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Shortest Paths of Planar Graphs

The Problem
• Shortest paths from a given source node to all other nodes in 

the given graph

• For simplicity: nonnegative weights

• Applications:

• Navigation between physical locations

• Reaching goal state in state set (AI)

• Minimize delay in a network

• Plant and facility layout
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Shortest Paths of Planar Graphs

Priority Queue
• Regular queue including priorities 

associated with each element

• Fast implementation using Fibonacci-
Heap:

updateKey(Q, x, k)
updates key

of x to k O(1)

minItem(Q)
returns item with 

minimum key O(log n)

minKey(Q)
returns key of 
minItem(Q) O(log n)

3



Shortest Paths of Planar Graphs

Dijkstra’s Algorithm

• Mark all nodes as unvisited

• Label the source node with 0, all others with∞

• Repeat |V| times:

• Choose the unvisited node v with minimal label

• Relax all outgoing edges

• Mark v as visited
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Relaxing an edge
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wd(u) d(v)

d(u) + w < d(v)

wd(u) d(u) + w

else

No change



• Initialization in O(|V|)

• Repeat O(|V|) times

• Choosing the node with smallest label: O(log |V|) using Fibonacci-Heap

• Relaxing the edges: In total O(|E|) because every edge is relaxed only once

• Total time: O(|E| + |V| log |V|)

• Fastest algorithm for any graph with nonnegative weights

for planar graphs:
O(|V|)

Shortest Paths of Planar Graphs

Dijkstra’s Algorithm:
Running Time
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Shortest Paths of Planar Graphs

Division of planar graphs
• Partition of edge-set into two or more subsets, 

called regions

• Node is contained in a region if some edge of the 
region is incident to the node

• Nodes contained in more than one region are called 
boundary nodes

• r-Division of a planar graph

• Division into O(n/r) regions

• Each region contains at most r nodes including at 
most O(√r) boundary nodes
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Shortest Paths of Planar Graphs

Simplified Algorithm

• Requires r-division with r = log 4 (n)

• Maintains label for each node (like Dijkstra)

• Maintains status for each edge (activated / 
deactivated)

• Runs in O(n log log n)
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Saarland
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Shortest Paths of Planar Graphs

Initialization

• Calculate needed r-division

• Deactivate all edges

• Set all node labels d(v) to ∞

• For source s

• Set d(s) to 0

• Activate all outgoing edges
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Algorithm
• Repeat:

• Step 1: Select the region containing the lowest-labeled node 
that has active outgoing edges in the region

• Step 2: Repeat log n times (if possible):

• Step 2a: Select lowest-labeled node v in the current region 
with outgoing edges in the region

• Step 2b: Relax and deactivate all its outgoing edges vw in 
that region

• Step 2c: Foreach of the endpoints w: If relaxing the edge vw 



Shortest Paths of Planar Graphs 16

Node with
lowest label

Region with
lowest labelled 

node

Outgoing edges
in this region
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Activated edges
Node with

lowest label
in this region

Outgoing edge
in this region
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Already log n 
nodes handled 
in this region

Lowest 
labelled node

Containing
regionActive 

outgoing edge
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Shortest Paths of Planar Graphs

Correctness

• Shortest path conditions:

1. d(s) = 0

2. every label d(v) is an upper bound on the distance

3. every edge is relaxed

23



Shortest Paths of Planar Graphs

Shortest Path Condition 1
d(s) = 0

• At initialization d(s) is set to 0

• Every edge has a nonnegative weight

• Nodes’ labels are only updated when relaxing an edge 
to them

• Therefore d(s) never changes
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Shortest Path Condition 2
every label d(v) is an upper bound on the distance

• Initially every label (except for d(s)) is ∞

• The labels only change in step 2b

• Assuming inductively d(u) and d(v) are upper bounds 
on distance to u and v, new value d’(v) is also an upper 
bound

• Full proof by induction on number of steps of 
algorithm that have been executed
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Shortest Paths of Planar Graphs

Shortest Path Condition 3
every edge is relaxed

• Proof that if an edge is inactive, it is relaxed

• Holds after initialization

• Algorithm deactivates an edge right after relaxing it

• Existing inactive edge vw might become unrelaxed when the 
labels of its endpoints change

