Max flow min cut in undirected planar graphs

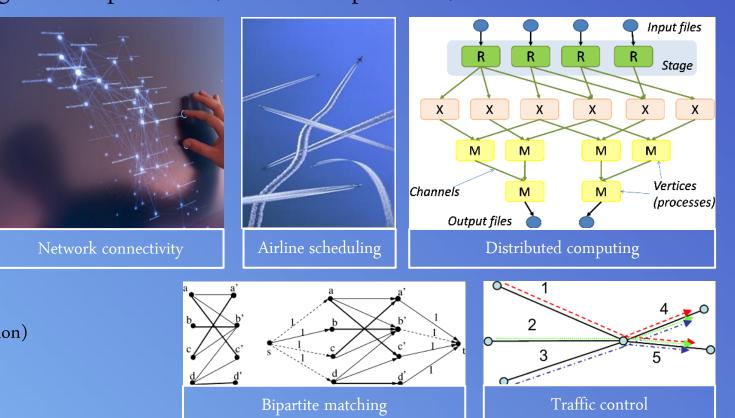
Kiril Mitev

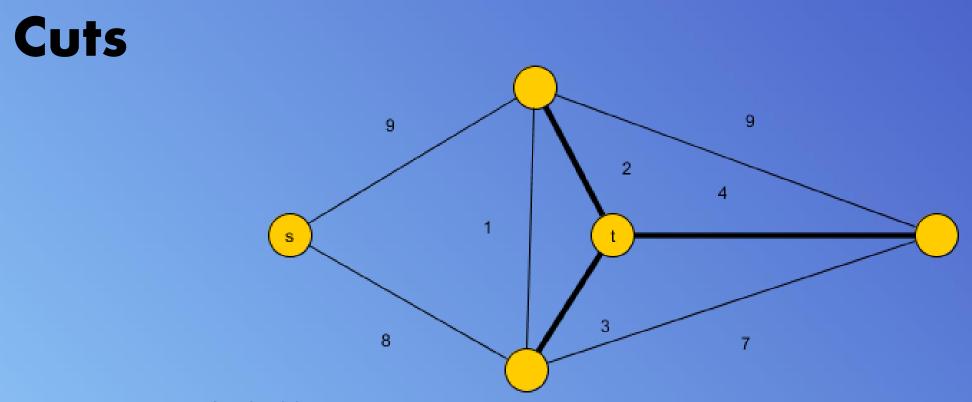
Max flow min cut in undirected planar graphs

- Introduction and motivation
- Cuts and min cuts
 - Definitions
 - Algorithm
 - Reif's Algorithm
 - Complexity
- Flows
 - Cuts as upper bound
 - Feasible flows
 - St-planar graphs
 - Flows in general undirected graphs
 - From max flow to shortest path problem
- References

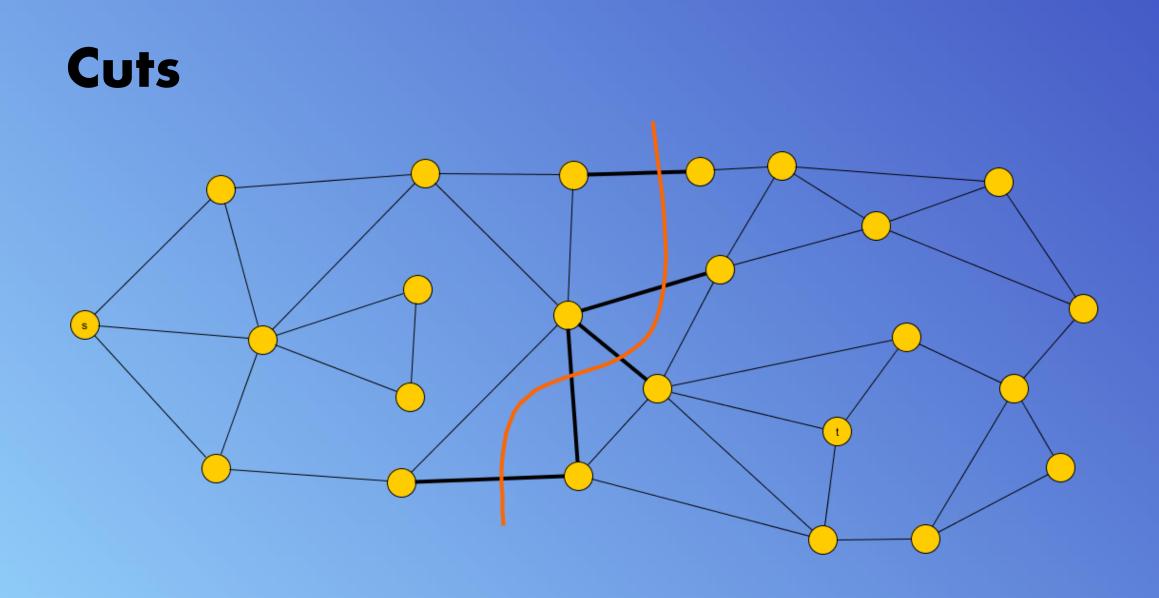
Applications

- Max flow and min cut: Two very rich algorithmic problems (cornerstone problems)
- Problems with reductions to flow/cut:
 - Network connectivity
 - Bipartite matching
 - Airline scheduling
 - Image processing
 - Distributed computing
 - Traffic control
 - Design of communication networks
 - Routing of VLSI circuits (very large scale integration) Integrating trasistors into a circuit

