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Abstract We present an algorithm that finds out-trees and out-branchings
with at least k leaves in directed graphs. These problems are known as Di-

rected Maximum Leaf Out-Tree and Directed Maximum Leaf Out-

Branching, respectively, and—in the case of undirected graphs—as Maxi-

mum Leaf Spanning Tree. The run time of our algorithm is O(4knm) on
directed graphs and O(poly(n) + 4kk2) on undirected graphs. This improves
over the previously fastest algorithms for these problems with run times of
2O(k log k)poly(n) and O(poly(n) + 6.75kpoly(k)) respectively.

Keywords Graph algorithms · Algorithms
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1 Introduction

In this paper we consider the problems of finding trees and spanning trees in
graphs, so that their number of leaves is maximal. To be more precise, given a
graph or digraph G with n vertices and a number k, we must find out whether
G contains a subtree, respectively a spanning tree, with at least k leaves.

For undirected graphs, the terms tree and spanning tree are well-known.
There are, however, a couple of variants of how these terms can be translated
to directed graphs. Here, we consider out-trees and out-branchings: An out-
tree is a rooted tree, such that every leaf can be reached from the root via a
directed path within this tree, and an out-branching is an out-tree that spans
all vertices (see, e.g., [4]).
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Here, we consider the problem of finding an out-tree or and out-branching
with at least k leaves in a given digraph in the realm of parameterized algo-
rithms. Formally, a parameterized problem is a pair (L, κ), where L ⊆ Σ∗ is
a language over a finite alphabet Σ and κ: Σ∗ → N is the parameterization.
For an instance x ∈ Σ∗, we call κ(x) the parameter of x. A parameterized
problem (L, κ) is called fixed parameter tractable and said to be in the com-
plexity class FPT if there is an algorithm that for all x ∈ Σ∗ decides whether
x ∈ L in time f(κ(x))poly(|x|), where f is an arbitrary computable function.
For further information, see the books by Downey and Fellows [17], by Flum
and Grohe [23], or by Niedermeier [33].

Undirected graphs

The NP-hard [26] Maximum Leaf Spanning Tree problem has a number of
practical applications. It is, for instance, used in network design, where a small
number of (typically expensive) core routers provide the backbone network
infrastructure for a large number of clients, see, e.g., [13, 31, 34, 37]. It is known
to be APX-hard [25] and there exists a 2-approximation algorithm [36] running
in linear time. On cubic graphs, a 3/2-approximation was found recently [11].
Fomin, Grandoni, and Kratsch [24] showed how to solve the Maximum Leaf

Spanning Tree problem in time O(1.9407n). The parameterized version is
defined as follows:

Maximum Leaf Spanning Tree (MLST)

Input: An undirected graph G = (V, E), a positive integer k
Parameter: k
Question: Does G have a spanning tree with at least k leaves?

Fellows and Langston [20] observed that MLST ∈ FPT using the Graph
Minor Theory [35]. The first explicit algorithm is due to Bodlaender [5] using
dynamic programming on tree-decompositions, which yields a linear time algo-
rithm for MLST for any fixed k. Consequent improvements are due to Downey
and Fellows [16] (running time bounded by O(n + (2k)4k)) and Fellows, Mc-
Cartin, Rosamond, and Stege [21] (O(n+14.23kk)). Results in extremal graph
theory by Linial and Sturtevant [32] and Kleitman and West [29] were used by
Bonsma, Brueggemann, and Woeginger [8] for an algorithm with a run time
of O(n3 +9.4815kk3). After several further rounds of improvement by Estivill-
Castro, Fellows, Langston, and Rosamond [19] as well as Bonsma [6, 7], the
previously best known algorithm for this problem is by Bonsma and Zick-
feld [12] and runs in time O(poly(n) + 6.75kpoly(k)).

There is also a small problem kernel for this problem: In polynomial time
an instance (G, k) of MLST is reduced to an equivalent instance (G′, k′) with
|G′| ≤ f(k) and k′ ≤ k. Note that the existence of a small problem kernel
for a parameterized problem implies that the respective problem is in FPT.
The MLST problem admits a kernel of size 3.75k as shown by Estivill-Castro,
Fellows, Langston, and Rosamond [19].
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Fig. 1 A graph containing a 3-leaf out-tree, but no 3-leaf out-branching.

Directed Graphs

While it is easy to see that a k-leaf tree in an undirected graph can always be
extended to a k-leaf spanning tree (see also Lemma 1), this is not the case for
directed graphs that are not strongly connected (see the example depicted in
Figure 1). In the directed case, we therefore have to distinguish between the
following two variants:

Directed Maximum Leaf Out-Tree (DMLOT)

Input: A digraph G = (V, A), a positive integer k
Parameter: k
Question: Does G contain an out-tree with at least k leaves?

Directed Maximum Leaf Spanning Out-Branching (DMLOB)

Input: A digraph G = (V, A), a positive integer k
Parameter: k
Question: Does G have an out-branching with at least k leaves?

