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Traveling Salesman Problem

Definition (Traveling Salesman Problem (TSP))

Given an undirected, complete graph G with (symmetric) positive
edge cost function c, find a minimum cost tour that visits all
vertices exactly once and returns to its origin.

Special among NP -complete problems, often used to test new
algorithmic ideas.
The decision problem versions of all TSP variants presented here
are NP -hard (and we assume P 6= NP ).

The general TSP is not approximable [BuK].
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Approximation

Given a minimization problem and an optimal solution value OPT ,

the problem is α-approximable, if there is α > 1 and a
polynomial time algorithm that computes a solution with
value at most α ·OPT ;
the problem has a polynomial-time approximation scheme
(PTAS), if for any ε > 0 it can be approximated in time
nO(1/ε) with solution value at most (1 + ε) ·OPT using that
scheme.
If ε = 1

k , the solution is at most k-optimal.
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Metric TSP (M-TSP)

Definition (Metric TSP (M-TSP))

The Metric TSP is a TSP with additional conditions:
For adjacent vertices u, v, w:

c(u, u) = 0 (no loops)
c(u, v) = c(v, u) (symmetry)
c(u,w) ≤ c(u, v) + c(v, w) (triangle inequality)

more practically relevant than general TSP
3
2 -approximable [Christofides ’76]
220
219 is lower bound for approximation factor α [PV ’06]
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(Planar) Graph TSP

Definition (Graph TSP)

The Graph TSP is a special case of the Metric TSP with cost 1 for
all (non-loop) edges.

For planar graphs, the definition is slightly different:

Definition (Planar Graph TSP)

Given an undirected, planar graph G with metric cost function c
and cost 1 for all (non-loop) edges, find a minimum cost tour that
visits all vertices at least once and returns to its origin.
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Motivation: Euclidean TSP (E-TSP)

Definition (Euclidean TSP (E-TSP))

The Euclidean TSP is a special case of the metric TSP where c is
given by the ordinary euclidean distance on a plane.

designers of planar graph PTAS considered it a step towards a
PTAS for E-TSP
major result: there is in fact a PTAS for E-TSP
[Arora/Mitchell ’98]
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What is the goal?

We wish to obtain a polynomial-time approximation scheme for
Planar Graph TSP:

Given a planar graph G with n vertices and parameter ε > 0, the
algorithm must

run in nO(1/ε) time and
compute a TSP tour of length at most (1 + ε) ·OPT .
Since n ≤ OPT , we have OPT + εn ≤ (1 + ε)OPT , so it
suffices to stay within an additive error of εn.
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The algorithm

The algorithm presented here is from the paper An Approximation
Scheme for Planar Graph TSP by Grigni, Koutsoupias and
Papadimitriou, published in ’95.

Remark: Baker’s framework (last week) cannot be applied to the
TSP; however, there is a PTAS for Planar Graph TSP that modifies
the framework and even runs in linear time [Klein, ’05/’08].
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Circle separators and face-edges

Circle separators, or simple cycle separators, partition the graph
into

an interior part A,
an exterior part B
and a circle C,

w.r.t. some size constraints.

A face-edge is a virtual edge through a face.
We will allow separators to use such edges (to some extend).
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First approach: Miller’s theorem

Theorem (Simple cycle separator, Miller)

Let H be a 2-connected planar graph with n vertices, edge weights
and a maximum face size d.
Then H has a simple cycle separator C consisting of O(

√
nd)

edges, the interior and exterior of C both have at most 2
3n vertices

and C can be found in polynomial time.

attempts using this resulted in nO((log2n)/ε2) complexity
a ”more customizeable” theorem was needed
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Final approach: A novel separator theorem

Theorem (Simple cycle separator with vertex weights)

Let H be a connected planar graph with n vertices, vertex weights
and parameter f with 1 ≤ f ≤

√
n.

Then H has a simple cycle separator C through O(n/f) vertices,
the interior and exterior of C both have at most 2

3 of the total
weight, C uses at most f face-edges and C can be found in
polynomial (nearly linear) time.

f controls trade-off between size of C and amount of
face-edges in C
choice of f is crucial for efficiency of the algorithm
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Where are the differences?

Theorem (Simple cycle separator, Miller)

Let H be a 2-connected planar graph with n vertices, edge weights
and a maximum face size d.
Then H has a simple cycle separator C consisting of O(

√
nd)

edges, the interior and exterior of C both have at most 2
3n vertices

and C can be found in polynomial time.

T. Grzanna PTAS for planar graph TSP 15 / 39



Introduction
Algorithm part 1: Decomposition
Algorithm part 2: Approximation

Complexity and error
Conclusion and questions

Circle separators and face-edges
Choosing a planar separator
Decomposition steps
Decomposition tree

Where are the differences?
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Let H be a connected planar graph with n vertices, vertex weights
and parameter f with 1 ≤ f ≤

√
n.

Then H has a simple cycle separator C through O(n/f) vertices,
the interior and exterior of C both have at most 2

3 of the total
weight, C uses at most f face-edges and C can be found in
polynomial (nearly linear) time.

more flexible separator parametrization
occurence of heavy-weighted vertices can be limited in
exterior/interior parts
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Decomposition - Principle
Input:
Connected graph G with planar embedding, vertex weights 1.

