An approximation scheme for Planar Graph TSP

Thomas Grzanna

December 17, 2013

1 Introduction

- 2 Algorithm part 1: Decomposition
- 3 Algorithm part 2: Approximation
- 4 Complexity and error
- 5 Conclusion and questions

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions Traveling Salesman Problem Approximation Metric TSP Our goal

1 Introduction

- Traveling Salesman Problem
- Approximation
- Metric TSP
- Our goal

2 Algorithm part 1: Decomposition

- 3 Algorithm part 2: Approximation
- 4 Complexity and error
- 5 Conclusion and questions

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions Traveling Salesman Problem Approximation Metric TSP Our goal

Traveling Salesman Problem

Definition (Traveling Salesman Problem (TSP))

Given an undirected, complete graph G with (symmetric) positive edge cost function c, find a minimum cost tour that visits all vertices exactly once and returns to its origin.

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions Traveling Salesman Problem Approximation Metric TSP Our goal

Traveling Salesman Problem

Definition (Traveling Salesman Problem (TSP))

Given an undirected, complete graph G with (symmetric) positive edge cost function c, find a minimum cost tour that visits all vertices exactly once and returns to its origin.

Special among $NP\mbox{-}{\rm complete}$ problems, often used to test new algorithmic ideas.

The decision problem versions of all TSP variants presented here are NP-hard (and we assume $P \neq NP$).

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions Traveling Salesman Problem Approximation Metric TSP Our goal

Traveling Salesman Problem

Definition (Traveling Salesman Problem (TSP))

Given an undirected, complete graph G with (symmetric) positive edge cost function c, find a minimum cost tour that visits all vertices exactly once and returns to its origin.

Special among $NP\mbox{-}{\rm complete}$ problems, often used to test new algorithmic ideas.

The decision problem versions of all TSP variants presented here are NP-hard (and we assume $P \neq NP$).

The general TSP is **not** approximable [BuK].

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions Traveling Salesman Problem Approximation Metric TSP Our goal

Approximation

Given a minimization problem and an optimal solution value OPT,

- the problem is α-approximable, if there is α > 1 and a polynomial time algorithm that computes a solution with value at most α · OPT;
- the problem has a **polynomial-time approximation scheme** (**PTAS**), if for any $\epsilon > 0$ it can be approximated in time $n^{\mathcal{O}(1/\epsilon)}$ with solution value at most $(1 + \epsilon) \cdot OPT$ using that scheme.

If
$$\epsilon=rac{1}{k}$$
, the solution is at most k -**optimal**.

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions Traveling Salesman Problem Approximation Metric TSP Our goal

Metric TSP (M-TSP)

Definition (Metric TSP (M-TSP))

The Metric TSP is a TSP with additional conditions: For adjacent vertices u, v, w:

• c(u,u) = 0 (no loops)

•
$$c(u,v) = c(v,u)$$
 (symmetry)

- $c(u,w) \leq c(u,v) + c(v,w)$ (triangle inequality)
- more practically relevant than general TSP
- $\frac{3}{2}$ -approximable [Christofides '76]
- **2** $\frac{220}{219}$ is lower bound for approximation factor α [PV '06]

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions

(Planar) Graph TSP

Traveling Salesman Problem Approximation Metric TSP Our goal

Definition (Graph TSP)

The Graph TSP is a special case of the Metric TSP with cost 1 for all (non-loop) edges.

Algorithm part 2: Approximation Complexity and error Conclusion and questions

(Planar) Graph TSP

Definition (Graph TSP)

The Graph TSP is a special case of the Metric TSP with cost 1 for all (non-loop) edges.

Metric TSP

For planar graphs, the definition is slightly different:

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions

Metric TSP

(Planar) Graph TSP

Definition (Graph TSP)

The Graph TSP is a special case of the Metric TSP with cost 1 for all (non-loop) edges.

For planar graphs, the definition is slightly different:

Definition (Planar Graph TSP)

Given an undirected, *planar* graph G with metric cost function cand cost 1 for all (non-loop) edges, find a minimum cost tour that visits all vertices at least once and returns to its origin.

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions Traveling Salesman Problem Approximation Metric TSP Our goal

Motivation: Euclidean TSP (E-TSP)

Definition (Euclidean TSP (E-TSP))

The Euclidean TSP is a special case of the metric TSP where c is given by the ordinary euclidean distance on a plane.