Since every undirected graph can be seen as a symmetric directed graph,
these variants are NP- and APX-hard as well. DMLOB even remains NP-hard
when restricted to acyclic digraphs by a reduction from the Set Cover prob-
lem [3], but can be approximated with an approximation factor of O(

√
OPT)

due to Drescher and Vetta [18], where OPT is the size of an optimal solution.
However, nothing was known about membership in FPT for a long time,

since neither the graph minor theorem by Robertson and Seymour in its cur-
rent shape, nor the method used by Bodlaender, nor the extremal results
for undirected graphs are applicable for directed graphs. Alon, Fomin, Gutin,
Krivelevich, and Saurabh [1, 2] (see also [3]) initiated the current line of re-
search on maximum leaf problems for directed graphs. They proved an ex-
tremal result similar to the bound on undirected graphs by Kleitman and
West: Every strongly connected directed graph with minimum in-degree 3 has
an out-branching with at least (n/4)1/3 − 1 leaves. They furthermore showed
that either a k-leaf out-tree exists, or the pathwidth of the underlying (undi-
rected) graph is bounded by 2k2. This allows dynamic programming, so that

an overall run time bound of 2O(k2 log k)poly(n) for the DMLOT problem can
be achieved, answering the long open question whether DMLOT is fixed pa-
rameter tractable. They could further improve this to 2O(k log2 k)poly(n) and,
if G is acyclic, to 2O(k log k)poly(n) [1]. Bonsma and Dorn [9] showed that
DMLOB ∈ FPT by extending the technique of Alon et al. Their approach is
based on pathwidth and dynamic programming as well and yields a run time
bound of 2O(k3 log k)poly(n). In a subsequent paper [10], they proved that a run
time of 2O(k log k)poly(n) suffices to solve both, DMLOT and DMLOB.
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Our contribution

Recall that in the directed case a k-leaf out-tree cannot necessarily be ex-
tended to a k-leaf out-branching even if G does contain an out-branching (see
Figure 1). In this paper, we use the fact that a k-leaf out-tree with root r can al-
ways be extended to a k-leaf out-branching if G does contain an out-branching
rooted at r. This particularly holds true for undirected graphs, which can be
seen as symmetric directed graphs.

We develop a new algorithm that — in contrast to the prior approaches
based on extremal graph theory — grows an out-tree from the root and there-
fore solves DMLOT, DMLOB, and MLST. The algorithm recursively selects
and tries two of the many possible ways to extend the tree. We prove that at
least one of these recursive calls finds a k-leaf out-tree, if such a tree exists.
The number of recursive calls can be bounded by 22k = 4k.

Organization

This paper is organized as follows: In Section 2, we introduce some notations.
Section 3 contains the proof that each out-tree rooted at r can be extended to
an out-branching rooted at r if such an out-branching exists. Our algorithm
and a detailed analysis are presented in Section 4. In Section 5, we discuss
subexponential lower bounds. A conclusion and some details on consequent
research can be found in the final section.

2 Preliminaries

Let G = (V, A) be a digraph, and let n := |V | and m := |A| be the number of its
vertices and arcs, respectively. For v ∈ V , let N+(v) := { u ∈ V | (v, u) ∈ A }
denote the set of all out-neighbors of v in G, N+[v] := N+(v)∪{v} the closed
out-neighborhood of v, and for any U ⊆ V we let N+(U) :=

⋃

u∈U N+(u).

A rooted out-tree T is a tree in G, such that T has a root r, and each
vertex in T can be reached by a unique directed path from r in T . A k-leaf
out-tree is an out-tree with at least k leaves, and a k-leaf out-branching is
a k-leaf out-tree that is also spanning all vertices, i.e., one that contains all
vertices.

Let T be an out-tree in G. Then V (T ) denotes the set of vertices of T , and
A(T ) the set of arcs of T . The root, leaves, and inner vertices of T are denoted
by root(T ), leaves(T ) and inner(T ) := V (T ) \ leaves(T ), respectively.

For v ∈ V (T ), we let N+

T
(v) := N+(v) \ V (T ) = { u ∈ V (G) \ V (T ) |

(v, u) ∈ A(G) }, i.e., all neighbors of v in G that are not already contained in T .
Similarly, we let A+

T
(v) := { (v, u) | u ∈ N+

T
(v) } and N+

T
(U) := N+(U)\V (T )

for any U ⊆ V . For a set of arcs F ⊆ A+

T
(v), we let T +F be the tree obtained

from T by adding all arcs in F . For a single arc e ∈ N+

T
(v), we abbreviate
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T +{e} as T +e. Finally, for any v ∈ V , let Tv := (N+[v], { (v, u) | u ∈ N+(v) })
be the star rooted at v that contains all out-neighbors of v in G.

Since undirected graphs can be seen as symmetric directed graphs, where
every edge has a reverse edge, we only consider directed graphs unless explicitly
stated. In the case of undirected graphs, we use N(v) and NT (v) instead of
N+(v) and N+

T
(v). Also, out-trees and out-branchings in undirected graphs

are denoted by trees and spanning trees.
Recall that our algorithm recursively grows an out-tree from the root un-

til either enough leaves have been found or the out-tree cannot be extended
further.

Definition 1 For out-trees T 6= T ′, we say T ′ extends T , denoted by T ′ � T ,
iff root(T ′) = root(T ) and T is an induced subgraph of T ′. We write T ′ ≻ T
when T ′ � T and T ′ 6= T ′.