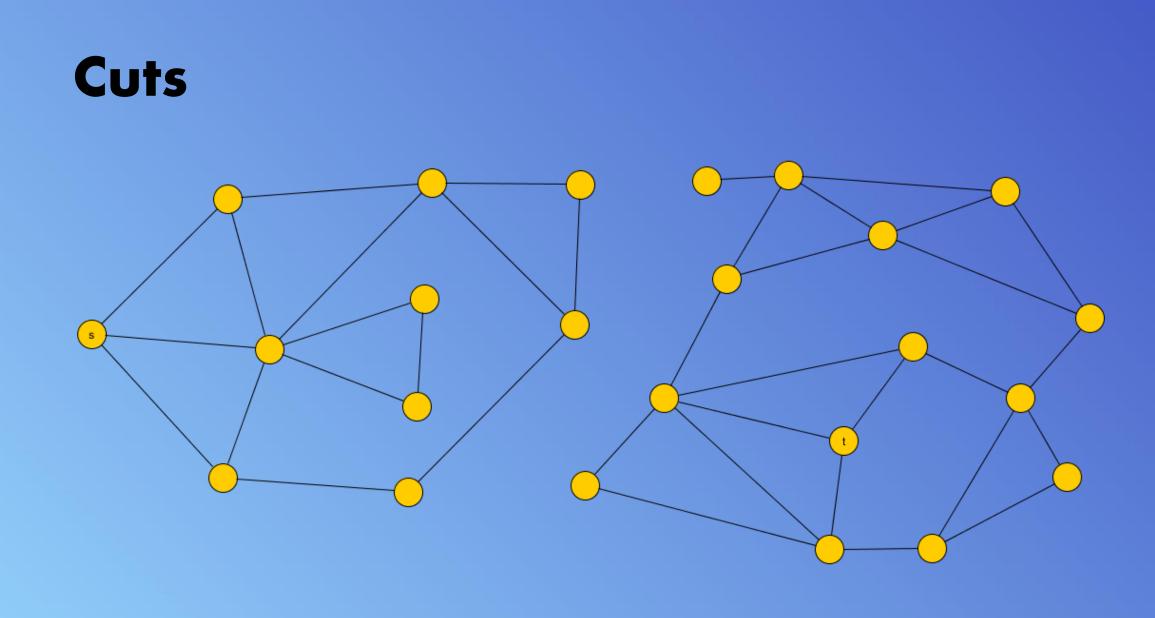




- Edge set OUT(E(A)) separating G into two connected components $A, B \in V, s \in A, t \in B$
- Each st path uses one of these edges
- Min st cut = min capacity
- Cuts and min cuts -> Definitions

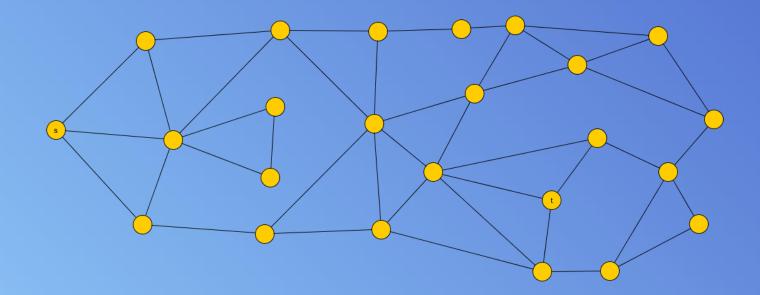


Cuts and min cuts -> Definitions



Cuts and min cuts -> Definitions

- Best known algorithm for planar graphs: $O(n * \log \log n)$
- Idea: use dual graph G*, search for separating cycle



Cuts and min cuts -> Algorithm -> Idea

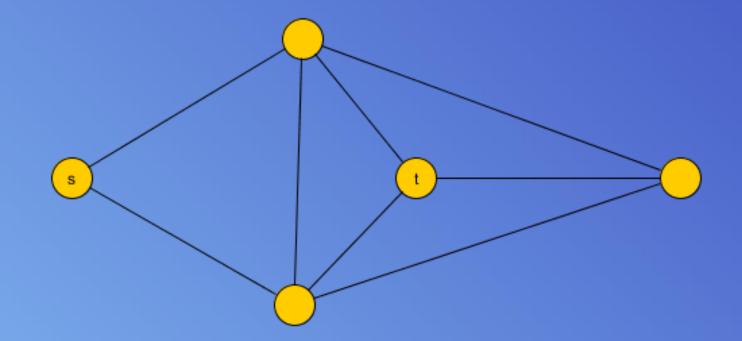
<u>Separating cycle</u>

- Dual of st cut is a cycle separating s and t
- Min st cut in G <=> min length separating cycle in G*

