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Dynamic Programming

Use treewidth structure to traverse the graph
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Dynamic Programming

The runtime of dynamic programming algorithms depends on
the table sizes!



Dynamic Programming

Common properties of DP-algorithms we formalize

1. They do a single pass over the decomposition;

2. they use O(f (w) logO(1) n) space; and

3. they do not modify or rearrange the decomposition.
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Dynamic Programming

Definition (DPTM)
A Dynamic Programming Turing Machine (DPTM) is a Turing
Machine with an input read-only tape, whose head moves only
in one direction and a separate working tape. It only accepts
well-formed instances as inputs.



Boundaried Graphs

Definition
An s-boundaried graph G is a graph with s distinguished
vertices, called the boundary.



Boundaried Graphs

Definition
G1 ⊕ G2 is the disjoint union of two s-boundaried graphs
merged at the boundary.



Boundaried Graphs

Definition
Gs is the set of all s-boundaried graphs.



Formal Languages

Interpret Problem as a language Π, i.e. G ∈ Π if and only if G
is a yes-instance.



Myhill-Nerode Families



Myhill-Nerode Families

Definition (Myhill-Nerode family)
A set H ⊆ Gs is an s-Myhill-Nerode family for a DP language
Π if

1. For every subset I ⊆ H there exists an s-boundaried
graph GI with bounded size, such that for every
H ∈ H it holds that

GI ⊕ H 6∈ Π⇔ H ∈ I

2. For every H ∈ H it holds that H has bounded size.
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Myhill-Nerode Families

Definition (Myhill-Nerode family)
A set H ⊆ Gs is an s-Myhill-Nerode family for a DP language
Π if

1. For every subset I ⊆ H there exists an s-boundaried
graph GI with |GI | = |H| logO(1)H, such that for every
H ∈ H it holds that

GI ⊕ H 6∈ Π⇔ H ∈ I

2. For every H ∈ H it holds that |H | = |H| logO(1)H.



Myhill-Nerode Families

GI ⊕ H1 ∈ Π GI ⊕ H2 6∈ Π



DPTM bounds

Lemma ([Sánchez Villaamil ’17])
Let ε > 0 and Π be a DP decision problem such that for every
s there exists an s-Myhill-Nerode family H for Π of size
c s and width
tw(H) = s. Then no DPTM can decide Π using space
O((c − ε)k log n), where n is the size of the input and k
the treewidth of the input.



DPTM bounds

Lemma ([Sánchez Villaamil ’17])
Let ε > 0 and Π be a DP decision problem such that for every
s there exists an s-Myhill-Nerode family H for Π of size
c s/f (s), where f (s) = sO(1) ∩Θ(1) and width
tw(H) = s + o(s). Then no DPTM can decide Π using space
O((c − ε)k logO(1) n), where n is the size of the input and k
the treewidth of the input.



3-Coloring

I Input: A Graph G

I k : The treewidth of G

I Question: Can G be colored with 3 colors?



Coloring Gadget
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The Graph ΓX



Enforcing Colorings with HX



No-Instances

This is not 3-colorable.
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Yes-Instances

This is 3-colorable.
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Myhill-Nerode Families

I ΓX ⊕ HX 6∈ Π

I ΓX ⊕ HX ′ ∈ Π, for (X 6= X ′)

I GI = ⊕HX∈IΓX

I GI ⊕ HX ∈ Π⇔ HX 6∈ Π
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GI ⊕ HX ∈ Π⇔ HX 6∈ Π



Myhill-Nerode Families
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We can generate 3w/6 such graphs.



Myhill-Nerode Families
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We can generate a Myhill-Nerode family of index 3w/6.



Myhill-Nerode Families
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We cannot use O((3− ε)w · log n) space for a dynamic
programming algorithm.



Obtained result

Theorem ([Sánchez Villaamil ’17])
No DPTM solves 3-Coloring on a treewidth-decomposition
of width w with space bounded by O((3− ε)w · logO(1) n).



Further results

Theorem ([Sánchez Villaamil ’17])
No DPTM solves Vertex Cover on a
treewidth-decomposition of width w with space bounded by
O((2− ε)w · logO(1) n).

Theorem ([Sánchez Villaamil ’17])
No DPTM solves Dominating Set on a
treewidth-decomposition of width w with space bounded by
O((3− ε)w · logO(1) n).



Not Captured

I Compression.

I Algebraic techniques.

I Preprocessing to compute optimal traversal.

I Branching instead of DP



The end