There might be vertices that have to be leaves in every k-leaf out-tree T ′

with T ′ � T . Therefore, the algorithm further distinguishes between red leaves
R of T that will be leaves in the final k-leaf out-tree T ′, and blue leaves B
that are still allowed to become inner vertices in the future.

Definition 2 A leaf-labeled out-tree is a 3-tuple (T, R, B), such that T is an
out-tree, R ∪ B = leaves(T ) and R ∩ B = ∅.

We then only consider such extensions of T that respect our previous fixing
of red leaves.

Definition 3 If (T, R, B) is a leaf-labeled out-tree and T ′ is an out-tree such
that T ′ � T and R ⊆ leaves(T ′) (red leaves of T remain leaves in T ′), we say
T ′ is a (leaf-preserving) extension of (T, R, B), denoted by T ′ � (T, R, B). If
furthermore T ′ ≻ T , we write T ′ ≻ (T, R, B).

A leaf-labeled out-tree (T ′, R′, B′) extends a leaf-labeled out-tree (T, R, B),
denoted by (T ′, R′, B′) � (T, R, B), iff T ′ � (T, R, B) and R′ ⊇ R.

If (T ′, R′, B′) � (T, R, B) and additionally T ′ ≻ T or R′ 6= R or B′ 6= B
holds, we write (T ′, R′, B′) ≻ (T, R, B).

In any recursive call, each inner vertex of the current out-tree T has all of
its neighbors in V (T ). We call such out-trees inner-maximal.

Definition 4 Let G = (V, A) be a digraph, and let T be an out-tree in G.
We call T an inner-maximal out-tree if N+(inner(T )) ⊆ V (T ). A leaf-labeled
out-tree (T, R, B) is called an inner-maximal leaf-labeled out-tree, if T is inner-
maximal.

Note that if an out-tree T is inner-maximal, we can only extend it by
choosing a leaf v ∈ leaves(T ) with N+

T
(v) 6= ∅ and letting T ′ := T + F for

some ∅ 6= F ⊆ A+

T
(v). Moreover, the new T ′ is inner-maximal if and only

if T ′ = T + A+

T
(v). In Section 4, we show that it suffices to consider only

inner-maximal trees.
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Fig. 2 How to extend a k-leaf out-tree into a k-leaf out-branching: For the ease of illustra-
tion, we do not show all the arcs in G. A 4-leaf out-tree with root x1 is depicted in the first
figure. The second figure shows an arbitrary out-branching rooted at x1; we have chosen
one with two leaves. We can extend the first out-tree with arcs from the out-branching so
that all vertices are reached.

3 k-Leaf Out-Trees versus k-Leaf Out-Branchings

In this section, we show when and how k-leaf out-trees can be extended to k-
leaf out-branchings. Note here that we allow that the resulting out-branching
has more leaves than the originating k-leaf out-tree. While special case for
undirected graphs, Lemma 1, is rather simple and can be considered folklore,
Lemma 2 significantly eases our search for k-leaf out-branchings in directed
graphs.

Lemma 1 A connected, undirected graph G = (V, E) contains a k-leaf tree
iff G contains a k-leaf spanning tree. Furthermore, each k-leaf tree can be
extended to a k-leaf spanning tree in time O(m).

Proof Let T be a tree in G with at least k leaves, and let l := |V − V (T )| be
the number of vertices that are not part of T . If l = 0, then T is a spanning
tree with at least k leaves. If otherwise l > 0, choose u ∈ V (T ) and v /∈ V (T ),
such that u and v are adjacent. Let T ′ := T + {u, v}. It is easy to see that T ′

has at least as many leaves as T . Furthermore, this operation can efficiently
be done with a breadth-first-search on G starting in V (T ), and hence after at
most O(n+m) steps a spanning tree with at least k leaves can be constructed
from T . ⊓⊔

In the undirected case, it is therefore sufficient to search for an arbitrary
tree with at least k leaves.

Lemma 1 is, however, not applicable for directed graphs (cf., Figure 1): It
is easy to see that this digraph contains an out-tree with three leaves, but the
unique out-branching contains only one leaf. If we fix the root of the trees, we
obtain the following weaker result for directed graphs.

Lemma 2 Let G = (V, A) be a digraph. If G contains an out-branching rooted
at x1, then any k-leaf out-tree rooted at x1 can be extended to a k-leaf out-
branching of G in time O(m).
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Algorithm 1 A fast algorithm for maximum leaf problems.
Algorithm MaxLeaf(G, T, R, B, k):
Input: Digraph G = (V, A), an inner-maximal leaf-labeled out-tree (T, R, B), k ∈ N

Output: Is there a k-leaf out-tree T ′ � (T, R, B)?

01: if |R| + |B| ≥ k then return “yes”
02: if B = ∅ then return “no”
03: Choose u ∈ B.