Cuts and min cuts -> Separating cycle

Dual graph G*

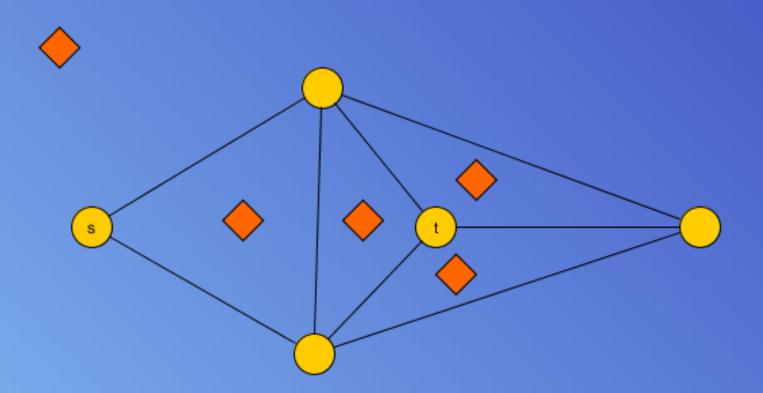
• Each face becomes a vertex



Cuts and min cuts -> Dual graph

Dual graph G*

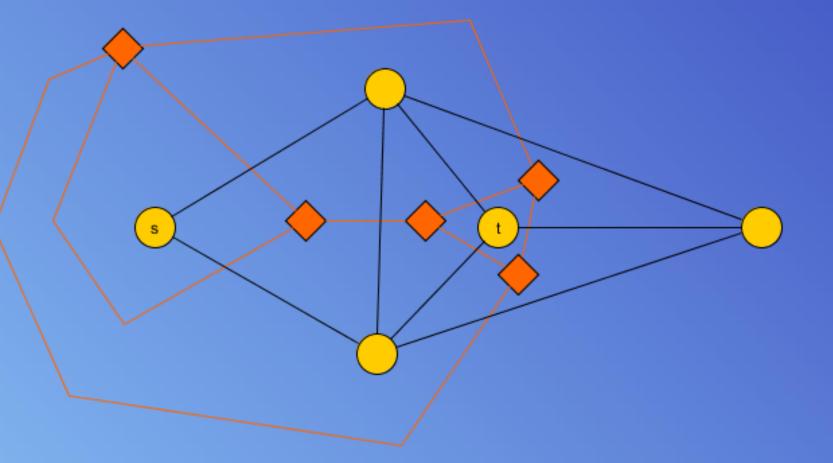
• Each face becomes a vertex

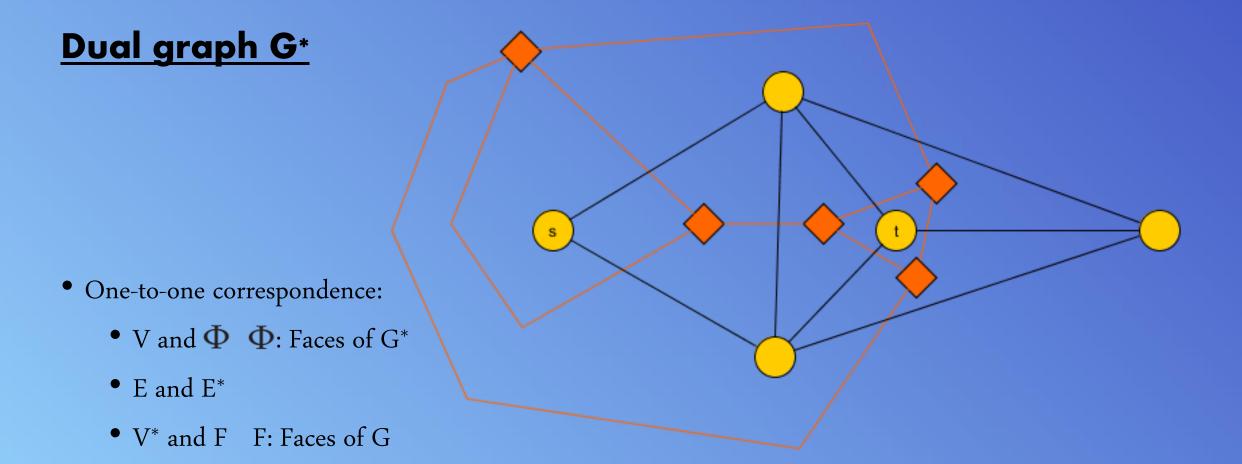


Cuts and min cuts -> Dual graph

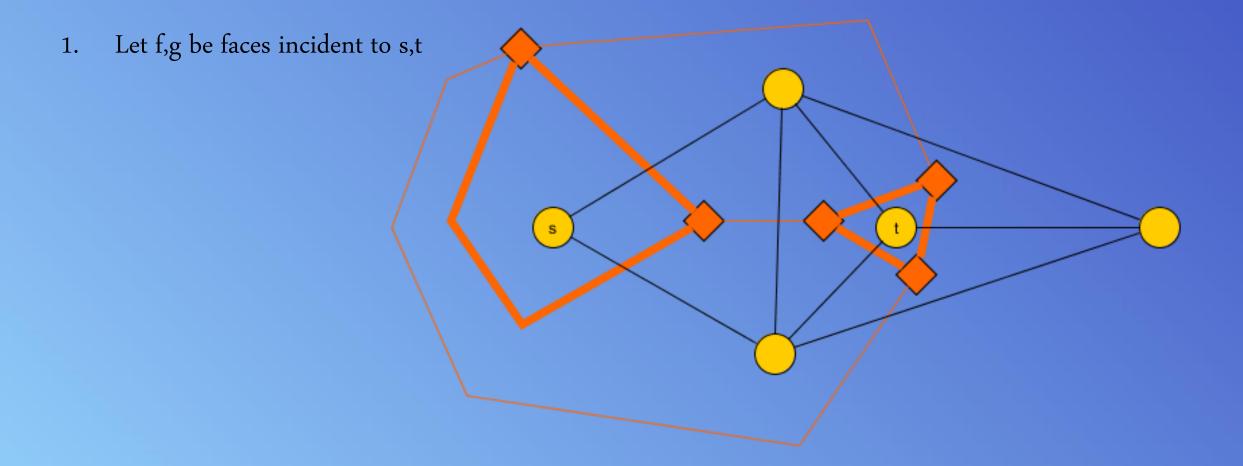
Dual graph G*

- Each face becomes a vertex
- Dual e^{*} of e connects faces adjacent to e Length $l(e^*) = c(e)$