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions Traveling Salesman Problem Approximation Metric TSP Our goal

Motivation: Euclidean TSP (E-TSP)

Definition (Euclidean TSP (E-TSP))

The Euclidean TSP is a special case of the metric TSP where c is given by the ordinary euclidean distance on a plane.

 designers of planar graph PTAS considered it a step towards a PTAS for E-TSP

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions Traveling Salesman Problem Approximation Metric TSP Our goal

Motivation: Euclidean TSP (E-TSP)

Definition (Euclidean TSP (E-TSP))

The Euclidean TSP is a special case of the metric TSP where c is given by the ordinary euclidean distance on a plane.

- designers of planar graph PTAS considered it a step towards a PTAS for E-TSP
- major result: there is in fact a PTAS for E-TSP [Arora/Mitchell '98]

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions Traveling Salesman Problem Approximation Metric TSP Our goal

What is the goal?

We wish to obtain a polynomial-time approximation scheme for Planar Graph TSP:

Given a planar graph G with n vertices and parameter $\epsilon>0,$ the algorithm must

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions Traveling Salesman Problem Approximation Metric TSP Our goal

What is the goal?

We wish to obtain a polynomial-time approximation scheme for Planar Graph TSP:

Given a planar graph G with n vertices and parameter $\epsilon>0,$ the algorithm must

 \blacksquare run in $n^{\mathcal{O}(1/\epsilon)}$ time and

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions Traveling Salesman Problem Approximation Metric TSP Our goal

What is the goal?

We wish to obtain a polynomial-time approximation scheme for Planar Graph TSP:

Given a planar graph G with n vertices and parameter $\epsilon>0,$ the algorithm must

- \blacksquare run in $n^{\mathcal{O}(1/\epsilon)}$ time and
- compute a TSP tour of length at most $(1 + \epsilon) \cdot OPT$.

Algorithm part 1: Decomposition Algorithm part 2: Approximation Complexity and error Conclusion and questions Traveling Salesman Problem Approximation Metric TSP Our goal

What is the goal?

We wish to obtain a polynomial-time approximation scheme for Planar Graph TSP:

Given a planar graph G with n vertices and parameter $\epsilon>0,$ the algorithm must

- run in $n^{\mathcal{O}(1/\epsilon)}$ time and
- compute a TSP tour of length at most $(1 + \epsilon) \cdot OPT$. Since $n \leq OPT$, we have $OPT + \epsilon n \leq (1 + \epsilon)OPT$, so it suffices to stay within an **additive error** of ϵn .

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

1 Introduction

2 Algorithm part 1: Decomposition

- Circle separators and face-edges
- Choosing a planar separator
- Decomposition steps
- Decomposition tree

3 Algorithm part 2: Approximation

- 4 Complexity and error
- 5 Conclusion and questions

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

The algorithm

The algorithm presented here is from the paper *An Approximation Scheme for Planar Graph TSP* by GRIGNI, KOUTSOUPIAS and PAPADIMITRIOU, published in '95.

Remark: Baker's framework (last week) cannot be applied to the TSP; however, there is a PTAS for Planar Graph TSP that modifies the framework and even runs in linear time [Klein, '05/'08].

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Circle separators and face-edges

Circle separators, or **simple cycle separators**, partition the graph into

- an interior part A,
- an exterior part B
- and a circle C,
- w.r.t. some size constraints.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Circle separators and face-edges

Circle separators, or **simple cycle separators**, partition the graph into

- an interior part A,
- an exterior part B
- and a circle C,
- w.r.t. some size constraints.

A **face-edge** is a *virtual* edge through a face. We will allow separators to use such edges (to some extend).

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

First approach: Miller's theorem

Theorem (Simple cycle separator, Miller)

Let H be a 2-connected planar graph with n vertices, edge weights and a maximum face size d.

Then *H* has a simple cycle separator *C* consisting of $O(\sqrt{nd})$ edges, the interior and exterior of *C* both have at most $\frac{2}{3}n$ vertices and *C* can be found in polynomial time.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

First approach: Miller's theorem

Theorem (Simple cycle separator, Miller)

Let H be a 2-connected planar graph with n vertices, edge weights and a maximum face size d. Then H has a simple cycle separator C consisting of $\mathcal{O}(\sqrt{nd})$ edges, the interior and exterior of C both have at most $\frac{2}{3}n$ vertices and C can be found in polynomial time.

