Embedding planar graphs using PQ trees Phillip Kessels

~whoami

UX, Desktop/mobile experiences, music, theoretical computer science, ...

Today

PQ trees

represent (specific) permutations of a Set

PQ trees - example

in morning meeting: align **compatible** children

PQ trees - example

PQ trees - example

PQ trees - template matchings

How can we operate on a PQ tree? i.e. what are equivalent PQ trees? i.e. what are "allowed" permutations?

st-numbering

- each vertex becomes a unique number $\in \{0, ..., n\}$
- each vertex v satisfies

 $\exists u, w : u < v < w$

except for source and sink

upward graph

bush form

- embedding
- induced subgraph,

but include "outgoing" edges

• if exists $\{u,v\} \in E$ and $\{w,v\} \in E$

where $\boldsymbol{\upsilon}$ lies ,,outside" and

 $\{u, w\}$

lie "inside" then v is

included **twice**

vertex addition algorithm

- two-phase
- tests for planarity
- does not give an embedding

vertex addition algorithm

- **assign st-numbers** to all vertices
- construct **PQ tree** corresponding to $G'_1 \leftarrow how!$
- for all other vertices v = 2, ..., n:
- phase I $\{ extreme e \ align all vertices v + 1 \ to consecutive positions} \$ phase II $\{ extreme e \ vertices align all vertices vertices align vertices align vertices align vertices align vertices align vertices align vertices vertices align vertices vertices align vertices vertices align vertices v$

PQ trees and graphs

- **assign st-numbers** to all vertices **V**
- construct **PQ tree** corresponding to G'_1
- for all other vertices v = 2, ..., n:
- phase I $\left\{ \begin{array}{l} \bullet \\ align all vertices \\ v+1 \end{array} \right.$ to consecutive positions
- phase II
 replace all full nodes by new P node
 insert all greater vertices adjacent to v + 1 as sons of the new node

- **assign st-numbers** to all vertices **V**
- construct **PQ tree** corresponding to $G'_1 \checkmark$
- for all other vertices v = 2, ..., n:
- phase I $\left\{ \begin{array}{l} \bullet \\ align all vertices v+1 \end{array} \right.$ to consecutive positions
- $\begin{array}{c|c} \textbf{phase II} \quad & \textbf{replace all full nodes by new P node} \\ \bullet & \textbf{insert all greater vertices adjacent to} \quad v+1 \end{array}$ as sons of the new node

Why? → Make vertex appear "in the same place" for all adjacent vertices

- only operating on PQ tree
- no record of adjacency list stored/ updated
- leads to naive algorithm

naive embedding algorithm

- modified vertex addition algorithm
- when applying template matching: reflect modification of PQ tree in adjacency lists of graph

"write down" the corresponding bush form as in example

PQ tree \neq bush form

nearly look the same, can be expressed by other PQ trees

naive algorithm - example

counter-clockwise appearance!

naive algorithm - complexity

- for every step O(n)
 - reduction O(n) (Booth/Lueker)
 - vertex addition $O(m) = O(n) because m \leq n$
- for every **re-write** of adjacency list O(n)
- total $O(n^2)$

heart of this talk

- EMBED (Nishizeki/Chiba)
- two-phased
 - generates an embedding (similar to naive algorithm) of upward graph
 - constructs entire embedding out of upward embedding

- given upward embedding
- use adjacency lists for DFS (yields O(n))

phase II - DFS

- mark all vertices "new"
- begin on t (largest st-number)
- for each neighbor y
 - insert t in the beginning of Adj(y)
 - if y is "new" proceed with it

here!

- mark all vertices "new"
- begin on t (largest st-number)
- for each neighbor y
 - insert t in the beginning of Adj(y)
 - if y is "new" proceed with it

- mark all vertices "new"
- begin on t (largest st-number) ✓
- for each neighbor y
 - insert t in the beginning of Adj(y)
 - if y is "new" proceed with it

- mark all vertices "new"
- begin on t (largest st-number) ✓
- for each neighbor y
 - insert t in the beginning of Adj(y)
 - If y is "new" proceed with it ✔

intentional error: can somewhat spot it? why did it happen?

UPWARD-EMBED

- last thing you learn today
- core concept of EMBED
- uses direction indicators to determine direction of adjacency list
- cleverly inserts and removes indicators to yield O(n)

UPWARD-EMBED

- nearly the same as in PLANAR
- but now: use direction indicators
- correct **adjacency lists** in the end
- since **many errors** in paper: only an example to get the idea
- you can compose your own algorithm

$$A_u(5) = \{4, 4, 2, 1\}$$

 $A_u(4) = \{3, 2\}$
 $A_u(4) = \{2, 3, 3\}$

UPWARD-EMBED

- PLANAR is linear time
- #edges is linear in #vertices (planar graph as input)
- processing of direction indicators is linear
- whole algorithm is linear (profit!)

good literature

• Nishizeki/Chiba

graphics source

- Despicable me 2 minions by Design Bolts
- tent icon by icons8
- example graphs from Nishizeki/Chiba

literature

- <u>http://www.csd.uoc.gr/~hy583/</u> <u>reviewed_notes/st-orientations.pdf</u>
- <u>http://www.hausarbeiten.de/faecher/</u> <u>vorschau/213452.html</u> (at least german, but also bugged, since only copy of initial paper by N/C)

thank you! here is a photo of my cat