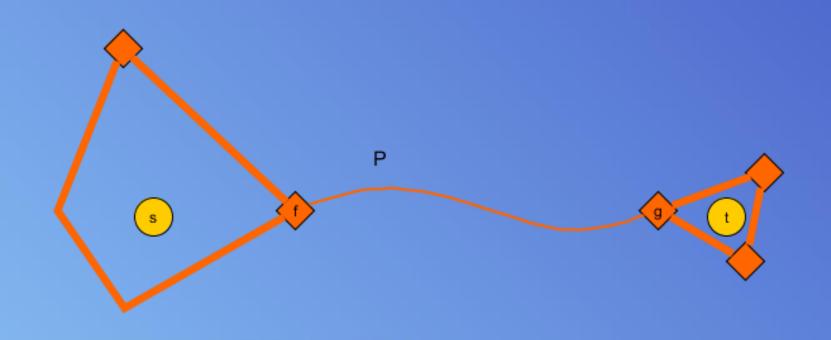




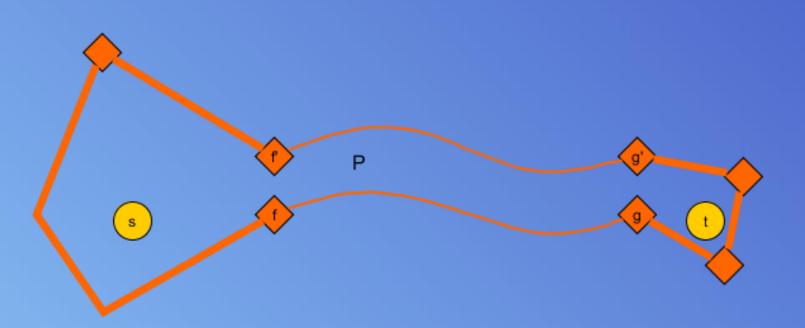
Cuts and min cuts -> Dual graph



- 1. Let f,g be faces incident to s,t
- 2. Compute SP P in G^* from f to g

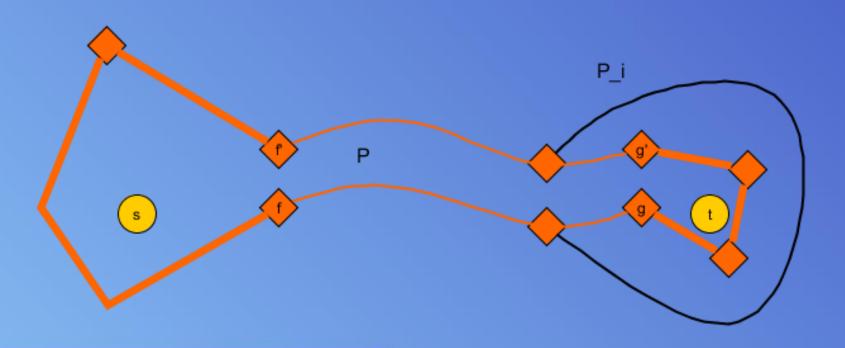


- 1. Let f,g be faces incident to s,t
- 2. Compute SP P in G^* from f to g
- 3. Cut G^* open along P



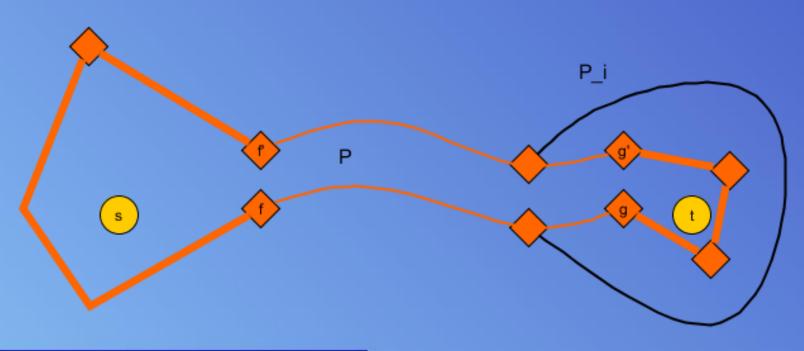
- 1. Let f,g be faces incident to s,t
- 2. Compute SP P in G^* from f to g
- 3. Cut G^* open along P

4. Compute SP P_i for every pair of copies of nodes of P in resulting graph



- 1. Let f,g be faces incident to s,t
- 2. Compute SP P in G^* from f to g
- 3. Cut G^* open along P

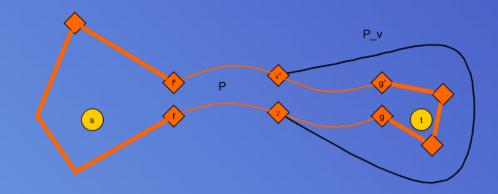
- 4. Compute SP P_i for every pair of copies of nodes of P in resulting graph
- 5. Return $\min P_i$



Min st cut – Reif's Algorithm

Reif [1983]

- Start with the middle vertex v of P
- Divide and Conquer

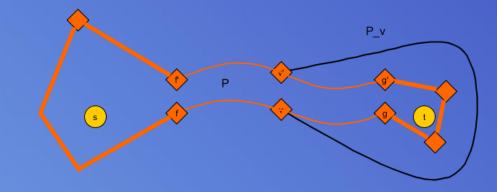


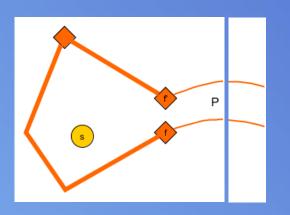
Cuts and min cuts -> Reif's Algorithm

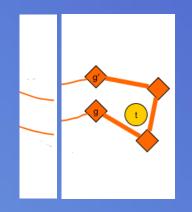
Min st cut – Reif's Algorithm

Reif [1983]

- Start with the middle vertex v of P
- Divide and Conquer
- Total time: $O(n * \log n)$
 - Recursion depth: $O(\log n)$
 - SP Algorithm for planar graphs: O(n) or $O(n * \log n)$







