Max flow min cut in
undirected planar graphs

Kiril Mitev

Max flow min cut

® Introduction and motivation

® Cuts and min cuts
® Definitions
® Algorithm
* Reifs Algorithm
® Complexity

® Flows

Cuts as upper bound

Feasible flows

St-planar graphs

Flows in general undirected graphs

® From max flow to shortest path problem

® References

Input files

reductions to

Channels _ Vertices

M M -
{processes)
Output files ; {

Bipartite matching Traffic control

® |ntroduction and motivation - Applications

Cuts

= Edge set OUT(E (A)) separating G into two connected compone
A BeV,se A,teB

® Each st path uses one of these edges

® Min st cut = min capacity

I = Cuts and min cuts -> Definitions I

I = Cuts and min cuts -> Definitions

Min st cut

® Best known algorithm fOI' planar grap 0

® Idea: use dual graph G*, search for separating

I = Cuts and min cuts -> Algorithm -> Idea

Min st cut

Separating cycle

® Dual of st cutis a cycle separating s and t

® Min st cut in G <=> min length separating cycle i

I = Cuts and min cuts -> Separating cycle

Min st cut

Dual graph G*

® Fach face becomes a vertex

I = Cuts and min cuts -> Dual graph

Min st cut

Dual graph G*

® Fach face becomes a vertex

I = Cuts and min cuts -> Dual graph

Min st cut

Dual graph G*

® Each face becomes a vertex

® Dual e* of e

connects faces adjacent to e

Length I(E*) — C(E’)

I = Cuts and min cuts -> Dual graph

Min st cut

Dual graph G+

® One-to-one correspondence:

®* Vand @ D: Faces of G* .
® Eand E*
® V*¥and F F: Faces of G

I = Cuts and min cuts -> Dual graph

Min st cut -

1. Let f,g be faces incident to s,t

I = Cuts and min cuts -> Algorithm

Min st cut -

1. Let f,g be faces incident to s,t

2. Compute SP P in G* from f to g

I = Cuts and min cuts -> Algorithm

Min st cut -

1. Let f,g be faces incident to s,t
2. Compute SP P in G* from f to g

3. Cut G" open along P

I = Cuts and min cuts -> Algorithm

Min st cut - A

1. Let f,g be faces incident to s,t
2. Compute SP P in G* from f to g

3. Cut G" open along P

I = Cuts and min cuts -> Algorithm

Min st cut - Alg

1. Let f,g be faces incident to s,t
2. Compute SP P in G* from f to g

3. Cut G" open along P

&

()

I = Cuts and min cuts -> Algorithm

Min st cut - Re

Reif [1983]

® Start with the middle vertex v of P

Divide and Conquer

I = Cuts and min cuts -> Reif‘s Algorithm

Gl &

= Cuts and min cuts -> Reif’s Algorithm

Min st cut - Co

® Min P; = min separating cycle = min cut = m

* Complexity
1. Time for computing SP P: O(11)
2. Time for computing SP P;:
® 1983 Reif's recursive algorithm — divide and conquer:

® 2005 MSSP — modified successive shortest path: O(‘n % log

® Best known uses r-decompositions and FR-Dijkstra: O(?’I * log
by Italiano, Nussbaum, Sankowski and Wulff Nilsen

I = Cuts and min cuts -> Complexity I

Flows

® Single- and mulicommodity flows

Best single-commodity algorithm for plan

Input: Flow network N = (G, P, ¢)
c G-(V.E)
S P: set of source-sink pairs (Si s Pi)

c: capacity function

Output: An st flow of max value

I " Flows -> Definition

Flows

Ford-Fulkerson Algorithm

1. Initialize zero flow

Initialize residual graph G°
2. While (Augmenting path P in G*)

1. Determine bottleneck b of P
2. Increase flow along P by b
3. Update residual graph G°

I " Flows -> Definition

Flows

® Max st flow uses (at most) all edges o
® Max st flow bounded by min s-t cut

® 1956 Ford and Fulkerson proof equality

I = Flows -> Cuts as upper bound

Feasible flo

® Respect capacities:
f(e) <c(e) VeeE

- Satisfy the flow conservation rule:

2 fle)—), fle) =

ecodt ecd—

® Can be tested in O(?’Iz k log ?’I)

