
An exact algorithm for the Maximum Leaf

Spanning Tree problem

Henning Fernau1, Joachim Kneis2, Dieter Kratsch3, Alexander Langer2,
Mathieu Liedloff4, Daniel Raible1, and Peter Rossmanith2

1 Universität Trier, FB 4—Abteilung Informatik, D-54286 Trier, Germany.
{fernau,raible}@uni-trier.de

2 Department of Computer Science, RWTH Aachen University, Germany.‡

{kneis,langer,rossmani}@cs.rwth-aachen.de
3 Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine -

Metz, 57045 Metz Cedex 01, France. kratsch@univ-metz.fr
4 Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, 45067

Orléans Cedex 2, France. liedloff@univ-orleans.fr

Abstract. Given an undirected graph with n nodes, the Maximum

Leaf Spanning Tree problem is to find a spanning tree with as many
leaves as possible. When parameterized in the number of leaves k, this
problem can be solved in time O(4kpoly(n)) using a simple branching
algorithm introduced by a subset of the authors [12]. Daligault, Gutin,
Kim, and Yeo [6] improved the branching and obtained a running time of
O(3.72kpoly(n)). In this paper, we study the problem from an exponen-
tial time viewpoint, where it is equivalent to the Connected Dominat-

ing Set problem. Here, Fomin, Grandoni, and Kratsch showed how to
break the Ω(2n) barrier and proposed an O(1.9407n)-time algorithm [10].
In light of some useful properties of [12] and [6], we present a branching
algorithm whose running time of O(1.8966n) has been analyzed using
the Measure-and-Conquer technique. Finally we provide a lower bound
of Ω(1.4422n) for the worst case running time of our algorithm.

1 Introduction

The Maximum Leaf Spanning Tree (MLST) problem, i.e., finding a span-
ning tree with as many leaves as possible, is one of the classical NP-complete
problems [11]. Ongoing research on this topic is motivated by the fact that vari-
ants of this problem occur frequently in real life applications. For example, some
broadcasting problems in network design ask to minimize the number of broad-
casting nodes, which must be connected to a single root. This translates nicely
to finding a spanning tree with many leaves and few internal nodes. There are a
lot of results dealing with this topics, e.g., [5, 13–15].

The Maximum Leaf Spanning Tree problem is equivalent to the Con-

nected Dominating Set problem, where one shall find a minimum set of
connected nodes dominating the whole graph: It is easy to see that the internal

‡ Partially supported by the DFG under grant RO 927/7.

nodes of a spanning tree with k leaves are a connected dominating set of size
|V | − k and vice versa.

Known results. In the field of exact exponential time algorithms, there is only the
paper by Fomin, Grandoni, and Kratsch [10], where they present an algorithm
with a runtime of O(1.9407n). This result was the first that improved over the
trivial Ω(2n) barrier, when n is the number of nodes. There is however a long
research history for this problem in the field of parameterized complexity, see [1,
7, 9, 3, 8, 2, 4]. The currently fastest published algorithm is due to Kneis, Langer,
and Rossmanith [12] with a runtime bounded by O∗(4k), which has been further
improved to O∗(3.72k) by Daligault, Gutin, Kim, and Yeo in an yet to appear
article (a preliminary version can be found in [6]), whose improvements are also
used in our exact algorithm.

Our results. In the next sections we solve the MLST problem in time O(1.8966n),
improving the result of [10]. The algorithm presented here is based on the pa-
rameterized one [12], which basically repeatedly branches on leaves of a subtree
of the graph in order to decide whether it can remain a leaf or must become
an internal node. If we analyze the running time as a function of n, we find
that branching on nodes of small degree (with two possible successors) becomes
the worst case resulting in a bad running time. This resembles the worst case
of the parameterized algorithm, and the changes in [6] are based on improving
exactly this case. We use a similar approach for our exact algorithm. We mark
nodes as leaves as early as possible even when they are not yet attached to an
internal node. In the Measure-and-Conquer analysis, this balances the bad cases
against the better cases, i.e., the better cases “lend” some running time to the
bad cases for an overall improvement. However, this approach requires a rather
complicated measure and an involved analysis.

2 Preliminaries

Let G = (V, E) be a simple, undirected graph. We denote by n the number of its
vertices and by m the number of its edges. Given a vertex v ∈ V , the set of its
neighbors is defined by N(v) = { u ∈ V | {u, v} ∈ E }. The closed neighborhood
of v is N [v] = {v} ∪ N(v). Given a subset S ⊂ V , we define N(S) as the set⋃

v∈S N(v)\S and for a X ⊂ V , we define NX(S) = N(S)∩X . We write H ⊆ G
if H is a subgraph of G.

