Shortest Paths In Undirected Planar Graphs With Nonnegative Weights

by Sascha Vincent Kurowski

The Problem

- Shortest paths from a given source node to all other nodes in the given graph
- For simplicity: **nonnegative** weights
- Applications:
 - Navigation between physical locations
 - Reaching goal state in state set (AI)
 - Minimize delay in a network
 - Plant and facility layout

Priority Queue

- Regular queue including **priorities** associated with each element
- Fast implementation using Fibonacci-Heap:

updateKey(Q, x, k)	updates key of x to k	O(I)
minltem(Q)	returns item with minimum key	O(log n)
minKey(Q)	returns key of minltem(Q)	O(log n)

Dijkstra's Algorithm

- Mark all nodes as unvisited
- Label the source node with 0, all others with ∞
- Repeat |V| times:
 - Choose the unvisited node v with **minimal label**
 - **Relax** all outgoing edges
 - Mark v as visited

Dijkstra's Algorithm: Running Time

- Initialization in O(|V|)
- Repeat O(|V|) times
 - Choosing the node with smallest label: **O(log |V|)** using Fibonacci-Heap
 - Relaxing the edges: In total O(|E|) because every edge is relaxed only once
- Total time: $O(|E| + |V| \log |V|)$ • for planar graphs: O(|V|)
- Fastest algorithm for any graph with nonnegative weights

Division of planar graphs Partition of edge-set into two or more subsets,

called regions

- Node is contained in a region if some edge of the region is incident to the node
- Nodes contained in more than one region are called boundary nodes
- r-Division of a planar graph
 - Division into O(n/r) regions
 - Each region contains at most r nodes including at most $O(\sqrt{r})$ boundary nodes

Simplified Algorithm

- Requires r-division with $r = \log^4 (n)$
- Maintains label for each node (like Dijkstra)
- Maintains status for each edge (activated / deactivated)
- Runs in O(n log log n)

Initialization

- Calculate needed r-division
- Deactivate all edges
- Set all node labels d(v) to ∞
- For source s
 - Set d(s) to 0
 - Activate all outgoing edges

- Repeat:
 - Step I: Select the region containing the lowest-labeled node that has active outgoing edges in the region
 - Step 2: Repeat log n times (if possible):
 - Step 2a: Select lowest-labeled node v in the current region with outgoing edges in the region
 - Step 2b: Relax and deactivate all its outgoing edges vw in that region
 - Step 2c: Foreach of the endpoints w: If relaxing the edge vw

Already log n nodes handled ín thís region

00

21

- Shortest path conditions:
 - I. d(s) = 0
 - 2. every label d(v) is an **upper bound** on the distance
 - 3. every edge is relaxed

Shortest Path Condition I d(s) = 0

- At initialization d(s) is set to 0
- Every edge has a nonnegative weight
- Nodes' labels are only updated when relaxing an edge to them
- Therefore d(s) never changes

Shortest Path Condition 2

every label d(v) is an upper bound on the distance

- Initially every label (except for d(s)) is ∞
- The labels only change in step 2b
- Assuming inductively d(u) and d(v) are upper bounds on distance to u and v, new value d'(v) is also an upper bound
- Full proof by induction on number of steps of algorithm that have been executed

Shortest Path Condition 3

every edge is relaxed

- Proof that if an edge is inactive, it is relaxed
- Holds after initialization
- Algorithm deactivates an edge right after relaxing it
- Existing inactive edge vw might become unrelaxed when the labels of its endpoints change
- This may happen when relaxing an edge leading to v
- In the same step the algorithm activates vw

Shortest Path Condition 3

every edge is relaxed

- Proof that after termination, all edges are deactivated
- Obviously true, because the algorithm stops only when it can't select a new region with active outgoing edges anymore

Recursive r-division

- (r, s)-division of an n-node graph:
 - division into O(n/r) regions, each containing r^(O(I)) nodes, each having at most s boundary nodes
- Recursive r-division of an n-node graph G:
 - Repeatedly divide the regions of an (r, s)-division into smaller and smaller regions
 - Contains one region consisting of all of G

Notations

- For two regions R1 and R2 of different divisions, R1 is an ancestor of R2 if R1 contains R2
- Immediate ancestor is called the parent
- Descendants and children defined analogously
- Region without children: Atomic Region
 - For this algorithm atomic regions consist of exactly one edge, denoted R(uv)
- Level of atomic region is 0, for nonatomic regions maximum of children's levels

Example

Formal Algorithm

- Maintains a priority queue Q(R) for each region R of the recursive division of G
- For nonatomic regions R, Q(R) contains all children of R
- For atomic Regions R', Q(R') contains the single edge uv contained in R'
 - Associated key is either
 - Label of tail of the edge
 - or ∞ to denote a deactivated edge

Formal Algorithm

- Goal:
 - Ensure that for any region R
 - minKey(Q(R)) is minimum distance label d(v) over all active edges vw in R
- Two procedures:
 - Process(Region R)
 - GlobalUpdate(Region r, Item x, Value K)

```
Process(R)
// R is a region
If R contains a single edge uv then // R is atomic
    if d(v) > d(u) + w(uv) then
       d(v) := d(u) + w(uv)
       foréach outgoing édge vw of v
GlobalUpdate(R(vw), vw, d(v))
 Else // R is nonatomic
     Repeat \alpha_i times or until minKey(Q(R)) is \infty
        \dot{R}' := minItem(Q(R))
        Process(R')
       updateKey(Q(R), R', minKey(Q(R'))
```

```
GlobalUpdate(r, x, k)
// R is a region, x is an item of Q(R) and k is a value
updateKey(Q(R), x, k)
If the updateKey operation reduced minkey(Q(R))
then
GlobalUpdate(parent(R), R, k)
```

The algorithm

- Initialize all labels and keys to ∞
- Assign label d(s) := 0 and foreach outgoing edge sw call GlobalUpdate(R(sw), sw, 0)
- Until minKey(Q(R(G))) = ∞
 - Process(R(G))

Execution

- Progress(R(G))
 - Progress(R')
 - Progress(sw)
 - Progress(sv)
 - ...
 - Progress(R")
 - Progress(wu)
 - Progress(wt)
 - ...

Invocations of Progress

level i	calls α_i	time per invocatio
2		O(log n)
	log n	O(log n log log n)
0	0	O(I)

Truncated invocation of Process

- Truncated invocation of Process(R) when
 - $MinKey(R) = \infty$ after invocation
- Every level 0 invocation is truncated
- Exactly one level 2 invocation is truncated (the last one)

Execution

- Progress(R(G))
 - Progress(R')
 - Progress(sw)
 - Progress(sv)
 - ...
 - Progress(R")
 - Progress(wu)
 - Progress(wt)
 - ...

- Goal: Count the truncated invocations
- Charge them to one of the O(n/ \sqrt{r}) boundary nodes
- Blame a pair of a region and a boundary node (R, v)

Blamed pairs

- (R(G), s)
- (R', v)
- (R', v')
- (R(uv), u)
- (R(uw), u)

Charging Scheme Invariant

- Have a charging scheme s+
- for any pair (R, v)
 - there is an invocation b of Process(R) so that all invocations charging to (R, v) are descendants of B or B itself

Invocations of Progress

level i	total number of invocations	time per invocation
2	O(n/log n)	O(log n)
	O(n/log n)	O(log n log log n)
0	O(n)	O(I)

Thank you for your attention Any questions left?