Shortest Paths In
Undirected Planar Graphs
With Nonnegative VVeights

by Sascha Vincent Kurowski

The Problem

® Shortest paths from a given source node to all other nodes in

the given graph

® For simplicity: nonnegative weights

® Applications:

® Navigation between physical locations
® Reaching goal state in state set (Al)
® Minimize delay in a network

® Plant and facility layout

Studentenwoh
Theodore-von-Karman

nt mit
1sbherg

Josef
Glockner

RWTH Horn '=

Uniklinik W \\e*“ \Nes
RWTH Aachen Ao

— T

Priority Queue

® Regular queue including priorities
associated with each element

¢ Fast implementation using Fibonacci-

Heap:
updateKey(Q, x, k) “F(’)‘]fa;ii'jfy o(l)
minltem(Q) re:\:Jil;r:;isinﬁl(\;\;,ith O(log n)
minKey(Q) "en::‘n'”l"t‘:n':‘zg’f O(log n)

Dijkstra’s Algorithm

® Mark all nodes as unvisited

® | abel the source node with 0, all others withoo

® Repeat |V| times:
® (Choose the unvisited node v with minimal label
® Relax all outgoing edges

® Mark v as visited

Relaxing an edge

d(u) d(v)
o = @
d(.u) W d(li).-l- " No change

Dijkstra’s Algorithm:
Running Time

® |nitialization in O(|V|)
® Repeat O(|V|) times
® Choosing the node with smallest label: O(log |V|) using Fibonacci-Heap

® Relaxing the edges: In total O(|E|) because every edge is relaxed only once

o Total time: O(|E| + |V| log [V|)

. » for planar graphs:
o(|v])

® Fastest algorithm for any graph with nonnegative weights

Division of planar graphs
e Partition of edge-set into two or more subsets,
called regions

® Node is contained in a region if some edge of the
region is incident to the node

® Nodes contained in more than one region are called
boundary nodes

® r-Division of a planar graph
® Division into O(n/r) regions

® Fach region contains at most r nodes including at
most O(~/r) boundary nodes

Simplified Algorithm

® Requires r-division with r = log 4 (n)
¢ Maintains label for each node (like Dijkstra)

® Maintains status for each edge (activated /
deactivated)

® Runs in O(n log log n)

aarland

S

L 4

Shortest Paths of Planar Graphs

Initialization

® (Calculate needed r-division
® Deactivate all edges

® Set all node labels d(v) to o
® For source s

® Set d(s) to 0

® Activate all outgoing edges

11
11

Shortest Paths of Planar Graphs

Algorithm

® Repeat:

® Step |:Select the region containing the lowest-labeled node
that has active outgoing edges in the region

® Step 2: Repeat log n times (if possible):

® Step 2a:Select lowest-labeled node v in the current region
with outgoing edges in the region

® Step 2b: Relax and deactivate all its outgoing edges vw in
that region

® Step 2c: Foreach of the endpoints w: If relaxing the edge vw

. outgoing edges # ¢
; L this rég) Lon TN\ =
® REg Lon. with

Lowest La lorekLeol

Node with &7
Lowest Label

o'e)
‘ o
0 - X
o0 oC . . .
on o0
o0
i ®
DC. . o) -
o0
® ® o
\ 0
x.
B . . ‘

, outg ow\@ooedge
X ln this re@ Low.
' ode with .
Lowest Lab
w this rB@L

. J.
@ @ o
e
®
0
oo o0
®
1 '
7{ o0
° o o \
o0 o0 . .
o of 00
‘ . 3r. ‘
0 OC.
oo . e -
o o0 ® ® ®

7{ 00
®
o0
0 o'
®
o C0
. 00
o0 ® ®
®@ - B
® @

cC
o
14
o
11 ‘ |
¢ m ‘
o0) ‘
1 o :
i Q0
‘o o”g
0) 5
o ®
o0
°* -

g ®
®
16 o~
¢ ®
) Lowest
07" Labelled node ..
¢ ®
ALreaolg log wn
nodes handled) J owta Lnilng
L this regiow ® Active” = rﬁ?bow
= = _ outgorag edde
o o, 9oLeg 3)
o0 ?f:-‘ A . .
® 7o R o

21

26

g ®
®
23 16 71
@ @ ®
14 OO 20
@ ®
1 ‘
®
ll‘
12 15‘ 24.
18. 16.29 17 ¢
®
® 27.
21 s 33@ 21 55
® ° ® ®

Correctness

® Shortest path conditions:
. d(s) =0
2. every label d(v) is an upper bound on the distance