A tree T = (VT , ET) is a subtree of G (or a tree in G) if T ⊆ G. The tree
T is a spanning tree of G if furthermore VT = V . As usual, a node of degree
1 in T is called a leaf and all other nodes are called internal nodes. Wlog, we
assume each spanning tree contains at least one internal node. Once we fix some
arbitrary node, wlog an internal node, as the root of the tree, we can also speak
of parents of nodes within this tree. A spanning tree is a maximum leaf spanning
tree (MLST) if there is no spanning tree with a larger number of leaves.

In the following, we identify trees T = (VT , ET) with the bipartition of VT

into the sets of internal nodes and leaves, denoted as internal(T) and leaves(T),

respectively. Although there might be multiple subtrees of G sharing the same
set of internal nodes and leaves, either both are subtrees of some optimal solution
for MLST or none of them is (recall that G is undirected).

We assume the reader is familiar with the concepts of branching algorithms,
branching vectors and their corresponding branching number, and the Measure-
and-Conquer approach.

3 A new exact algorithm

The algorithm partitions the set of vertices of G into the sets of free vertices
(Free), floating leaves (FL), branching nodes (BN), leaf nodes (LN), and internal
nodes (IN), where the latter three form the nodes of some tree T ⊆ G. Initially,
all vertices are in the set Free, i.e., the tree is empty.

The key idea of the algorithm is to recursively build a subtree T ⊆ G with
VT = IN ∪ BN ∪ LN, internal(T) = IN and leaves(T) = BN ∪ LN, which might
in some branch eventually turn into a spanning tree T ′ of G.

Definition 1. Let G = (V, E) be a graph, let IN, BN, LN, FL ⊆ V be disjoint
sets of vertices, and let x1, . . . , xl ∈ V . By x1 → X1, . . . , xl → Xl, where each Xi

is one of IN, BN, LN or FL, we denote the branch that corresponds to moving
each xi to the respective set Xi, and additionally, if Xi = IN, all y ∈ NFree(xi)
to BN and all y ∈ NFL(xi) to LN. The notation is extended to sets Y → X
in a straightforward manner. The recursive branching over multiple branches is
denoted by

〈x1 → X1, . . . , xl → Xl || . . . || x′
1 → X ′

1, . . . , x
′
l′ → X ′

l′〉.

In particular, whenever Algorithm M decides that some node x ∈ V becomes
an internal node, all of its neighbors are directly attached to the tree, which is
never worse than connecting these neighbors through some other nodes [12].
However, vertices of T that are in LN will always remain leaves in subsequent
calls, whereas the status of a vertex in BN is still subject to change. Similarly,
vertices in FL ⊆ V \ VT will be leaves in the spanning tree T ′, but their parents
in T ′ have not yet been determined. This is formally defined as follows.

Definition 2. Let G = (V, E) be a graph, and let IN, BN, LN, FL ⊆ V be disjoint
sets of vertices and T ⊆ G be a tree. We say T extends (IN, BN, LN, FL) iff
IN ⊆ internal(T), LN ⊆ leaves(T), BN ⊆ internal(T) ∪ leaves(T), and FL ∩
internal(T) = ∅.

If N(internal(T)) ⊆ internal(T)∪leaves(T), we call T an inner-maximal tree.
A node v ∈ Free∪FL is unreachable, if there is no path uv1 . . . vtv, where t ≥ 0,
u ∈ BN and vi ∈ Free for all 1 ≤ i ≤ t.

For any v ∈ V \ (IN ∪ LN), we define its degree d(v) as d(v) = |N(v) ∩
(Free ∪ FL)| if v ∈ BN, as d(v) = |N(v) ∩ (Free ∪ FL ∪ BN)| if v ∈ Free, and as
d(v) = |N(v) ∩ (Free ∪ BN)| if v ∈ FL.

Our algorithm uses the following reduction rules.

Definition 3. Let G = (V, E) be a graph and let IN ∪ BN ∪ LN ∪ FL ∪ Free be
a partition of V . We define the following reduction rules:

(R1) If there exist two adjacent vertices u, v ∈ V such that u, v ∈ FL or u, v ∈
BN, then remove the edge {u, v}.

(R2) If there exists a vertex v ∈ BN with d(v) = 0, then insert v into LN
instead.

(R3) If there exists a vertex v ∈ Free with d(v) = 1, then insert v into FL
instead.