Cuts and min cuts -> Reif's Algorithm

Min st cut - Complexity

- Min P_i = min separating cycle = min cut = max flow
- Complexity
 - 1. Time for computing SP P: O(n)
 - 2. Time for computing SPP_i :
 - 1983 Reif's recursive algorithm divide and conquer: $O(n * \log n)$
 - 2005 MSSP modified successive shortest path: $O(n * \log n)$
 - Best known uses r-decompositions and FR-Dijkstra: $O(n * \log \log n)$ by Italiano, Nussbaum, Sankowski and Wulff Nilsen

Cuts and min cuts -> Complexity

Flows

- Single- and mulicommodity flows
- Best single-commodity algorithm for planar graphs: Sleator and Tarjan $O(n * \log n)$

Input: Flow network N = (G, P, c)

- G = (V, E)
- P: set of source-sink pairs (s_i, p_i)
- c: capacity function

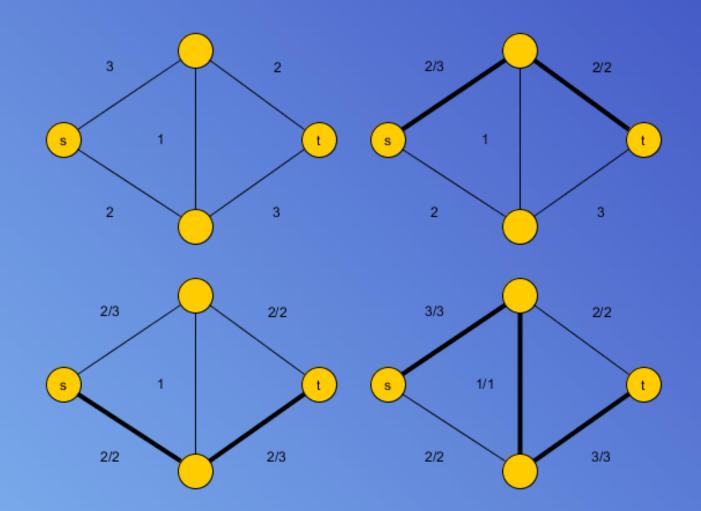
Output: An st flow of max value

Flows -> Definition

Flows

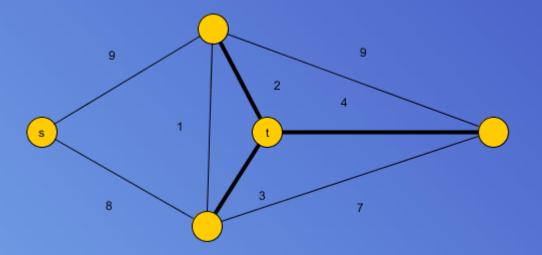
Ford-Fulkerson Algorithm

- Initialize zero flow
 Initialize residual graph G^c
- 2. While (Augmenting path P in G°)
 - 1. Determine bottleneck b of P
 - 2. Increase flow along P by b
 - 3. Update residual graph G[•]



Flows

- Max st flow uses (at most) all edges of s-t cut
- Max st flow bounded by min s-t cut
- 1956 Ford and Fulkerson proof equality

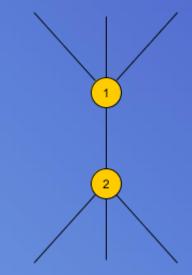


Feasible flows

- Respect capacities:
 - $f(e) \le c(e) \quad \forall e \in E$
- Satisfy the flow conservation rule:

$$\sum_{e \in \delta^+} f(e) - \sum_{e \in \delta^-} f(e) = \begin{cases} -v, & i = s \\ 0, & i \neq s, t \\ v, & i = t \end{cases}$$

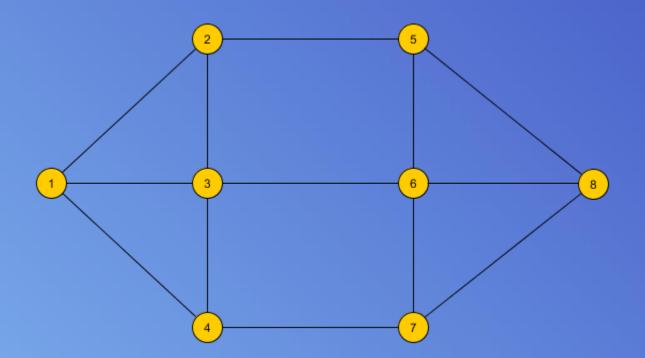
• Can be tested in $O(n^2 * \log n)$



Flows -> Feasible flows

st-planar graphs

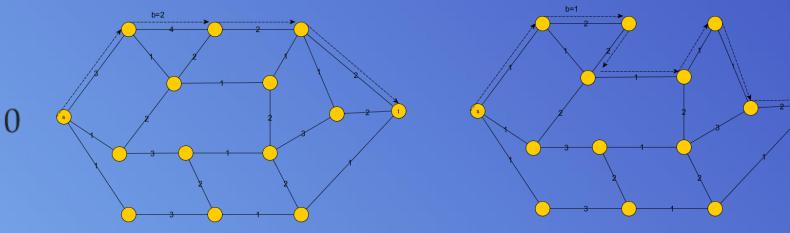
- Graph is st-planar if s and t both lie on the outer (unbounded) face
- St-planar for s=1 and t=8
- Not st-planar for s=1 and t=6