I = Flows -> Feasible flows I

st-planar grc

® Graph is st-planar if s and t both

lie on the outer (unbounded) face

® St-planar for s=1 and t=8

® Not st-planar for s=1 and t=6

I = Flows -> St-planar graphs

st-planar grap

® Tnitialize

® Start with zero flow

Ve € Eset f(e) =0

® Find the uppermost path

if none exists then stop

I = Flows -> St-planar graphs -> Algorithm

st-planar graphs - Uppermost path

® Tnitialize
® Start with zero flow
Ve € Eset f(e) =0
°

Find the uppermost path

if none exists then stop

* Let b = min{c(e) : e € P}
Increase the flow by b units along P

Decrease capacities

Delete edges of zero capacity

= Flows -> St-planar graphs -> Algorithm

st-planar gra

® Add edge (s, t) to E

- —
‘i"-ll-. --.'“#
I

I = Flows -> St-planar graphs -> Algorithm

st-planar grap

® Add edge (s, t) to E

® Construct Dual G*
® The new face is s*
® The unbounded face is t*

® No need for dual edge (s*, t*)

-
-
.-.'--'-"'-H_
e e

-
S
el T

I = Flows -> St-planar graphs -> Algorithm

st-planar grap

® Add edge (s, t) to E

® Construct Dual G*

® The new face is s*

® The unbounded face is t*

® No need for dual edge (s*, t*)

® Length I(E’*) — C(E’)

-
S
el T

I = Flows -> St-planar graphs -> Algorithm

-
-
.-.'--'-"'-H_
e e

st-planar graphs -

® Add edge (s, t) to E

® Construct Dual G*

® The new face is s*

® The unbounded face is t*

® No need for dual edge (s*, t*)
® Length Z(E‘*) — C(E’)

® Anstcutin G corresponds to

an s*t* path in G*

| = Flows -> St-planar graphs -> Algorithm

-
- __-'--'“'F
ke LT e L

-
-
-
-

st-planar graphs - Algorithm
@

® Thus, min cut can be computed by

computing a shortest path in G*

® Motivation for adding extra node s* is to

convert a cycle problem into a path problem

® The cut does not by itself give the max flow ¥

= Flows -> St-planar graphs -> Algorithm

st-planar graphs - Algorithm
@

® Thus, min cut can be computed by

computing a shortest path in G*

® Motivation for adding extra node s* is to

convert a cycle problem into a path problem

® The cut does not by itself give the max flow ¥

® SP distances in G* can

be used to obtain the max flow

= Flows -> St-planar graphs -> Algorithm

st-planar grap

® Compute SP Tree rooted at s*

I = Flows -> St-planar graphs -> Algorithm -> SP

st-planar grap

® Compute SP Tree rooted at s*

® Flow f on edge (i, j) is
(i, j) = (") — d(i")

I = Flows -> St-planar graphs -> Algorithm -> SP

st-planar grap

® Compute SP Tree rooted at s*

® Flow f on edge (i, j) is
f(i, j) = d(j*) — d(i")
® SP distances are feasible flow function

d Satisfy capacity constraints

’ Satisfy flow conservation

I = Flows -> St-planar graphs -> Algorithm -> SP

= Flows -> Flows in general undirected graphs -> Feasible flows

Idea for Max f

® Compute feasible st flow with fixed value A by re
weighted dual graph G*

® Zero flow is always feasible

® Start with A = 0 and increase continuously

® Construct SP Tree for each value of A

I = Flows -> Flows in general undirected graphs -> Idea

Max flow Algo

® Search for max A between 0 and C
® binary search O (log C)

® C is bound on the integer capacities

® Construct SP Tree for each value of A : O(ﬂ k log ?’I)

® Check for negative cycle and update A accordingly
® Negative cycle =>A too high

® No negative cycle => A too low

* Total time: O (1 * log 1 * log C)

I = Flows -> Flows in general undirected graphs -> Algorithm

Figure 3. A possible sequence of shortest-path-tree pivots.

= Flows -> Flows in general undirected graphs -> Algorithm -> SP

PraNARMAXFLOW(G, ¢, s, t):

Initialize the spanning tree L, predecessors, and slacks

while s and t are in the same component of L
LP <« thepathin L fromstot
p—q < the edge in P* with minimum slack
A « slack(p—q)
for every edge e in LP

)
slack(e*) « slack(e*) — A =)
I

slack(rev(e*)) « slack(rev(e*)) + A
delete (p—q)* from L
if g # o {(that is, if pred(q) # @))
insert (pred(q)—q)" into L
pred(q) < p
for each edge e
¢(e) « c(e) —slack(e*)

return 95 Figure 3. A possible sequence of shortest-path-tree pivots.

= Flows -> Flows in general undirected graphs -> Algorithm -> SP

ombinatorial
Optimization
etworks and Matroids

UGENE LAWLER

Combinatorial
Optimization

Theory and Algorithms

Fifth Edition

@ Springer

Combinatorial Optimizatio
Theory and Algorithms

= References ['

Thanks for