(R4) If there exists a vertex v ∈ Free with no neighbors in Free∪FL, then insert
v into FL instead.

(R5) If there exists a triangle {x, y, z} with d(x) = 2 and x ∈ Free, then insert
x into FL instead.

(R6) If there exists a vertex u ∈ BN which is a cut vertex, then apply u → IN.
(R7) If there exist two adjacent vertices u, v ∈ V such that u ∈ LN and v ∈

V \ IN, then remove the edge {u, v}.

The correctness proofs of reduction rules are straightforward and details are
not given in this extended abstract due to space limitations.

The halting and branching rules are described in Algorithm M (see Figure 1).
Their correctness is shown in the following Section. The running-time analysis
is provided in Section 5.

4 Correctness of the algorithm

The following lemma will ease the forthcoming correctness proof. It enables us to
turn some nodes into additional floating leaves in some special cases. A similar
technique has already been used in [6].

Lemma 1. Let G = (V, E) be a graph, T a tree in G and v ∈ leaves(T) such
that N(v) \ V (T) = {x1, x2}. If every optimal spanning tree T ′ ⊇ T is such that
v is an internal node and each xi is a leaf in T ′, then there is also some optimal
spanning tree where additionally each w ∈ N({x1, x2}) \ (internal(T)∪ {v}) is a
leaf.

Lemma 2. Algorithm M solves the Maximum Leaf Spanning Tree problem
if called with BN = {r} and IN = LN = FL = ∅, where r is the root of some
optimal spanning tree.

Proof. The reduction rules update a partition P = (Free, IN, BN, LN, FL) to a
partition P ′ = (Free′, IN′, BN′, LN′, FL′) so that any maximum leaf spanning
tree T ′ that extends P ′ has at least as many leaves as any spanning tree T
extending P . Note that given some disjoint subsets IN, BN, LN, FL, the subset
Free is uniquely determined by V \ (IN ∪ BN ∪ LN ∪ FL). Thus, we omit the
explicit notion of the set Free.

In the following, (IN ∪ BN ∪ LN ∪ FL)x1→X1,...,xl→Xl
denotes the partition

(Free′, IN′, BN′, LN′, FL′) obtained from (Free, IN, BN, LN, FL) by the algorithm

Algorithm M
Input: A graph G = (V, E), IN, BN, LN, FL ⊆ V

Reduce G according to the reduction rules
if there is some unreachable v ∈ Free ∪ FL then return 0
if V = IN ∪ LN then return |LN|
Choose a vertex v ∈ BN of maximum degree
if d(v) ≥ 3 or (d(v) = 2 and NFL(v) 6= ∅) then

〈v → LN || v → IN〉 (B1)
else if d(v) = 2 then

Let {x1, x2} = NFree(v) such that d(x1) ≤ d(x2)
if d(x1) = 2 then

Let {z} = N(x1) \ {v}
if z ∈ Free then

〈v → LN || v → IN, x1 → IN || v → IN, x1 → LN〉 (B2)
else if z ∈ FL then 〈v → IN〉

else if (N(x1) ∩ N(x2)) \ FL = {v} and ∀z ∈ (NFL(x1) ∩ NFL(x2)),
d(z) ≥ 3 then

〈v → LN || v → IN, x1 → IN || v → IN, x1 → LN, x2 → IN || (B3)
v → IN, x1 → LN, x2 → LN, NFree(x1, x2) → FL, NBN(x1, x2) → LN〉

else (N(x1) ∩ N(x2)) \ FL 6= {v} then

〈v → LN || v → IN, x1 → IN || v → IN, x1 → LN, x2 → IN〉 (B4)
else if d(v) = 1 then

Let P = (v = v0, v1, . . . , vk) be a maximum path such that
d(vi) = 2, 1 ≤ i ≤ k, v1, . . . , vk ∈ Free

Let z ∈ N(vk) \ V (P)
if z ∈ FL and d(z) = 1 then 〈v0, . . . , vk → IN, z → LN〉
else if z ∈ FL and d(z) > 1 then 〈v0, . . . , vk−1 → IN, vk → LN〉
else if z ∈ BN then 〈v → LN〉
else if z ∈ Free then 〈v0, . . . , vk → IN, z → IN || v → LN〉 (B5)

Fig. 1. An algorithm for Maximum Leaf Spanning Tree. The notation 〈v →
IN || v → LN〉 denotes the corresponding recursive branches, e.g., in this case v

either becomes an internal node or a leaf (see Definition 1).

in the x1 → X1, . . . , xl → Xl branch. In particular, whenever Algorithm M
decides that some nodes X ⊆ BN ∪ Free become internal nodes, all nodes in
N(X) ∩ Free become new branching nodes (BN) and all nodes in N(X) ∩ FL
become leaves (LN). Hence, Algorithm M always computes an inner-maximal
tree. It thus remains to show that if there is some spanning tree T with k leaves
that extends the current (IN, BN, LN, FL), then Algorithm M calls itself with an
new (IN′, BN′, LN′, FL′) such that there is some spanning tree T ′ with k leaves
that extends (IN′, BN′, LN′, FL′) as well.