// Try branch where u is a leaf
04: if MaxLeaf(G, T, R ∪ {u}, B \ {u}, k) then return “yes”

// If u is not a leaf, it must be an inner vertex in all extending solutions
05: B := B \ {u}
06: N := N+

T
(u)

07: T := T + { (u, u′) | u′ ∈ N }
// Follow paths, see Lemma 5
08: while |N | = 1 do

09: Let u be the unique element of N

10: N := N+

T
(u)

11: T := T + { (u, u′) | u′ ∈ N }
12: done

// Do not branch if no out-neighbors left, see Observation 1
13: if N = ∅ then return “no”

14: return MaxLeaf(G, T, R, B ∪ N, k)

Proof Let T be a k-leaf out-tree with root(T ) = x1 and let l := |V −V (T )| be
the number of vertices that are not in T . If l = 0, then T is an out-branching
for G with at least k leaves. If l > 0, choose x ∈ V −V (T ) and consider a path
x1, x2, . . . , xs with xs = x from x1 to x. Since G has an out-branching rooted
at x1, such a path must exist in G. Furthermore, x /∈ V (T ) and hence there is
1 ≤ i ≤ s such that xi ∈ V (T ) and xj /∈ V (T ) for each j = i + 1, . . . , s. It is
easy to see that by adding the path xi, . . . , xs to T , the number of leaves does
not decrease. Repeating this procedure yields an out-branching for G that has
at least k leaves. Again, this can be efficiently done with a breadth-first-search
on G, which starts in T and takes time at most O(n +m). See Figure 2 for an
illustration. ⊓⊔

4 The Algorithm

In this section, we give Algorithm MaxLeaf(G, T, R, B, k), which given an
inner-maximal leaf-labeled out-tree (T, R, B) recursively decides whether there
is a k-leaf out-tree T ′ � (T, R, B) in G. Informally, the algorithm works as
follows: Choose a blue vertex u ∈ B and recursively test whether there is a
solution where u is a leaf, or whether there is a solution where u is an inner
vertex. In the first case, u is recolored red, so that u is preserved as a leaf
in solutions T ′. In the second case, u is considered an inner vertex, all of its
outgoing arcs A+

T
(u) are added to T and the vertices in N+

T
(u) are colored

blue.
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Fig. 3 The exchange argument (Lemma 4): The first figure shows a leaf-labeled out-tree
(T, R, B) with x ∈ B. The out-neighborhood of x, N+

T
(x), is shown with dashed arcs. The

second figure shows a 5-leaf out-tree T ′ ≻ (T, R, B), but different choices for arcs originating
in x have been made: y1 is not in T ′ at all, and different paths to y3 and y4, respectively,
have been chosen. The third figure shows how the T ′ can be modified so that all y ∈ N+

T
(x)

are children of x. This modification does not decrease the number of leaves in T ′: y1 becomes
a new leaf; no changes are made to the arc (x, y2), y3 remains inner vertex, and y4 remains
leaf, although it is now connected through x.

Lemma 4 guarantees that at least one of these two branches is successful,
if a solution exists at all. In the special case that |N+

T
(u)| ≤ 1, the correctness

of the algorithm follows from Lemma 5 and Observation 1. The algorithm can
stop once no blue vertices are left, as shown by Lemma 3.

Lemma 3 Let (T, R, B) be an inner-maximal leaf-labeled out-tree, and T ′ ≻
(T, R, B) a leaf-preserving extension of (T, R, B). Then B 6= ∅.

Proof Since T 6= T ′, there is an x ∈ V (T ′) with x /∈ V (T ). Let x1 := root(T ) =
root(T ′) and consider the path x1, . . . , xl with xl = x from x1 to x in T . Since
x = xl /∈ V (T ), there is some i such that xi ∈ V (T ) and xi+1 6∈ V (T ). We
know that xi ∈ leaves(T ) = R ∪B, because T is inner-maximal. On the other
hand, xi ∈ inner(T ′), and with R ⊆ leaves(T ′), we have xi ∈ B. ⊓⊔

The following lemma allows for a simple branching since for every leaf
x ∈ B we can just test the two cases whether x is a leaf or is an inner vertex.
The latter case then implies that we have to enlarge the out-tree by A+

T
(x).

Lemma 4 Let G = (V, A) be a digraph, (T, R, B) a leaf-labeled out-tree, and
x ∈ B.

1. If there is no k-leaf out-tree T ′, such that T ′ � (T, R, B) and x ∈ leaves(T ′),
then all k-leaf out-trees T ′ with T ′ � (T, R, B) have x ∈ inner(T ′).

2. If there is a k-leaf out-tree T ′, such that T ′ � (T, R, B) and x ∈ inner(T ′),
then there is also a k-leaf out-tree T ′′ � (T + A+

T
(x), R, N+

T
(x) ∪B \ {x}).

Proof 1. Let T ′ be an out-tree such that T ′ � (T, R, B). Then T is an induced
subgraph of T ′ and hence x is either a leaf or an inner vertex in T ′.