• attempts using this resulted in $n^{\mathcal{O}((\log^2 n)/\epsilon^2)}$ complexity

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

First approach: Miller's theorem

Theorem (Simple cycle separator, Miller)

Let H be a 2-connected planar graph with n vertices, edge weights and a maximum face size d. Then H has a simple cycle separator C consisting of $\mathcal{O}(\sqrt{nd})$ edges, the interior and exterior of C both have at most $\frac{2}{3}n$ vertices and C can be found in polynomial time.

- \blacksquare attempts using this resulted in $n^{\mathcal{O}((log^2n)/\epsilon^2)}$ complexity
- a "more customizeable" theorem was needed

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Final approach: A novel separator theorem

Theorem (Simple cycle separator with vertex weights)

Let H be a connected planar graph with n vertices, vertex weights and parameter f with $1 \le f \le \sqrt{n}$. Then H has a simple cycle separator C through $\mathcal{O}(n/f)$ vertices, the interior and exterior of C both have at most $\frac{2}{3}$ of the total weight, C uses at most f face-edges and C can be found in polynomial (nearly linear) time.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Final approach: A novel separator theorem

Theorem (Simple cycle separator with vertex weights)

Let H be a connected planar graph with n vertices, vertex weights and parameter f with $1 \le f \le \sqrt{n}$. Then H has a simple cycle separator C through $\mathcal{O}(n/f)$ vertices, the interior and exterior of C both have at most $\frac{2}{3}$ of the total weight, C uses at most f face-edges and C can be found in polynomial (nearly linear) time.

■ *f* controls trade-off between size of *C* and amount of face-edges in *C*

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Final approach: A novel separator theorem

Theorem (Simple cycle separator with vertex weights)

Let H be a connected planar graph with n vertices, vertex weights and parameter f with $1 \le f \le \sqrt{n}$. Then H has a simple cycle separator C through $\mathcal{O}(n/f)$ vertices, the interior and exterior of C both have at most $\frac{2}{3}$ of the total weight, C uses at most f face-edges and C can be found in polynomial (nearly linear) time.

- *f* controls trade-off between size of *C* and amount of face-edges in *C*
- choice of f is crucial for efficiency of the algorithm

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Where are the differences?

Theorem (Simple cycle separator, Miller)

Let H be a 2-connected planar graph with n vertices, edge weights and a maximum face size d.

Then *H* has a simple cycle separator *C* consisting of $\mathcal{O}(\sqrt{nd})$ edges, the interior and exterior of *C* both have at most $\frac{2}{3}n$ vertices and *C* can be found in polynomial time.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Where are the differences?

Theorem (Simple cycle separator with vertex weights)

Let H be a connected planar graph with n vertices, vertex weights and parameter f with $1 \le f \le \sqrt{n}$. Then H has a simple cycle separator C through $\mathcal{O}(n/f)$ vertices, the interior and exterior of C both have at most $\frac{2}{3}$ of the total weight, C uses at most f face-edges and C can be found in polynomial (nearly linear) time.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Where are the differences?

Theorem (Simple cycle separator with vertex weights)

Let H be a connected planar graph with n vertices, vertex weights and parameter f with $1 \le f \le \sqrt{n}$. Then H has a simple cycle separator C through $\mathcal{O}(n/f)$ vertices, the interior and exterior of C both have at most $\frac{2}{3}$ of the total weight, C uses at most f face-edges and C can be found in polynomial (nearly linear) time.

more flexible separator parametrization

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Where are the differences?

Theorem (Simple cycle separator with vertex weights)

Let H be a connected planar graph with n vertices, vertex weights and parameter f with $1 \le f \le \sqrt{n}$. Then H has a simple cycle separator C through $\mathcal{O}(n/f)$ vertices, the interior and exterior of C both have at most $\frac{2}{3}$ of the total weight, C uses at most f face-edges and C can be found in polynomial (nearly linear) time.

- more flexible separator parametrization
- occurence of heavy-weighted vertices can be limited in exterior/interior parts

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Decomposition - Principle

Input:

Connected graph G with planar embedding, vertex weights 1.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Decomposition - Principle

Input:

Connected graph G with planar embedding, vertex weights 1. We choose $f=\Theta((logn)/\epsilon).$

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Decomposition - Principle

Input:

Connected graph G with planar embedding, vertex weights 1. We choose $f=\Theta((logn)/\epsilon).$

We decompose a given planar graph H into so-called *contracted* subgraphs H_1 and H_2 . Start with H = G.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Decomposition - Principle

Input:

Connected graph G with planar embedding, vertex weights 1. We choose $f=\Theta((logn)/\epsilon).$

We decompose a given planar graph H into so-called *contracted* subgraphs H_1 and H_2 . Start with H = G.