We prove this by induction. For the base step, any spanning tree extends
(IN, BN, LN, FL) with BN = {r} and IN = LN = FL = ∅, where the root r
is the only branching node. Now let T be a spanning tree with k leaves that
extends (IN, BN, LN, FL), and let v ∈ BN be of maximum degree.

– If d(v) ≥ 3 or d(v) = 2 and NFL(v) 6= ∅, then Algorithm M calls itself
recursively in (B1). Since v is either an internal node or a leaf in any spanning
tree, T extends either (IN, BN, LN, FL)v→IN or (IN, BN, LN, FL)v→LN.

– If d(v) = 2, NFree(v) = {x1, x2} and N(x1) \ {v} = {z}, such that z ∈ FL,
we do not need to branch, since x1 must somehow be connected to the
tree in any solution extending (IN, BN, LN, FL), and v is the only choice.
If otherwise z ∈ Free, then T either extends (IN, BN, LN, FL)v→LN, or
(IN, BN, LN, FL)v→IN,x1→LN, or (IN, BN, LN, FL)v→IN,x1→IN, because if v
is not a leaf in T , then it is an internal node and x1 is either leaf or internal
node.

– In the case where d(v) = 2, 3 ≤ d(x1) ≤ d(x2) and N(x1) ∩ N(x2) ∩ (Free ∪
BN) = {v}, the algorithm branches on all possibilities whether v, x1 and x2

are internal nodes or leaves. If there is some z ∈ (NFL(x1) ∩ NFL(x2)) with
d(z) ≤ 2, not both x1 and x2 can be leaves and we skip the last branch (which
yields (B4)). Otherwise, Lemma 1 guarantees that in the last branch where v
must be an internal node and x1 and x2 are leaves, we can assume that all
other nodes neighbors of x1 and x2 are leaves in some optimal solution
as well. Hence there is a tree that extends either (IN, BN, LN, FL)v→LN,
or (IN, BN, LN, FL)v→IN,x1→IN, or (IN, BN, LN, FL)v→IN,x1→LN,x2→IN, or
(IN, BN, LN, FL)v→IN,x1→LN,x2→LN,NFree(x1,x2)→FL,NBN(x1,x2)→LN.

– In the case where d(v) = 2, 3 ≤ d(x1) ≤ d(x2) and N(x1) ∩ N(x2) ∩ (Free ∪
BN) 6= {v} we can assume that if v is an internal node in every optimal
solution, either x1 or x2 is an internal node as well. Otherwise we could
connect x1 and x2 to z ∈ (N(x1) ∩ N(x2)) \ FL instead of v, which might
destroy the leaf z, that is connected somehow else, but yields the new leaf v.
Since z is either a branching node or a free node, this is still allowed. Hence,
there is also some optimal solution that extends (IN, BN, LN, FL)v→LN, or
(IN, BN, LN, FL)v→IN,x1→IN, or (IN, BN, LN, FL)v→IN,x1→LN,x2→IN.

– Finally, if d(v) = 1, let P = (v = v0, v1, . . . , vk) be a maximum path such
that d(vi) = 2, 1 ≤ i ≤ k, v1, . . . , vk ∈ Free and let z ∈ (N(vk) \ V (P)), as
described in Algorithm M. If z ∈ FL and d(z) = 1, all nodes in P must be
internal nodes in any spanning tree that extends (IN, BN, LN, FL), because
there is no other way to connect z. If otherwise d(z) > 1, there is always an
inner-maximal solution where vk is a leaf by a simple exchange argument.
If on the other hand z ∈ BN, then the nodes in P must either be connected
through v or through z, and hence we can just decide to make v a leaf, again
by a simple exchange argument.
Now assume z ∈ Free. Since T is inner-maximal we know by [12], that
there is some inner-maximal T ′ that extends either (IN, BN, LN, FL)v→LN,
or (IN, BN, LN, FL)v,v1,...,vk,z→IN in this case.