2. Let T ′ be a k-leaf out-tree, such that T ′ � (T, R, B) and x ∈ inner(T ′), i.e.,
N+

T
(x) 6= ∅. Consider an arbitrary y ∈ N+

T
(x). If y /∈ V (T ′), then we can

construct a k-leaf out-tree T ′′ from T ′ by adding the arc (x, y). If otherwise
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y ∈ V (T ′), but (x, y) /∈ A(T ′), consider the unique path x1, x2, . . . , xi, y
from x1 := root(T ′) to y in T ′. We construct T ′′ by replacing the arc (xi, y)
with (x, y) in T ′. Then, |leaves(T ′)| ≤ |leaves(T ′′)|: x is inner vertex in T ′

by definition, and y ∈ leaves(T ′) implies y ∈ leaves(T ′′). Furthermore, the
connectivity of T ′ remains intact.
Doing so iteratively for all neighbors y of x yields a k-leaf out-tree T ′′ with
A+

T
(x) ⊆ A(T ′′). Therefore T ′′ � (T + A+

T
(x), R, N+

T
(x) ∪ B \ {x}). See

Figure 3 for an example.
⊓⊔

Now let T be an inner-maximal leaf-labeled out-tree that can be extended
to a k-leaf out-tree. Whenever we end up with a blue vertex x in T that has
exactly one out-neighbor y ∈ N+

T
(x), we do not need to branch on both x

and y: If we already know that x cannot be a leaf in any out-tree with k
leaves, we also know that y cannot be a leaf in such an out-tree. Otherwise we
could obtain a k-leaf out-tree by removing y, so that x becomes a leaf. The
following lemma gives a formal formulation of this observation, which allows
the algorithm to follow all paths it encounters.

Lemma 5 Let G = (V, A) be a digraph, (T, R, B) a leaf-labeled out-tree and
x ∈ B with N+

T
(x) = {y}. If there is no k-leaf out-tree that extends (T, R ∪

{x}, B \ {x}), then there is no k-leaf out-tree that extends (T + (x, y), R ∪
{y}, B \ {x}).

Proof Let T ′ be a k-leaf out-tree that extends (T + (x, y), R ∪ {y}, B \ {x}).
Since T is an induced subgraph of T ′ and N+

T
(x) = {y}, x has exactly the

child y in T ′. Furthermore, y ∈ leaves(T ′) by the choice of T ′.
Let T ′′ be the tree obtained from T ′ by removing y. Then T ′′ extends

(T, R, B) because R ⊆ leaves(T ′) ⊆ leaves(T ′′) ∪ {y} by the choice of T ′ and
y /∈ R, since R ⊆ leaves(T ) ⊆ V (T ) and of course y /∈ V (T ). Moreover, x
becomes a leaf in T ′′. Therefore, T ′′ � (T, R ∪ {x}, B \ {x}). ⊓⊔

Similarly, any blue vertex x with an empty N+

T
(x) can be assumed to be

a leaf.

Observation 1 Let G = (V, A) be a digraph, (T, R, B) a leaf-labeled out-tree
and x ∈ B with N+

T
(x) = ∅. If there is a k-leaf out-tree that extends (T, R, B),

then there is a k-leaf out-tree that extends (T, R ∪ {x}, B \ {x}).

We are now able to prove the correctness of Algorithm MaxLeaf.

Lemma 6 Let G = (V, A) be a digraph, r ∈ V , |N+(r)| > 1 and k ∈ N. Algo-
rithm MaxLeaf returns “yes” when called on MaxLeaf(G, Tr, ∅, N+(r), k)
if and only if G does contain a k-leaf out-tree rooted at r.

Proof We first show that all subsequent calls to MaxLeaf are always given an
inner-maximal leaf-labeled out-tree: The star Tr is inner-maximal, and hence
(Tr, ∅, N+(r)) is an inner-maximal leaf-labeled out-tree.
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Let (T, R, B) be the inner-maximal out-tree given as argument to Max-

Leaf. The algorithm chooses x ∈ B and either fixes it as a leaf or as an inner
vertex. If x becomes a leaf, then (T, R ∪ {x}, B \ {x}) ≻ (T, R, B) is inner-
maximal. If otherwise x becomes an inner vertex, an out-tree T ′ is obtained
from T by adding A+

T
(x) and therefore particularly by adding N+

T
(x). Since

N(x) ⊆ V (T ′) and

N(inner(T ′)) = N(inner(T )) ∪ N(x) ⊆ V (T ) ∪ N(x) = V (T ′),

the new out-tree T ′ is inner-maximal, and so is (T ′, R, N+

T
(x)∪B \ {x}). This

step might be repeated l times while |N+

T
(x)| = 1, so that we obtain a sequence

of leaf-labeled out-trees

(T, R, B) ≺ (T ′, R′, B′) ≺ · · · ≺ (T (l+1), R(l+1), B(l+1)),

each of them being inner-maximal for the same reason. Therefore, MaxLeaf

is called with an inner-maximal leaf-labeled out-tree (T (l+1), R(l+1), B(l+1)).
Thus, all recursive calls are valid.

By induction over ≺ we now prove the following claim:

If (T, R, B) is an inner-maximal leaf-labeled out-tree, MaxLeaf(G, T, R, B, k)
answers correctly whether a k-leaf out-tree T ′ with T ′ � (T, R, B) exists.

For the induction basis, we consider the cases where the algorithm is called
with arguments (T, R, B) such that |R| + |B| ≥ k or B = ∅. In the former
case, T is already a k-leaf out-tree and the algorithm correctly returns “yes”,
and in the latter case “no” is the correct answer by Lemma 3.