Steps:

- 1 Applying the separator
- 2 Contracting path segments
- 3 Removing face-edges
- 4 Weighting constraint points
- **5** Repeating decomposition recursively
Circle separators and face-edges Choosing a planar separator **Decomposition steps** Decomposition tree

Decomposition

1 Applying the separator

Circle separators and face-edges Choosing a planar separator **Decomposition steps** Decomposition tree

Decomposition

1 Applying the separator

Circle separators and face-edges Choosing a planar separator **Decomposition steps** Decomposition tree

Decomposition

2 Removing face-edges

Removing at most f face-edges results in at most f path segments.

Circle separators and face-edges Choosing a planar separator **Decomposition steps** Decomposition tree

Decomposition

3 Contracting path segments

> The resulting nodes are called **constraint points (CPs)**. **Result:** *H*′

Circle separators and face-edges Choosing a planar separator **Decomposition steps** Decomposition tree

Decomposition

3 Contracting path segments

The resulting nodes are called **constraint points (CPs)**. **Result:** *H*′

Contracted subgraphs H_1 and H_2 share the new CPs created in this step.

Circle separators and face-edges Choosing a planar separator **Decomposition steps** Decomposition tree

Decomposition

4 Weighting constraint points

Let W(H) be the total weight of H.

Circle separators and face-edges Choosing a planar separator **Decomposition steps** Decomposition tree

Decomposition

4 Weighting constraint points

Let W(H) be the total weight of H. In H_1 and H_2 , we assign weight $\frac{W(H)}{6f}$ to each CP.

Circle separators and face-edges Choosing a planar separator **Decomposition steps** Decomposition tree

Decomposition

4 Weighting constraint points

Let W(H) be the total weight of H. In H_1 and H_2 , we assign weight $\frac{W(H)}{6f}$ to each CP.

5 Repeating decomposition recursively

Decompose H_1 and H_2 using the presented steps.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Decomposition

4 Weighting constraint points

Let W(H) be the total weight of H. In H_1 and H_2 , we assign weight $\frac{W(H)}{6f}$ to each CP.

Important: CPs from *previous* decomposition steps are also re-weighted!

5 Repeating decomposition recursively

Decompose H_1 and H_2 using the presented steps.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Decomposition tree

The binary **decomposition tree** \mathcal{T} stores the decomposition results.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Decomposition tree

The binary **decomposition tree** \mathcal{T} stores the decomposition results.

Edges represent recursive decomposition steps.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Decomposition tree

The binary **decomposition tree** \mathcal{T} stores the decomposition results.

Edges represent recursive decomposition steps.

 $\begin{array}{l} \textbf{Stopping size:}\\ S = \Theta(f^2) = \Theta((log^2n)/\epsilon^2)\\ \text{If } |H| \leq S \text{, stop recursion - }H \text{ is a leaf.} \end{array}$

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Tree size and complexity

Some observations:

1 For all H in \mathcal{T} : $W(H_i) \leq \frac{5}{6}W(H)$.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Tree size and complexity

Some observations:

1 For all H in \mathcal{T} : $W(H_i) \leq \frac{5}{6}W(H)$.

Proof.

$$W(H_i) \le \frac{2}{3}W(H) + f \cdot \frac{W(H)}{6f} = \frac{5}{6}W(H).$$

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Tree size and complexity

Some observations:

1 For all H in \mathcal{T} : $W(H_i) \leq \frac{5}{6}W(H)$.

Proof.

$$W(H_i) \le \frac{2}{3}W(H) + f \cdot \frac{W(H)}{6f} = \frac{5}{6}W(H).$$

2 For all H in \mathcal{T} : H contains at most 5f CPs.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Tree size and complexity

Some observations:

1 For all H in \mathcal{T} : $W(H_i) \leq \frac{5}{6}W(H)$.

Proof.

$$W(H_i) \le \frac{2}{3}W(H) + f \cdot \frac{W(H)}{6f} = \frac{5}{6}W(H).$$

2 For all H in \mathcal{T} : H contains at most 5f CPs.

Proof.