Since this concludes a complete distinction of all possible d(v), the claim follows
by induction. ⊓⊔

5 Analysis of the running-time

To analyze the running-time, we use the following measure:

µ(G) =

n∑

i=1

ǫBN
i |BNi| +

n∑

i=2

ǫFree
i |Freei| +

n∑

i=2

ǫFL
i |FLi|,

where BNi (resp. Freei and FLi) denotes the set of vertices in BN (resp. Free and
FL) with degree i, and the values of the ǫ’s are chosen in [0, 1] so that µ(G) ≤ n,
more precisely:

– ǫFree
0 = ǫFree

1 = 0, ǫFree
2 = 0.731975, ǫFree

3 = 0.946609, and ǫFree
i = 1 for all

i ≥ 4;
– ǫBN

0 = 0, ǫBN
1 = 0.661662, ǫBN

i = 0.730838 for all i ≥ 2;
– ǫFL

0 = ǫFL
1 = 0, ǫFL

2 = 0.331595, ǫFL
3 = 0.494066, and ǫFL

i = 0.628886 for all
i ≥ 4.

Lemma 3. Let G = (V, E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be a
partition of V . Moreover let v ∈ BN such that d(v) ≥ 3 or d(v) = 2 and there is
some u ∈ NFL(v). Then branching according to (B1) yields a branching number
less than 1.8966.

Proof. By the reduction rules (R3) and (R6), we have d(u) ≥ 2 for all u ∈
Free ∪ FL.

1. In the first branch, v is added to the internal nodes. Thus, all nodes in
NFree(v) are added to the branching nodes. This reduces the degree of all
these nodes by at least one, since the edge to v is not counted anymore. More-
over, all nodes in NFL(v) are now leaf nodes. Thus, the measure decreases
by at least

∆1 = ǫBN
d(v) +

∑

x∈NFree(v)

(ǫFree
d(x) − ǫBN

d(x)−1) +
∑

y∈NFL(v)

ǫFL
d(y).

2. In the second branch, v becomes a leaf. Therefore, the degree of all nodes
in NFree∪FL(v) decreases by one, as the edge to v is removed. This implies a
change in the measure of at least

∆2 = ǫBN
d(v) +

∑

x∈NFree(v)

(ǫFree
d(x) − ǫFree

d(x)−1) +
∑

y∈NFL(v)

(ǫFL
d(y) − ǫFL

d(y)−1).

Since higher degrees only imply a higher change, it is now sufficient to test
all combinations where d(v) = 3 or d(v) = 2 and there is some u ∈ NFL(v). For
all other nodes u ∈ NFree∪FL(v), we can similarly assume 2 ≤ d(u) ≤ 5. The
worst case (branching vector (1.538324, 0.730838), branching number less than
1.8966) occurs at d(v) = 3, where v has three free neighbors of degree at least
five. ⊓⊔

Lemma 4. Let G = (V, E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that d(v) = 2 and there is some
x1 ∈ NFree(v) with d(x1) = 2 and the remaining z ∈ N(x1) \ {v} is contained
in Free. Then branching according to (B2) yields a branching number less than
1.8966.

Proof. By the reduction rule (R5), we know that z 6= x2. Moreover, (R3) implies
d(z) ≥ 2.

1. Again, v becomes leaf in the first branch. Similar to Lemma 3, this implies
a change in the measure of at least

∆1 = ǫBN
2 + (ǫFree

2 − ǫFL
1) + (ǫFree

d(x2)
− ǫFree

d(x2)−1)

= ǫBN
2 + ǫFree

2 + (ǫFree
d(x2)

− ǫFree
d(x2)−1),

because x1 becomes a floating leaf of degree one and the degree of x2 de-
creases by one.

2. In the second branch, both v and x1 become internal nodes, which implies
that z and x2 become branching nodes. Again, d(z) and d(x2) decrease by
one. The measure decreases by at least

∆2 = ǫBN
2 + ǫFree

2 + (ǫFree
d(z) − ǫBN

d(z)−1) + (ǫFree
d(x2)

− ǫBN
d(x2)−1).

3. In the third branch, v becomes an internal node and x1 becomes a leaf
connected to v. Thus, x2 is now a branching node and d(x2) decreases.
Moreover, d(z) decreases by one as well. This implies that the measure is
reduced by at least

∆3 = ǫBN
2 + ǫFree

2 + (ǫFree
d(z) − ǫFree

d(z)−1) + (ǫFree
d(x2)

− ǫBN
d(x2)−1).