Now let the algorithm be called with arguments (T, R, B), such that |R|+
|B| < k and B 6= ∅, and assume the claim already holds for all (T ′, R′, B′)
with (T, R, B) ≺ (T ′, R′, B′). Let u ∈ B.

Since |R|+ |B| < k, the algorithm only answers “yes” if one of the recursive
calls returns “yes”. Hence, by induction “no” is returned when there is no k-
leaf out-tree extending (T, R, B).

We therefore now assume there is a k-leaf out-tree extending (T, R, B). If
there is a k-leaf out-tree T ′ with

T ′ � (T, R ∪ {u}, B \ {u}) ≻ (T, R, B),

then the recursive call in line 4 correctly returns “yes” by induction.
If there is no such out-tree, then by Lemma 4 there is a k-leaf out-tree

T ′′ � T ′, where T ′ := (T + A+

T
(u), R, N+

T
(u) ∪ B \ {u}). If |N+

T
(u)| ≥ 2,

T ′′ � T ′ ≻ (T, R, B)

and the recursive call MaxLeaf(G, T ′, k) in Line 14 correctly returns “yes”
by induction, since the while-loop is not entered.

If |N+

T
(u)| = 1, the while-loop is executed at least once. Let l ≥ 1 denote

the number of iterations. The jth iteration of the while-loop implicitly defines
a new inner-maximal leaf-labeled out-tree (Tj , Rj , Bj) for 1 ≤ j ≤ l, where
v0 = u, (T0, R0, B0) = (T, R, B) and for all 0 ≤ i ≤ l − 1,
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1. (Ti+1, Ri+1, Bi+1) = (Ti + (vi, vi+1), Ri, N
+

Ti

(vi) ∪ Bi \ {vi}),
2. N+

Ti

(vi) = {vi+1}, and

3. |N+

Tl

(vl)| 6= 1.

Note that the algorithm does not update the set B in each step, as every
change would be overwritten in the next step of the while-loop. It is sufficient
to use an updated B in the recursive call after the loop. Since T ′′ ≻ (T, R, B)
and T ′′ 6� (T, R ∪ {u}, B \ {u}), Lemma 4 guarantees

T ′′ ≻ (T + (v0, v1), R, {v1} ∪ B0 \ {u}) = (T1, R1, B1)

and by Lemma 5, T ′′ 6� (T1, R1 ∪ {v1}, B1 \ {v1}). Thus, we obtain T ′′ �
(Tl, Rl, Bl) ≻ (T, R, B) inductively.

Moreover, N+

Tl

(vl) 6= ∅, because otherwise T ′′ ≻ (Tl, Rl ∪ {vl}, Bl \ {vl})
by Observation 1 and then T ′ � (T, R ∪ {u}, B \ {u}) again inductively by
Lemma 5, a contradiction. Therefore, the algorithm does not return “no” in
Line 13.

Hence the algorithm recursively calls itself as MaxLeaf(G, Tl, Rl, Bl, k),
where T ′′ � (Tl, Rl, Bl) ≻ (T, R, B). By the induction hypothesis for (Tl,
Rl, Bl), the algorithm correctly returns “yes”, which concludes the proof of
the claim.

Now let T be a k-leaf out-tree T with root(T ) = r and consider T ′ = ({r}, ∅).
Then (T ′, ∅, {r}) ≺ T is a inner-maximal leaf-labeled out-tree, and by Lemma 4
there is also a k-leaf out-tree T ′′ ≻ (Tr, ∅, N+(r)). The correctness of Lemma 6
now follows from the claim above. ⊓⊔

Lemma 7 Let G = (V, A) be a digraph and v ∈ V . The number of recursive
calls of Algorithm MaxLeaf when called as MaxLeaf(G, Tv, ∅, N+(v), k) for

v ∈ V is bounded by O(22k−|N+(v)|) = O(4k).

Proof Consider a potential function Φ(k, R, B) := 2k−2|R|−|B|. When called
with a leaf-labeled out-tree (T, R, B), the algorithm recursively calls itself at
most two times: In Line 4, some vertex u ∈ B is fixed as a leaf and the
algorithm calls itself as MaxLeaf(G, T, R∪{u}, B \{u}, k). The potential de-
creases by Φ(k, R, B)−Φ(k, R∪{u}, B\{u}) = 1. The while loop in Lines 8–12
does not change the size of B. If, however, Line 14 of the algorithm is reached,
we have |N | ≥ 2. Here, the recursive call is MaxLeaf(G, T ′, R, B \ {u} ∪
N, k) for some out-tree T ′, and hence the potential decreases by Φ(k, R, B) −
Φ(k, R, B \ {u} ∪ N) ≥ 1.

Note that Φ(k, R, B) ≤ 0 implies |R+B| ≥ k. Since the potential decreases
by at least 1 in each recursive call, the height of the search tree is therefore
at most Φ(k, R, B) ≤ 2k. For arbitrary inner-maximal leaf-labeled out-trees
(T, R, B), the number of recursive calls is hence bounded by 2Φ(k,R,B).

In the very first call, we already have |B| = |N+(v)|. Hence we obtain a

bound of 2Φ(k,∅,N+(v)) = O(22k−|N+(v)|) = O(4k). ⊓⊔
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Theorem 1 MLST can be solved in time O(poly(n) + 4k · k2).