Flows -> St-planar graphs

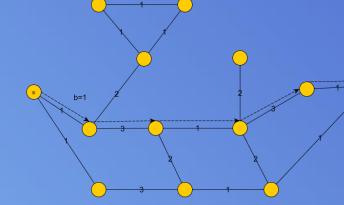
st-planar graphs – Uppermost path

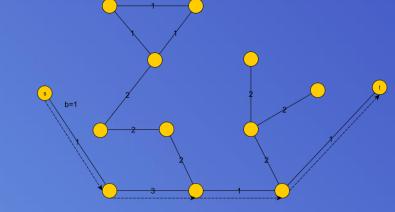
- Initialize
 - Start with zero flow $\forall e \in E \ set \ f(e) = 0$
- Find the uppermost path if none exists then stop

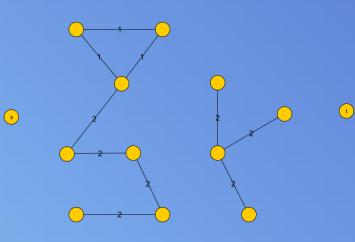


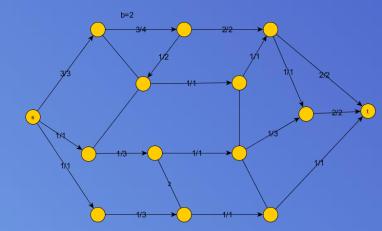
st-planar graphs – Uppermost path

- Initialize
 - Start with zero flow $\forall e \in E \ set \ f(e) = 0$
- Find the uppermost path if none exists then stop
- Let $b = \min\{c(e) : e \in P\}$
- Increase the flow by b units along P
- Decrease capacities
- Delete edges of zero capacity

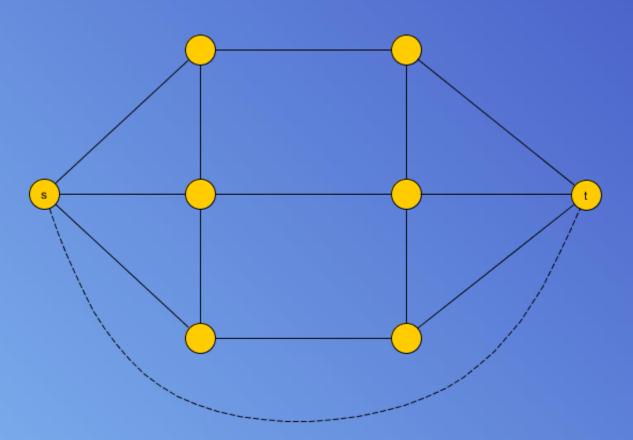




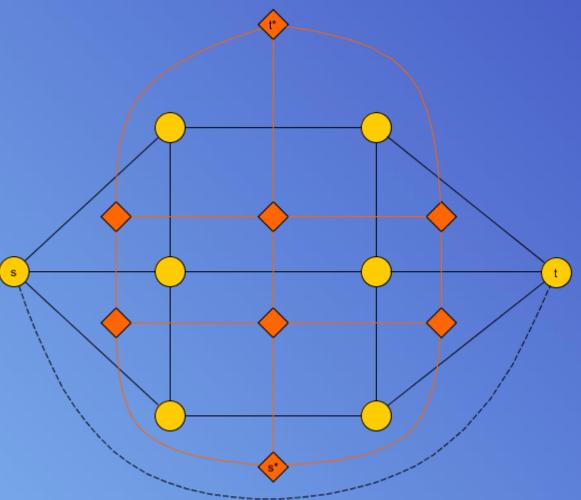




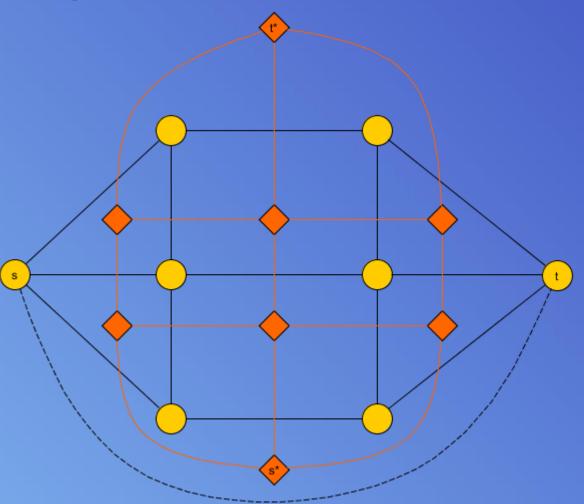
• Add edge (s, t) to E



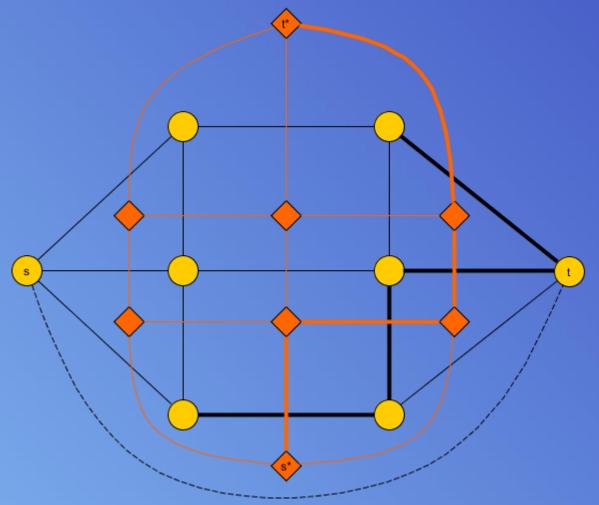
- Add edge (s, t) to E
- Construct Dual G*
 - The new face is s*
 - The unbounded face is t*
 - No need for dual edge (s*, t*)