Since d(v) = d(x1) = 2, we need to try all possible combinations of d(z) and
d(x2), both between 2 and 5. Here, the worst case is d(z) = d(x2) = 5 (1.8965
for branching vector (1.462813, 1.731975, 2.001137)). ⊓⊔

Lemma 5. Let G = (V, E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that NFree(v) = {x1, x2} with 3 ≤
d(x1) ≤ d(x2) and let (N(x1) ∩ N(x2)) \ FL = {v}. Finally, let x1 /∈ N(x2).
Then branching according to (B3) yields a branching number less than 1.8966.

Proof. 1. In the first branch, v becomes a leaf, which yields

∆1 = ǫBN
2 + (ǫFree

d(x1)
− ǫFree

d(x1)−1) + (ǫFree
d(x2)

− ǫFree
d(x2)−1).

2. In the second branch, v and x1 become internal nodes. As a consequence, x2

becomes a branching leaf and its degree decreases by one. Furthermore, the
degree of all nodes in NFree∪FL(x1) decreases by one. We gain at least

∆2 = ǫBN
2 + ǫFree

d(x1)
+ (ǫFree

d(x2)
− ǫBN

d(x2)−1) +
∑

x∈NFree(x1)

(ǫFree
d(x) − ǫBN

d(x)−1)

+
∑

y∈NFL(x1)

ǫFL
d(y) +

∑

z∈NBN(x1)\{v}

(ǫBN
d(z) − ǫBN

d(z)−1).

3. In the third branch, v and x2 become internal nodes, while x1 becomes a leaf.
Thus, the degree decreases by one for all nodes in NFree∪FL(x1) as well as
for all nodes in NBN(x2). Moreover, all nodes in NFree(x2) become branching
nodes and all nodes in NFL(x2) become leaves. Since (N(x1)∩N(x2))\FL =
∅, the measure decreases by at least

∆3 = ǫBN
2 + ǫFree

d(x1)
+ ǫFree

d(x2)
+

∑

x∈NFree(x1)

(ǫFree
d(x) − ǫFree

d(x)−1)

+
∑

y∈NFL(x1)\N(x2)

(ǫFL
d(y) − ǫFL

d(y)−1) +
∑

z∈NBN({x1,x2})\{v}

(ǫBN
d(z) − ǫBN

d(z)−1)

+
∑

x′∈NFree(x2)

(ǫFree
d(x′) − ǫBN

d(x′)−1) +
∑

y′∈NFL(x2)

ǫFL
d(y′).

4. In the last branch, v becomes an internal node, x1 and x2 become leaves, and
all nodes in NFree({x1, x2}) become floating leaves. Moreover, all nodes in
NBN({x1, x2}) become leaves as well and finally, the degree decreases by at
least one for all u ∈ NFL({x1, x2}). This implies that the measure decreases
by at least

∆4 = ǫBN
2 + ǫFree

d(x1)
+ ǫFree

d(x2)
+

∑

x∈NFree({x1,x2})

(ǫFree
d(x) − ǫFL

d(x)−1)

+
∑

y∈NFL({x1,x2})\(N(x1)∩N(x2))

(ǫFL
d(y) − ǫFL

d(y)−1)

+
∑

y∈FL∩N(x1)∩N(x2)

(ǫFL
d(y) − ǫFL

d(y)−2)

+
∑

z∈NBN({x1,x2})\{v}

ǫBN
d(z).

Again, we have to compute all possible neighborhoods. This requires us to
test all 3 ≤ d(x1) ≤ d(x2) ≤ 5, all 1 ≤ d(u) ≤ 2 for all u ∈ NBN({x1, x2}), all
2 ≤ d(u) ≤ 5 for each u ∈ NFL({x1, x2}) and finally all 2 ≤ d(u) ≤ 5 for all
u ∈ NFree({x1, x2}). Note that it is sufficient to assume that all floating leaves
are of degree at least two. Otherwise, some of the branches yield new instances
that will be solved in polynomial time, because they are obvious “No” instances.
Thus, the exponential parts of the runtime only depend on the other branches,
which yields a much better runtime bound, even if some floating leaves are of
degree one. Similarly, we can assume that floating leaves of degree two are not
contained in N(x1)∩N(x2), because otherwise the last branch (both, x1 and x2

are in LN) is found to be a “No” instance in polynomial time.
It turns out that the largest branching number in this case is smaller than