We choose f = Θ((logn)/ε).

We decompose a given planar graph H into so-called contracted
subgraphs H1 and H2. Start with H = G.

Steps:
1 Applying the separator
2 Contracting path segments
3 Removing face-edges
4 Weighting constraint points
5 Repeating decomposition recursively
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Decomposition

1 Applying the
separator

H
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Decomposition

2 Removing face-edges

Removing at most f
face-edges results in
at most f path
segments. exterior

interior
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Decomposition

3 Contracting path
segments

The resulting nodes
are called constraint
points (CPs).
Result: H ′

Contracted subgraphs
H1 and H2 share the
new CPs created in
this step.

exterior

interior
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Decomposition

4 Weighting constraint points

Let W (H) be the total weight of H.

In H1 and H2, we assign weight W (H)
6f to each CP.

Important: CPs from previous decomposition steps are also
re-weighted!

5 Repeating decomposition recursively

Decompose H1 and H2 using the presented steps.

T. Grzanna PTAS for planar graph TSP 21 / 39
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Decomposition tree

The binary decomposition tree T
stores the decomposition results.

Edges represent recursive
decomposition steps.

Stopping size:
S = Θ(f2) = Θ((log2n)/ε2)
If |H| ≤ S, stop recursion - H is a
leaf.

G

G1 G2

... ... ... ...
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Tree size and complexity

Some observations:
1 For all H in T : W (Hi) ≤ 5

6W (H).

Proof.
W (Hi) ≤ 2

3W (H) + f · W (H)
6f = 5

6W (H).

2 For all H in T : H contains at most 5f CPs.

Proof.
Suppose W (Hi) = x · W (H)

6f , with x being #CPs in Hi.
Then x · W (H)

6f ≤ 5
6W (H)⇔ x ≤ 5f .
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3 T has depth at most D = log( 6
5 )n = O(logn) (without

proof).

Thus T has polynomial size, independent of ε.

Each decomposition step can be done in polynomial time, so the
overall complexity of decomposition is nO(1).
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Approximation

Input:
Decomposition tree T , parameter f , stopping size S.

We compute a set of approximate solutions for every leaf of T and
successively merge child graph solutions while going up the tree -
but these will not be TSP solutions.

Steps (for all inner nodes H):
1 Approximating leaf graph solutions
2 Building solutions in H ′

3 Extending H ′-solutions to H-solutions
4 Constructing the tour in root G
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Path Covering

Definition (Path Cover)

Given a graph H and a set of chosen CPs in H, find the minimum
length collection of paths that covers all vertices of H using each
chosen CP as a path endpoint exactly once.

A path cover with no endpoints (0 is even) shall be a cycle.
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Storing solutions

Every path has two endpoints, so we only consider even subsets of
CPs in H.

Let c(H) ≤ 5f be #CPs in H. We identify a choice of CPs with a
binary array x ∈ {0, 1}c(H) and store the corresponding solution in
T (H)[x].

T (H) is a table of size
2c(H)−1 ≤ 25f−1 = 25Θ((logn)/ε)−1 = nO(1/ε).
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Approximation in leaf graphs

Reminder : Leaf graphs L of T have size |L| ≤ S = Θ((log2n)/ε2).

Using a simpler approximation scheme based on the Lipton-Tarjan
separator theorem and so-called nonserial dynamic programming,
one can approximate path covers for the leaf graphs in time
2O(
√
|L|) = nO(1/ε).
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Merging child graph solutions

The situation: For an inner graph H, we want to find a path cover
approximation that is as small as possible.

1 For every choice x of endpoint CPs in H, consider contraction
x′ in H ′

2 Find solutions x1 and x2 for H1 and H2 such that their
combination in H ′ is a minimal length solution matching x′

3 Extend the solution in H ′ to a solution in H

We will look at this process for a given x and H.
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Merging in H’

1 For a choice x of
endpoint CPs in H,
consider contraction
x′ in H ′

New CP shall be
endpoint in x′ iff.
path segment
contained odd
number of endpoints
in x.
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Merging in H’

2 Find solutions x1 and
x2 for H1 and H2
such that their
combination in H ′ is
a minimal length
solution matching x′

Approach: Choose x1
that matches x′..

..
then pick the shortest
matching x2.
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Extending to H

3 Extend the solution in
H ′ to a solution in H

Usually requires some
additional operations,
the paper did not
provide any details
here.
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Special case: Input graph G

G′ does not contain ”old”
CPs - build solution for
empty x: a tour.

Since G is connected and
all vertices are covered,
it’s possible to connect
multiple tours to get a
single tour.
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Runtime summary

Decomposition:
Single decomposition step: nO(1)

Amount of decompositions done: nO(1)

Decomposition complexity in total: nO(1)

Approximation:
Single leaf approximation step: nO(1/ε) · nO(1/ε)

Single inner node approximation step: nO(1/ε) · nO(1/ε)

Approximation complexity in total: nO(1) · nO(1/ε) = nO(1/ε)

Total runtime: nO(1/ε)
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Approximation error

The additive error can be shown to be at most εn, but this
requires more detailed analysis than we can do here.
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All good things come to an end

Thank you for your attention! Questions..?
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