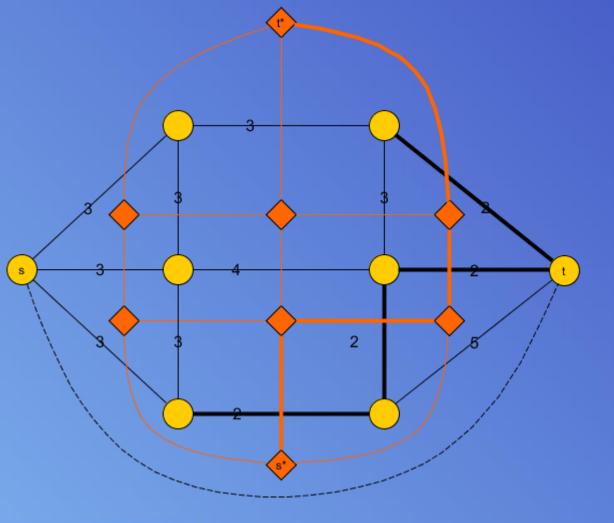
- Add edge (s, t) to E
- Construct Dual G*
 - The new face is s*
 - The unbounded face is t*
 - No need for dual edge (s*, t*)
- Length $l(e^*) = c(e)$



- Add edge (s, t) to E
- Construct Dual G*
 - The new face is s*
 - The unbounded face is t*
 - No need for dual edge (s*, t*)
- Length $l(e^*) = c(e)$
- An st cut in G corresponds to an s*t* path in G*

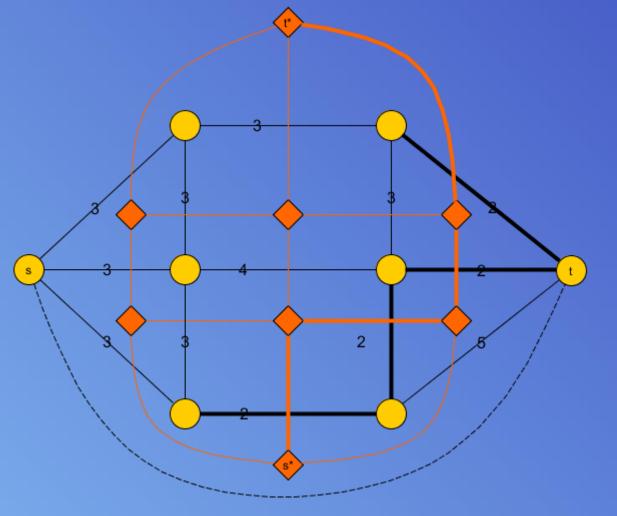


- Thus, min cut can be computed by computing a shortest path in G*
- Motivation for adding extra node s* is to convert a cycle problem into a path problem
- The cut does not by itself give the max flow

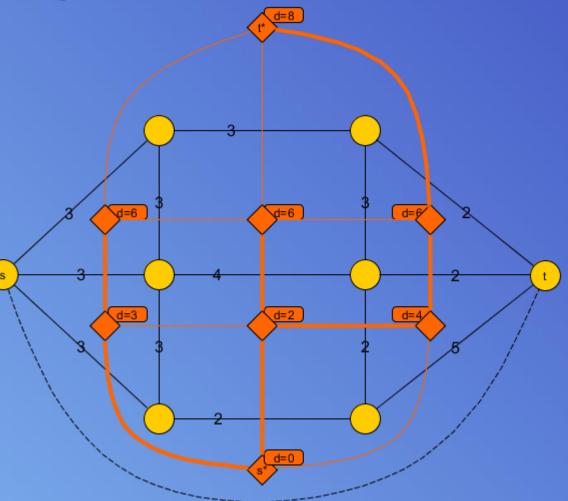


- Thus, min cut can be computed by computing a shortest path in G*
- Motivation for adding extra node s* is to convert a cycle problem into a path problem
- The cut does not by itself give the max flow

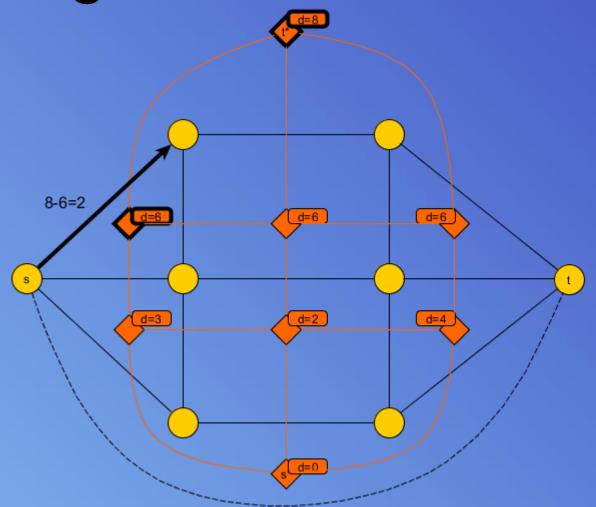
 SP distances in G* can be used to obtain the max flow



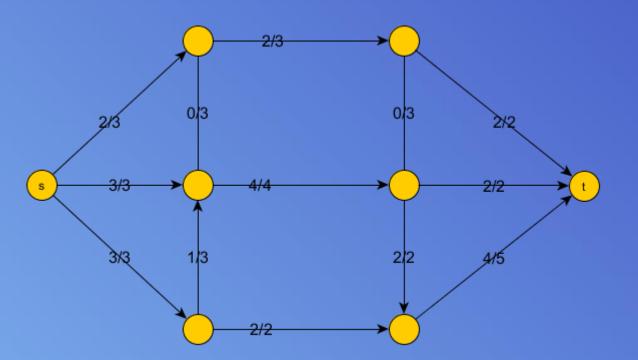
• Compute SP Tree rooted at s*



- Compute SP Tree rooted at s*
- Flow f on edge (i, j) is
 f(i, j) = d(j*) d(i*)