Proof Let G = (V, E) be an undirected graph. As Estivill-Castro et al. have
shown [19], there is a problem kernel of size 3.75k = O(k) for MLST, which can
be computed in a preprocessing that requires time poly(n). Hence, n = O(k).

Without loss of generality, we assume G is connected and k > 2 (the
cases where k ≤ 2 are trivial, but the algorithm fails on a single edge for
k = 2). We do not know, which vertex v ∈ V suffices as a root, so we need
to iterate over possible roots. This already yields an algorithm with running
time O(poly(n) + 4kpoly(k)) by Lemma 7. The following more precise analysis
shows how to bound the run time by O(poly(n) + 4k · k2).

Since k > 2, it is easy to see that either some v ∈ V or one of its neighbors
is root of some k-leaf spanning tree, if any k-leaf spanning tree T exists at
all: If v ∈ leaves(T ), the unique predecessor u of v in T is an inner vertex
u ∈ inner(T ). If furthermore v has minimum degree, the cost to test all u ∈
N(v)∪{v} disappears in the run time estimation, as will be shown in the next
paragraph.

Therefore, let v ∈ V be a vertex of minimum degree d. We need to call
MaxLeaf with arguments (G, Tu, R, N(u), k) for all u ∈ N(v) ∪ {v}: If G
contains a k-leaf tree, at least one of those u is a root of some k-leaf tree and
the respective call to MaxLeaf returns “yes” by Lemma 6. Otherwise each
call returns “no”. By Lemma 7, the total number of recursive calls is bounded
by

O(2Φ(k,∅,N(v))) +
∑

u∈N(v)

O(2Φ(k,∅,N(u))) = O
(

(d + 1)22k−d
)

= O
(

4k d + 1

2d

)

.

It remains to show that the number of operations in each recursive call is
bounded by O(n2) = O(k2). We can assume the sets V , E, V (T ), E(T ), R,
and B are realized as doubly-linked lists with additional pointers from each
vertex to its position in the respective lists, so that membership tests and
insert and delete operations only require constant time each.

Hence Lines 1–3 and computing the new sets in Lines 4 and 5 takes constant
time. Computing NT (u) and the new tree T takes time O(k), since u has only
up to k neighbors, which are tested for membership in V (T ) in constant time.
The while loop is executed at most once per vertex u ∈ V . Each execution of
the while loop takes time O(k) due to the computation of NT (u). Concatenat-
ing N to B in Line 14 takes constant time, but updating the B-membership
flag for each v ∈ N takes up to k steps.

At this point we have shown that the overall number of operations required
to decide whether G contains a rooted k-leaf tree is bounded by O(poly(n) +
4k ·k2). By Lemma 1, each k-leaf tree can be extended to a spanning tree with
at least k leaves, so the decision problem MLST can be solved in the same
amount of time. ⊓⊔

Note that Algorithm MaxLeaf can easily be modified to return a k-leaf
spanning tree in G within the same run time bound. In this case, an additional
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O(m) postprocessing is required to extend the k-leaf tree to a k-leaf spanning
tree.

Theorem 2 DMLOT and DMLOB can be solved in time O(4knm).

Proof Let G = (V, A) be a digraph. We first consider DMLOT: If G contains
a k-leaf out-tree rooted at r, MaxLeaf(G, Tr, ∅, N+(r), k) returns “yes” by
Lemma 6. Otherwise, MaxLeaf(G, Tv, ∅, N+(v), k) returns “no” for all v ∈ V .
We do not know r, so we need to iterate over all v ∈ V . By Lemma 7, the
total number of recursive calls is therefore bounded by

∑

v∈V

O(2Φ(k,∅,N+(v))) = O(n · 22k) = O(4kn).

In a single recursive call to MaxLeaf, each edge is considered at most once
when computing the respective sets N+

T
(u) in lines 6 and 10. Hence the time

spent in the while loop is at most O(m). Therefore, the overall run time to
solve DMLOT is bounded by O(4k · nm).

To prove the run time bound for DMLOB, the algorithm must be slightly
modified in Line 1. Here, it may only return “yes” if the leaf-labeled out-tree
(T, R, B) can be extended to a k-leaf out-branching. By Lemma 2, each k-leaf
out-tree that shares the same root with some out-branching can be extended
to a k-leaf out-branching in time O(m). Thus the run time remains bounded
by O(4k · nm). ⊓⊔

5 Subexponential Lower Bounds

It furthermore turns out that 2O(k)poly(n) algorithms for the problems studied
in this paper are in some sense optimal, i.e., subexponential time algorithms
are unlikely. More precisely, we show that the Exponential Time Hypothesis
(ETH) fails if MLST can be solved in time 2o(k)poly(n). The ETH is the
well-known assumption

3-SAT /∈ DTIME(2o(n)),

where n denotes the number of variables, see, e.g., Impagliazzo, Paturi, and
Zane [28] and Flum and Grohe [23]. Our proof is based on the following equiv-
alent assumption, cf. [28] or [23, Corollary 16.23].

Lemma 8 (Impagliazzo et al. [28]) The Vertex Cover problem cannot
be solved in time 2o(|V |+|E|) unless the ETH fails.