1.8506 with a branching vector (0.730838, 2.476690, 3.216207, 8.218955) for the
case d(x1) = d(x2) = 5, NFree(x1) = {u} with d(u) = 5, NFL(x1) = ∅,
NBN(x1) = {u1, u2, u3} with d(u1) = d(u2) = d(u3) = 2, NFree(x2) = {w} with

d(w) = 2, NFL(x2) = ∅, and NBN(x2) = {w1, w2, w3} with d(w1) = d(w2) =
d(w3) = 2. ⊓⊔

Lemma 6. Let G = (V, E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that NFree(v) = {x1, x2} with 3 ≤
d(x1) ≤ d(x2) and let (N(x1) ∩ N(x2)) \ FL = {v}. Finally, let x1 ∈ N(x2).
Then branching according to (B3) yields a branching number less than 1.8966.

The proof is very similar to the previous lemma, we only need to make sure
that the edge between x1 and x2 is not counted twice.

Lemma 7. Let G = (V, E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that NFree(v) = {x1, x2} with 3 ≤
d(x1) ≤ d(x2) and let (N(x1)∩N(x2)) \FL 6= {v}. Then branching according to
(B4) yields a branching number less than 1.8966.

Proof. Similar to Lemma 5 and Lemma 6, x1 and x2 can possibly be neighbors.

1. In the first branch, v becomes a leaf. Similar to above, we obtain at least

∆1 = ǫBN
2 + (ǫFree

d(x1)
− ǫFree

d(x1)−1) + (ǫFree
d(x2)

− ǫFree
d(x2)−1).

2. In the second branch, v and x1 become internal nodes. As a consequence,
the degree decreases for all nodes in NFree∪FL({v, x1}) and these nodes turn
into branching nodes or leaves, respectively. The measure decreases by at
least

∆2 = ǫBN
2 + ǫFree

d(x1)
+ (ǫFree

d(x2)
− ǫBN

d(x2)−1) +
∑

x∈NFree(x1)\{x2}

(ǫFree
d(x) − ǫBN

d(x)−1)

+
∑

y∈NFL(x1)

ǫFL
d(y) +

∑

z∈NBN(x1)\{v}

(ǫBN
d(z) − ǫBN

d(z)−1).

Note that when x2 ∈ N(x1), d(x2) decreases even more. However, this esti-
mation is good enough to obtain the claimed bounds.

3. In the last branch, v and x2 become internal nodes and x1 becomes a leaf.
As usual, the measure decreases by at least

∆3 = ǫBN
2 + ǫFree

d(x1)
+ ǫFree

d(x2)
+

∑

x∈NFree(x1)\{x2}

(ǫFree
d(x) − ǫFree

d(x)−1)

+
∑

y∈NFL(x1)

(ǫFL
d(y) − ǫFL

d(y)−1) +
∑

z∈NBN(x1)\{v}

(ǫBN
d(z) − ǫBN

d(z)−1).

In all three cases, we only analyzed how the neighbors of x1 are affected and
omitted the neighbors of x2. Thus, we do not have to distinguish between nodes
in N(x1) \N(x2) and N(x1)∩N(x2). Similar to previous lemmas, we can safely
assume that d(u) ≥ 2 for all floating leaves u ∈ N(x1).

In order to compute all possible branching vectors, we need to test all 3 ≤
d(x1) ≤ d(x2) ≤ 5. Furthermore, we need to try all 1 ≤ d(u) ≤ 2 for all
u ∈ NBN(x1), all 2 ≤ d(u) ≤ 5 for each u ∈ NFL(x1) and finally all 2 ≤ d(u) ≤ 5
for all u ∈ NFree(x1).

The worst case of 1.8966 (branching vector (0.730838, 2.407514, 2.869190))
occurs when d(x1) = d(x2) = 5, NFree(x1) = {u1, u2} with d(u1) = d(u2) = 5,
NFL(x1) = ∅, and NBN(x1) = {u′

1u
′
2} with d(u′

1) = d(u′
2) = 2. ⊓⊔

Lemma 8. Let G = (V, E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that d(v) = 1. Then branching
according to (B5) yields a branching number less than 1.8966.

Proof. Let v1, . . . , vk and z ∈ V as described in Algorithm M and recall that
d(z) ≥ 3 and z ∈ Free.

1. In the first branch, v becomes an internal node as well as all v1, . . . , vk and
z. This implies that the measure decreases by at least

∆1 = ǫBN
1 + kǫFree

2 + ǫFree
d(z).