- Compute SP Tree rooted at s*
- Flow f on edge (i, j) is
 f(i, j) = d(j*) d(i*)
- SP distances are feasible flow function
 - Satisfy capacity constraints
 - Satisfy flow conservation

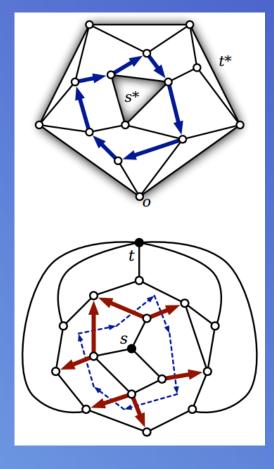


Feasible flows

- Cycle in G^{*} <=> cut in G
- Negative cycle in G^{*} <=> cut in G with negative residual capacities
- Flow is feasible <=> SP distances in G* are well defined
 <=> SP distances respect capacities
 <=> No negative reduced lengths
 <=> G* has no negative cycles

- \exists feasible flow of value $\lambda \iff G_{\lambda}^*$ contains no negative cycles
- Break condition: negative cycle in the SP Tree

Flows -> Flows in general undirected graphs -> Feasible flows



Idea for Max flow Algorithm

• Compute feasible st flow with fixed value λ by reduction to a SSSP problem in appropriately weighted dual graph G^{*}

- Zero flow is always feasible
- Start with $\lambda = 0$ and increase continuously

• Construct SP Tree for each value of λ

Flows -> Flows in general undirected graphs -> Idea

Max flow Algorithm

- Search for max λ between 0 and C
 - binary search $O(\log C)$
 - C is bound on the integer capacities
- Construct SP Tree for each value of $\lambda : O(n * \log n)$
- Check for negative cycle and update λ accordingly
 - Negative cycle => λ too high
 - No negative cycle => λ too low
- Total time: $O(n * \log n * \log C)$

Max flow to parametric SP

Construct parametric SP Tree

- Maintain SP Tree G^*_λ as λ increases
 - distances induced by the costs

 $c(\lambda, e^*) = c(e) - \lambda * \pi(e^*)$

- In each iteration one edge is replaced: O(n) iterations
 - Choose edge with lowest slack
 - O(n) iterations, each takes $O(\log n)$
- Total time: $O(n * \log n)$

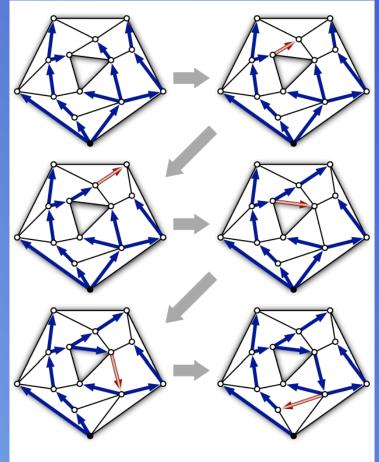
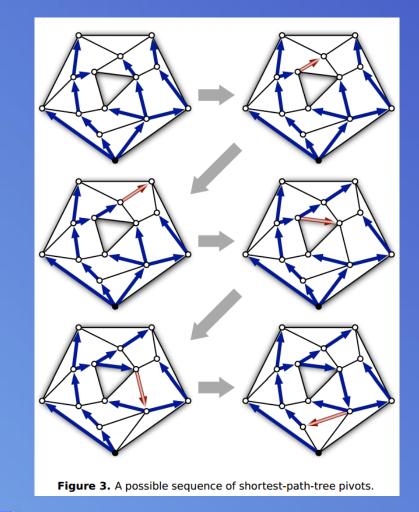


Figure 3. A possible sequence of shortest-path-tree pivots.

Erickson's Algorithm

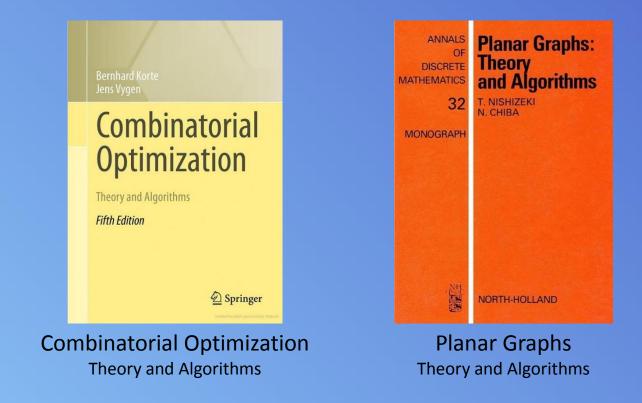
```
PLANARMAxFlow(G, c, s, t):
```

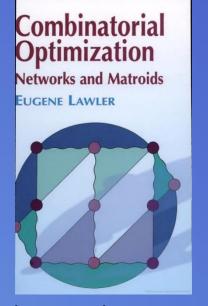
```
Initialize the spanning tree L, predecessors, and slacks
while s and t are in the same component of L
      LP \leftarrow the path in L from s to t
      p \rightarrow q \leftarrow the edge in P^* with minimum slack
      \Delta \leftarrow slack(p \rightarrow q)
      for every edge e in LP
            slack(e^*) \leftarrow slack(e^*) - \Delta
            slack(rev(e^*)) \leftarrow slack(rev(e^*)) + \Delta
      delete (p \rightarrow q)^* from L
      if q \neq o ((that is, if pred(q) \neq \emptyset))
            insert (pred(q) \rightarrow q)^* into L
      pred(q) \leftarrow p
for each edge e
      \phi(e) \leftarrow c(e) - slack(e^*)
return \phi
```



Flows -> Flows in general undirected graphs -> Algorithm -> SP

References





Combinatorial Optimization Networks and Matroids

Thanks for listening!