3. every edge is relaxed

Shortest Path Condition |
d(s) =0

® At initialization d(s) is set to 0
® Every edge has a honnegative weight

® Nodes’ labels are only updated when relaxing an edge
to them

® Therefore d(s) never changes

Shortest Path Condition 2

every label d(v) is an upper bound on the distance

® |nitially every label (except for d(s)) is o
® The labels only change in step 2b

® Assuming inductively d(u) and d(v) are upper bounds

on distance to u and v, new value d’(v) is also an upper
bound

® Full proof by induction on number of steps of
algorithm that have been executed

Shortest Path Condition 3

every edge is relaxed

® Proof that if an edge is inactive, it is relaxed
® Holds after initialization
® Algorithm deactivates an edge right after relaxing it

® [Existing inactive edge vw might become unrelaxed when the
labels of its endpoints change

® This may happen when relaxing an edge leading to v

® |n the same step the algorithm activates vw

Shortest Path Condition 3

every edge is relaxed

® Proof that after termination, all edges are deactivated

® Obviously true, because the algorithm stops only when it can’t
select a new region with active outgoing edges anymore

Recursive r-division

® (r, s)-division of an n-node graph:

® division into O(n/r) regions, each containing rA(O(1))
nodes, each having at most s boundary nodes

® Recursive r-division of an n-node graph G:

® Repeatedly divide the regions of an (r, s)-division into
smaller and smaller regions

® Contains one region consisting of all of G

Notations

® For two regions Rl and R2 of different divisions, R1| is an
ancestor of R2 if Rl contains R2

® |mmediate ancestor is called the parent
® Descendants and children defined analogously
® Region without children: Atomic Region

® For this algorithm atomic regions consist of exactly one edge,
denoted R(uv)

® | evel of atomic region is 0, for nonatomic regions maximum of
children’s levels

Level O

11 4

4
Level 8

11
11

Shortest Paths of Planar Graphs

Level 2

Shortest Paths of Planar Graphs

Formal Algorithm

® Maintains a priority queue Q(R) for each region R of the
recursive division of G

® For nonatomic regions R, Q(R) contains all children of R

® For atomic Regions R’, Q(R’) contains the single edge uv
contained in R’

® Associated key is either

® |abel of tail of the edge

® or o to denote a deactivated edge

Formal Algorithm

® Goal:
® Ensure that for any region R

® minKey(Q(R)) is minimum distance label d(v) over all
active edges vw in R

® [wo procedures:
® Process(Region R)

® GlobalUpdate(Region r, ltem x, Value K)

Process(R)
/t/ Ris a region
If R contains a single edge uv then // R is atomic
if d(v) > d(u) + w(uv) then
d(v) ;= d(u) + w(uv)
foreach out omc};{ed e vw of v
GlobalUpdate(R(vw), vw, d(v))
Else // R is nonatomic |
Repeat o_i times or until minKey(Q(R)) is o
' = minltem(Q(R))
Process(R’)
updateKey(Q(R), R’, minKey(Q(R"))

GIobaIUpdate(r X, k)
/ Ris a reglon X is an item of Q(R) and k is a value
updatel v(Q(R), X, k)

Lthe updateKey operation reduced minkey(Q(R))
then
GlobalUpdate(parent(R), R, k)

The algorithm

® |nitialize all labels and keys to o0

® Assign label d(s) := 0 and foreach outgoing edge sw call
GlobalUpdate(R(sw), sw, 0)

® Until minKey(Q(R(G))) = o
® Process(R(G))

Execution

® Progress(R(G))
® Progress(R’)
® Progress(sw)
® Progress(sv)
o
® Progress(R")
® Progress(wu)

® Progress(wt)

Invocations of Progress

level | calls O i time per invocatio
2 | O(log n)
| log n O(log n log log n)
0 0 O(l)

Truncated invocation of Process

® Truncated invocation of Process(R) when
® MinKey(R) = o0 after invocation
® Every level O invocation is truncated

® Exactly one level 2 invocation is truncated (the last
one)

Execution

® Progress(R(G))

® Progress(R’)
® Progress(sw) @
® Progress(sv) @
o

® Progress(R”) @
® Progress(wu) @
® Progress(wt) @

® Goal: Count the truncated invocations

® Charge them to one of the O(n/+/r) boundary nodes

® Blame a pair of a region and a boundary node (R, v)

Blamed pairs

* (R(G)s)
* R.v)

* R,vY)

® (R(uv),u)
® (R(uw),u)

Charging Scheme Invariant

® Have a charging scheme s+
® for any pair (R, v)

® there is an invocation b of Process(R) so that all
Invocations charging to (R, v) are descendants of B
or B itself

Invocations of Progress

. total number of . . .
level | . . time per invocation
invocations
2 O(n/log n) O(log n)
| O(n/log n) O(log n log log n)
0 O(n) O(1)

Thank you
for your attention

Any questions left?