We will use the following linear size reduction from Vertex Cover to
MLST.

Lemma 9 Let (G, k) with G = (V, E) be an input instance for Vertex

Cover. We can construct an equivalent instance (G′, k′) with G′ = (V ′, E′)
for MLST in polynomial time such that
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– |V ′| = O(|V | + |E|),
– |E′| = O(|V | + |E|), and
– (G, k) is a “yes”-instance iff (G′, k′) is a “yes”-instance.

Proof Given the input instance (G, k) with G = (V, E) for Vertex Cover, we
construct an instance (G′, k′) for MLST as follows. Without loss of generality,
assume |V | > 2. We let G′ be the bipartite graph with vertices V ∪E∪{x1, x2},
where x1, x2 /∈ V ∪ E. In G′, there is an edge between v ∈ V and e ∈ E iff
v ∈ e. Furthermore, G′ contains the edge {x1, x2} and edges {x2, v} for every
v ∈ V . We set k′ = |V | + |E| − k + 1.

Clearly, |V ′| = |V |+ |E|+2 and |E′| = 2|E|+1+ |V |. Furthermore, G has
a vertex cover of size at most k if and only if G′ has a spanning tree with at
least k′ leaves. Note that we search for a spanning tree where at most k + 1
nodes are not leaves. Since x2 is an internal node in any spanning tree, the
remaining k internal nodes of a spanning tree for G′ will correspond to nodes
of a vertex cover for G.

Let U ⊆ V with |U | ≤ k be a vertex cover of G. We construct a spanning
tree T for G′ as follows: Firstly, T contains the edge {x1, x2} and the edges
{x2, v} for each v ∈ V . Secondly, for each e = {u, v} ∈ E, the tree T contains
one of the edges { {e, u′} ∈ E′ | u′ ∈ e ∩ U }, which is non-empty since U is
a vertex cover for G. Therefore, T is a spanning tree for G′, and x1 and all
nodes in E and V \ U are leaves in T .

Conversely, let T be an optimal spanning tree for G′. First note that x1

is a leaf and x2 is an internal node in any spanning tree for G′. Secondly,
we can assume that each node e ∈ E is a leaf in T by the following simple
exchange argument. Let e = {u, v} ∈ inner(T ). By construction, u and v are
the only neighbors of e in G′. Let w.l.o.g. u be the unique node in {u, v} that is
contained in the unique path between x2 and e in T . We can then obtain a new
optimal spanning tree T ′ from T by replacing the edge {v, e} with {x2, v}. The
tree T ′ is still connected, and |leaves(T )| ≤ |leaves(T ′)|, since x2 ∈ inner(T ).
Let U ⊆ inner(T ) ∩ V . Then U is a vertex cover of size at most k for G: For
each edge e ∈ E we have |e∩U | ≥ 1, since T is a spanning tree. Furthermore,
x1 and all e ∈ E are leaves in T , and x2 is an inner node. This means, at least
|V | − k nodes in V are leaves in T , which then yields the bound for |U |. ⊓⊔

Theorem 3 MLST cannot be solved in time 2o(n+m) unless the ETH fails.

Proof Assume that MLST can be solved in time 2o(n+m). The linear size
reduction from Lemma 9 then implies that we can also solve Vertex Cover

in time 2o(n+m). By Lemma 8, this implies the ETH fails. ⊓⊔

Since we can assume k ≤ |V | for all instances of MLST we obtain the
following corollary.

Corollary 1 MLST cannot be solved in time 2o(k)poly(n) unless the ETH
fails.
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Conclusion

We solve open problems [10, 27] on whether there exist ckpoly(n)-time al-
gorithms for the k-leaf out-tree and k-leaf out-branching problems on di-
rected graphs. Our algorithms for DMLOT and DMLOB have a run time of
O(4knm), which is a significant improvement over the previously best bound
of 2O(k log k)poly(n). Unless the Exponential Time Hypothesis fails, this cannot
be improved further to 2o(k)poly(n) in the general case, but nothing is known
about other graph classes such as planar (di-)graphs.

Since the undirected case is easier, has a linear size problem kernel, and
the root of some k-leaf tree can be found faster, we can solve MLST in time
O(poly(n) + 4kk2), where poly(n) is the time to compute the problem kernel
of size 3.75k. This improves over the currently best algorithm with a run time
of O(poly(n) + 6.75kpoly(k)).

6 Consequent Research

We used problem kernels only for the MLST problem on undirected graphs.
On directed graphs, no polynomial time computable problem kernel of size
polynomial in k for the DMLOT and DMLOB problems is known. Very re-
cently, Fernau, Fomin, Lokshtanov, Raible, Saurabh, and Villanger [22] showed
that no such kernelization is possible unless the polynomial hierarchy col-
lapses to the third level. If, however, we are looking for an out-branching with
a given root, then a kernel of size O(k2) exists as shown by Daligault and
Thomassé [15].

Recently, Daligault, Gutin, Kim, and Yeo improved our algorithm and the
analysis and obtained a time complexity of O(3.72kpoly(n)) for the DMLOB

problem [14], and Koutis and Williams [30] even found a O∗(2k) randomized
algorithm for MLST.
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