S. Khuller, and A. Srinivasan. Approximation algorithms for partial
covering problems. Journal of Algorithms, 53:55–84, 2004.

10. J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of generalized
vertex cover problems. In Proc. of 9th WADS, number 3608 in LNCS, pages 36–48,
Waterloo, Canada, 2005. Springer.

11. E. Halperin and R. Srinivasan. Improved approximation algorithms for the partial
vertex cover problem. In Proc. of 5th APPROX, number 2462 in LNCS, pages
185–199. Springer, 2002.

12. D. S. Hochbaum. The t-vertex cover problem: Extending the half integrality frame-
work with budget constraints. In Proc. of 1st APPROX, number 1444 in LNCS,
pages 111–122. Springer, 1998.

13. D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput.

Syst. Sci., 9:256–278, 1974.
14. J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. Intuitive algorithms and t-vertex

cover. In Proc. of 17th ISAAC, number 4288 in LNCS, pages 598–607. Springer,
2006.

15. J. Kneis, D. Mölle, and P. Rossmanith. Partial vs. complete domination: t-
dominating set. In Proc. of 33rd SOFSEM, number 4362 in LNCS, pages 367–376.
Springer, 2007.

16. B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algo-
rithm for the vertex cover problem. Acta Informatica, 22:115–123, 1985.

17. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

18. J. M. Robson. Finding a maximum independent set in time O(2n/4). Technical
Report 1251-01, Université Bordeaux I, LaBRI, 2001.