2. In the other branch, v becomes a leaf. If k = 0, then the degree of z will
decrease and otherwise the node v1 becomes a floating leaf of degree one.
Therefore, we gain at least

∆2 = ǫBN
1 + min(ǫFree

d(z) − ǫFree
d(z)−1, ǫ

Free
2).

The worst case occurs when d(z) = 5 and k = 0 with a branching vector of
(1.661662, 0.661662) and a branching number less than 1.8966. ⊓⊔

From the above lemmas as well as from Lemma 2, which guarantees the
correctness of our algorithm, we can conclude our main result.

Theorem 1. The given algorithm solves the Maximum Leaf Spanning Tree

problem in time O(1.8966n).

It is well known that the current worst case running-time analysis, even
based on Measure-and-Conquer, overestimate the upper bounds. The following
Theorem gives a lower bound on this worst-case running-time enlighting the
reader on the prevision of the analysis. We recall here that Fomin et al. [10]
present an algorithm solving the problem whose worst-case running time is upper
bounded by O(1.9407n) and they provide a lower bound of Ω(1.3195n).

Theorem 2. There is lower bound of Ω(3n/3) = Ω(1.4422n) for the worst case
running time of our algorithm.

6 Concluding remarks

We improved the running time required to solve the MLST problem. Since the
algorithm is based on a parameterized algorithm that works for directed graphs
as well, it would be interesting to study the running time for directed graphs.
However, some details that helped to improve the running time of our algorithm
work only for undirected graphs. We believe that small modifications might be
sufficient to gain similar runtime bounds for directed graphs.

References

1. H. L. Bodlaender. On linear time minor tests with depth-first search. J. Algorithms,
14(1):1–23, 1993.

2. P. Bonsma. Sparse cuts, matching-cuts and leafy trees in graphs. PhD thesis,
University of Twente, the Netherlands, 2006.

3. P. S. Bonsma, T. Brüggemann, and G. J. Woeginger. A faster FPT algorithm for
finding spanning trees with many leaves. In Proc. of 28th MFCS, volume 2747 of
LNCS, pages 259–268. Springer, 2003.

4. P. S. Bonsma and F. Zickfeld. Spanning trees with many leaves in graphs without
diamonds and blossoms. In Proc. of 8th LATIN, number 4957 in LNCS, pages
531–543. Springer, 2008.

5. F. Dai and J. Wu. An extended localized algorithm for connected dominating
set formation in ad hoc wireless networks. IEEE Transactions on Parallel and

Distributed Systems, 15(10):908–920, 2004.
6. J. Daligault, G. Gutin, E. J. Kim, and A. Yeo. FPT Algorithms and Kernels for

the Directed k-Leaf Problem. CoRR abs/0810.4946, 2008.
7. R. G. Downey and M. R. Fellows. Parameterized computational feasibility. In

Feasible Mathematics II, pages 219–244. Boston: Birkhäuser, 1995.
8. V. Estivill-Castro, M. R. Fellows, M. A. Langston, and F. A. Rosamond. FPT is

P-time extremal structure I. In Proc. of 1st ACiD, pages 1–41, 2005.
9. M. R. Fellows, C. McCartin, F. A. Rosamond, and U. Stege. Coordinatized kernels

and catalytic reductions: An improved FPT algorithm for max leaf spanning tree
and other problems. In Proc. of 20th FSTTCS, pages 240–251. Springer-Verlag,
2000.

10. F. V. Fomin, F. Grandoni, and D. Kratsch. Solving connected dominating set
faster than 2n. Algorithmica, 52(2):153–166, 2008.

11. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory

of NP-completeness. Freeman, San Francisco, 1979.
12. J. Kneis, A. Langer, and P. Rossmanith. A new algorithm for finding trees with

many leaves. In Proc. of 19th ISAAC, number 5369 in LNCS, pages 270–281.
Springer, 2008.

13. W. Liang. Constructing minimum-energy broadcast trees in wireless ad hoc net-
works. In Proc. of 3rd MOBIHOC, pages 112–122, 2002.

14. M. A. Park, J. Willson, C. Wang, M. Thai, W. Wu, and A. Farago. A dominating
and absorbent set in a wireless ad-hoc network with different transmission ranges.
In Proc. of 8th MOBIHOC, pages 22–31, New York, NY, USA, 2007. ACM.

15. M. Thai, F. Wang, D. Liu, S. Zhu, and D.Z. Du. Connected dominating sets in
wireless networks with different transmission ranges. IEEE Trans. Mobil. Comp.,
6(7):721–730, 2007.