Suppose
$$W(H_i) = x \cdot \frac{W(H)}{6f}$$
, with x being $\#$ CPs in H_i .
Then $x \cdot \frac{W(H)}{6f} \leq \frac{5}{6}W(H) \Leftrightarrow x \leq 5f$.

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Tree size and complexity

3
$$\mathcal{T}$$
 has depth at most $D = log_{(\frac{6}{5})}n = \mathcal{O}(logn)$ (without proof).

Circle separators and face-edges Choosing a planar separator Decomposition steps Decomposition tree

Tree size and complexity

3 \mathcal{T} has depth at most $D = log_{(\frac{6}{5})}n = \mathcal{O}(logn)$ (without proof).

Thus \mathcal{T} has polynomial size, independent of ϵ .

Each decomposition step can be done in polynomial time, so the overall complexity of decomposition is $n^{\mathcal{O}(1)}$.

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

1 Introduction

2 Algorithm part 1: Decomposition

3 Algorithm part 2: Approximation

- Path Covering
- Storing solutions
- Approximation in leaf graphs
- Merging solutions

4 Complexity and error

5 Conclusion and questions

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Approximation

Input:

Decomposition tree \mathcal{T} , parameter f, stopping size S.

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Approximation

Input:

Decomposition tree \mathcal{T} , parameter f, stopping size S.

We compute a set of approximate solutions for every leaf of ${\cal T}$ and successively merge child graph solutions while going up the tree - but these will not be TSP solutions.

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Approximation

Input:

Decomposition tree \mathcal{T} , parameter f, stopping size S.

We compute a set of approximate solutions for every leaf of ${\cal T}$ and successively merge child graph solutions while going up the tree - but these will not be TSP solutions.

Steps (for all inner nodes H):

- 1 Approximating leaf graph solutions
- **2** Building solutions in H'
- **3** Extending H'-solutions to H-solutions
- 4 Constructing the tour in root G

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Path Covering

Definition (Path Cover)

Given a graph H and a set of chosen CPs in H, find the minimum length collection of paths that covers all vertices of H using each chosen CP as a path endpoint exactly once.

A path cover with no endpoints (0 is even) shall be a cycle.

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Storing solutions

Every path has two endpoints, so we only consider even subsets of CPs in ${\cal H}.$

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Storing solutions

Every path has two endpoints, so we only consider even subsets of CPs in ${\cal H}.$

Let $c(H) \leq 5f$ be #CPs in H. We identify a choice of CPs with a binary array $x \in \{0,1\}^{c(H)}$ and store the corresponding solution in T(H)[x].

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Storing solutions

Every path has two endpoints, so we only consider even subsets of CPs in ${\cal H}.$

Let $c(H) \leq 5f$ be #CPs in H. We identify a choice of CPs with a binary array $x \in \{0,1\}^{c(H)}$ and store the corresponding solution in T(H)[x].

T(H) is a table of size $2^{c(H)-1} \leq 2^{5f-1} = 2^{5\Theta((logn)/\epsilon)-1} = n^{\mathcal{O}(1/\epsilon)}.$

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Approximation in leaf graphs

Reminder: Leaf graphs L of \mathcal{T} have size $|L| \leq S = \Theta((log^2n)/\epsilon^2)$.

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Approximation in leaf graphs

Reminder: Leaf graphs L of \mathcal{T} have size $|L| \leq S = \Theta((log^2n)/\epsilon^2)$.

Using a simpler approximation scheme based on the Lipton-Tarjan separator theorem and so-called *nonserial dynamic programming*, one can approximate path covers for the leaf graphs in time $2^{\mathcal{O}(\sqrt{|L|})} = n^{\mathcal{O}(1/\epsilon)}.$

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Merging child graph solutions

The situation: For an inner graph H, we want to find a path cover approximation that is as small as possible.

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Merging child graph solutions

The situation: For an inner graph H, we want to find a path cover approximation that is as small as possible.

1 For every choice x of endpoint CPs in H, consider contraction x' in H'

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Merging child graph solutions

The situation: For an inner graph H, we want to find a path cover approximation that is as small as possible.

- 1 For every choice x of endpoint CPs in H, consider contraction x^\prime in H^\prime
- 2 Find solutions x_1 and x_2 for H_1 and H_2 such that their combination in H' is a minimal length solution matching x'

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Merging child graph solutions

The situation: For an inner graph H, we want to find a path cover approximation that is as small as possible.