• This may happen when relaxing an edge leading to v

• In the same step the algorithm activates vw

26



Shortest Paths of Planar Graphs

Shortest Path Condition 3
every edge is relaxed

• Proof that after termination, all edges are deactivated

• Obviously true, because the algorithm stops only when it can’t 
select a new region with active outgoing edges anymore
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Recursive r-division

• (r, s)-division of an n-node graph:

• division into O(n/r) regions, each containing r^(O(1)) 
nodes, each having at most s boundary nodes

• Recursive r-division of an n-node graph G:

• Repeatedly divide the regions of an (r, s)-division into 
smaller and smaller regions

• Contains one region consisting of all of G
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Notations
• For two regions R1 and R2 of different divisions, R1 is an 

ancestor of R2 if R1 contains R2

• Immediate ancestor is called the parent

• Descendants and children defined analogously

• Region without children: Atomic Region

• For this algorithm atomic regions consist of exactly one edge, 
denoted R(uv)

• Level of atomic region is 0, for nonatomic regions maximum of 
children’s levels
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Example
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Level 0
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Level 1
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Example
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Level 2



Shortest Paths of Planar Graphs

Formal Algorithm
• Maintains a priority queue Q(R) for each region R of the 

recursive division of G

• For nonatomic regions R, Q(R) contains all children of R

• For atomic Regions R’, Q(R’) contains the single edge uv 
contained in R’

• Associated key is either

• Label of tail of the edge

• or ∞ to denote a deactivated edge
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Formal Algorithm

• Goal:

• Ensure that for any region R

• minKey(Q(R)) is minimum distance label d(v) over all 
active edges vw in R

• Two procedures:

• Process(Region R)

• GlobalUpdate(Region r, Item x,  Value K)
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Process(R)
// R is a region
If R contains a single edge uv then // R is atomic

if d(v) > d(u) + w(uv) then
d(v) := d(u) + w(uv)
foreach outgoing edge vw of v

GlobalUpdate(R(vw), vw, d(v))
Else // R is nonatomic

Repeat α_i times or until minKey(Q(R)) is ∞
R’ := minItem(Q(R))
Process(R’)
updateKey(Q(R), R’, minKey(Q(R’))
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GlobalUpdate(r, x, k)
// R is a region, x is an item of Q(R) and k is a value

updateKey(Q(R), x, k)
If the updateKey operation reduced minkey(Q(R)) 
then

GlobalUpdate(parent(R), R, k)
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The algorithm

• Initialize all labels and keys to ∞

• Assign label d(s) := 0 and foreach outgoing edge sw call 
GlobalUpdate(R(sw), sw, 0)

• Until minKey(Q(R(G))) = ∞

• Process(R(G))
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Execution
• Progress(R(G))

• Progress(R’)

• Progress(sw)

• Progress(sv)

• ...

• Progress(R’’)

• Progress(wu)

• Progress(wt)

• ...
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Invocations of Progress
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level i calls α_i time per invocatio

2 1 O(log n)

1 log n O(log n log log n)

0 0 O(1)



Shortest Paths of Planar Graphs

Truncated invocation of Process

• Truncated invocation of Process(R) when

• MinKey(R) = ∞ after invocation

• Every level 0 invocation is truncated

• Exactly one level 2 invocation is truncated (the last 
one)

40



Shortest Paths of Planar Graphs

Execution
• Progress(R(G))

• Progress(R’)

• Progress(sw)

• Progress(sv)

• ...

• Progress(R’’)

• Progress(wu)

• Progress(wt)

• ...
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• Goal: Count the truncated invocations

• Charge them to one of the O(n/√r) boundary nodes

• Blame a pair of a region and a boundary node (R, v)
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Blamed pairs

• (R(G), s)

• (R’, v)

• (R’, v’)

• (R(uv), u)

• (R(uw), u)
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Charging Scheme Invariant

• Have a charging scheme s+

• for any pair (R, v)

• there is an invocation b of Process(R) so that all 
invocations charging to (R, v) are descendants of B 
or B itself 
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Invocations of Progress
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level i
total number of 

invocations time per invocation

2 O(n/log n) O(log n)

1 O(n/log n) O(log n log log n)

0 O(n) O(1)



Thank you
for your attention

Any questions left?