- 1 For every choice x of endpoint CPs in H, consider contraction x^\prime in H^\prime
- 2 Find solutions x_1 and x_2 for H_1 and H_2 such that their combination in H' is a minimal length solution matching x'
- **3** Extend the solution in H' to a solution in H

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Merging child graph solutions

The situation: For an inner graph H, we want to find a path cover approximation that is as small as possible.

- 1 For every choice x of endpoint CPs in H, consider contraction x^\prime in H^\prime
- 2 Find solutions x_1 and x_2 for H_1 and H_2 such that their combination in H' is a minimal length solution matching x'
- **3** Extend the solution in H' to a solution in H

We will look at this process for a given x and H.

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Merging in H'

For a choice x of endpoint CPs in H, consider contraction x' in H'

> New CP shall be endpoint in x' iff. path segment contained odd number of endpoints in x.

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Merging in H'

For a choice x of endpoint CPs in H, consider contraction x' in H'

> New CP shall be endpoint in x' iff. path segment contained odd number of endpoints in x.

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Merging in H'

2 Find solutions x_1 and x_2 for H_1 and H_2 such that their combination in H' is a minimal length solution matching x'

Approach: Choose x_1 that matches x'..

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Merging in H'

- 2 Find solutions x_1 and x_2 for H_1 and H_2 such that their combination in H' is a minimal length solution matching x'
 - Approach: Choose x_1 that matches x'... then pick the shortest matching x_2 .

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Extending to H

3 Extend the solution in H' to a solution in H

Usually requires some additional operations, the paper did not provide any details here.

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Extending to H

3 Extend the solution in H' to a solution in H

Usually requires some additional operations, the paper did not provide any details here.

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Special case: Input graph G

G' does not contain "old" CPs - build solution for empty x: a tour.

Since G is connected and all vertices are covered, it's possible to connect multiple tours to get a single tour.

Path Covering Storing solutions Approximation in leaf graphs Merging solutions

Special case: Input graph G

G' does not contain "old" CPs - build solution for empty x: a tour.

Since G is connected and all vertices are covered, it's possible to connect multiple tours to get a single tour.

1 Introduction

- 2 Algorithm part 1: Decomposition
- 3 Algorithm part 2: Approximation
- 4 Complexity and error
- 5 Conclusion and questions

Runtime summary

Decomposition:

- Single decomposition step: $n^{\mathcal{O}(1)}$
- Amount of decompositions done: $n^{\mathcal{O}(1)}$
- \blacksquare Decomposition complexity in total: $n^{\mathcal{O}(1)}$

Runtime summary

Decomposition:

- Single decomposition step: $n^{\mathcal{O}(1)}$
- Amount of decompositions done: $n^{\mathcal{O}(1)}$
- Decomposition complexity in total: $n^{\mathcal{O}(1)}$

Approximation:

- Single leaf approximation step: $n^{\mathcal{O}(1/\epsilon)} \cdot n^{\mathcal{O}(1/\epsilon)}$
- Single inner node approximation step: $n^{\mathcal{O}(1/\epsilon)} \cdot n^{\mathcal{O}(1/\epsilon)}$
- Approximation complexity in total: $n^{\mathcal{O}(1)} \cdot n^{\mathcal{O}(1/\epsilon)} = n^{\mathcal{O}(1/\epsilon)}$

Runtime summary

Decomposition:

- Single decomposition step: $n^{\mathcal{O}(1)}$
- Amount of decompositions done: $n^{\mathcal{O}(1)}$
- Decomposition complexity in total: $n^{\mathcal{O}(1)}$

Approximation:

- Single leaf approximation step: $n^{\mathcal{O}(1/\epsilon)} \cdot n^{\mathcal{O}(1/\epsilon)}$
- Single inner node approximation step: $n^{\mathcal{O}(1/\epsilon)} \cdot n^{\mathcal{O}(1/\epsilon)}$
- Approximation complexity in total: $n^{\mathcal{O}(1)} \cdot n^{\mathcal{O}(1/\epsilon)} = n^{\mathcal{O}(1/\epsilon)}$

Total runtime: $n^{\mathcal{O}(1/\epsilon)}$

Approximation error

The additive error can be shown to be at most ϵn , but this requires more detailed analysis than we can do here.

1 Introduction

- 2 Algorithm part 1: Decomposition
- 3 Algorithm part 2: Approximation
- 4 Complexity and error
- 5 Conclusion and questions

All good things come to an end

Thank you for your attention! Questions ..?