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Applications

 Introduction and motivation → Applications

• Max flow and min cut: Two very rich algorithmic problems (cornerstone problems) 

• Problems with reductions to flow/cut:
• Network connectivity

• Bipartite matching

• Airline scheduling

• Image processing

• Distributed computing 

• Traffic control

• Design of communication networks

• Routing of VLSI circuits (very large scale integration)

Integrating trasistors into a circuit

Network connectivity Airline scheduling Distributed computing

Bipartite matching Traffic control



• Edge set separating G into two connected components

• Each st path uses one of these edges

• Min st cut = min capacity

Cuts

 Cuts and min cuts -> Definitions
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Cuts

 Cuts and min cuts -> Definitions



• Best known algorithm for planar graphs:

• Idea: use dual graph G*, search for separating cycle

Min st cut

 Cuts and min cuts -> Algorithm -> Idea



Separating cycle

• Dual of st cut is a cycle separating s and t

• Min st cut in G <=> min length separating cycle in G*

Min st cut

 Cuts and min cuts -> Separating cycle



Min st cut

 Cuts and min cuts -> Dual graph

Dual graph G*

• Each face becomes a vertex
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Min st cut

 Cuts and min cuts -> Dual graph

Dual graph G*

• Each face becomes a vertex

• Dual e* of e
connects faces adjacent to e

Length 



Min st cut

 Cuts and min cuts -> Dual graph

Dual graph G*

• One-to-one correspondence:

• V and : Faces of G*

• E and E*

• V* and F F: Faces of G



Min st cut - Algorithm

 Cuts and min cuts -> Algorithm

1. Let f,g be faces incident to s,t
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4. Compute SP     for every pair of copies
of nodes of P in resulting graph
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Min st cut - Algorithm

 Cuts and min cuts -> Algorithm

4. Compute SP     for every pair of copies
of nodes of P in resulting graph

5. Return 

1. Let f,g be faces incident to s,t

2. Compute SP P in G* from f to g

3. Cut G* open along P



Min st cut – Reif‘s Algorithm

 Cuts and min cuts -> Reif‘s Algorithm

Reif [1983]

• Start with the middle vertex v of P 

• Divide and Conquer



Min st cut – Reif‘s Algorithm

 Cuts and min cuts -> Reif‘s Algorithm

Reif [1983]

• Start with the middle vertex v of P 

• Divide and Conquer

• Total time: 

• Recursion depth:

• SP Algorithm for planar graphs: 
or



Min st cut - Complexity

 Cuts and min cuts -> Complexity

• Min     = min separating cycle = min cut = max flow

• Complexity

1. Time for computing SP P:

2. Time for computing SP    :

• 1983 Reif‘s recursive algorithm – divide and conquer:

• 2005 MSSP – modified successive shortest path:

• Best known uses r-decompositions and FR-Dijkstra: 
by Italiano, Nussbaum, Sankowski and Wulff Nilsen



Flows

 Flows -> Definition

• Single- and mulicommodity flows

• Best single-commodity algorithm for planar graphs: Sleator and Tarjan

Input: Flow network N = (G, P, c)

• G = (V, E)

• P: set of source-sink pairs

• c: capacity function

Output: An st flow of max value



Ford-Fulkerson Algorithm

1. Initialize zero flow
Initialize residual graph G‘

2. While ( Augmenting path P in G‘ )

1. Determine bottleneck b of P

2. Increase flow along P by b

3. Update residual graph G‘

Flows

 Flows -> Definition



Flows

 Flows -> Cuts as upper bound

• Max st flow uses (at most) all edges of s-t cut

• Max st flow bounded by min s-t cut

• 1956 Ford and Fulkerson proof equality



Feasible flows

 Flows -> Feasible flows

• Respect capacities:

• Satisfy the flow conservation rule:

• Can be tested in



• Graph is st-planar if s and t both
lie on the outer (unbounded) face

• St-planar for s=1 and t=8

• Not st-planar for s=1 and t=6

st-planar graphs

 Flows -> St-planar graphs



• Initialize

• Start with zero flow

• Find the uppermost path
if none exists then stop

st-planar graphs – Uppermost path

 Flows -> St-planar graphs -> Algorithm



• Initialize

• Start with zero flow

• Find the uppermost path
if none exists then stop

• Let

• Increase the flow by b units along P

• Decrease capacities

• Delete edges of zero capacity 

st-planar graphs – Uppermost path

 Flows -> St-planar graphs -> Algorithm



• Add edge (s, t) to E

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm



• Add edge (s, t) to E

• Construct Dual G*

• The new face is s*

• The unbounded face is t*

• No need for dual edge (s*, t*)
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• Add edge (s, t) to E

• Construct Dual G*

• The new face is s*

• The unbounded face is t*

• No need for dual edge (s*, t*)

• Length 

• An st cut in G corresponds to 
an s*t* path in G*

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm



• Thus, min cut can be computed by 
computing a shortest path in G*

• Motivation for adding extra node s* is to 
convert a cycle problem into a path problem

• The cut does not by itself give the max flow

st-planar graphs - Algorithm
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• Thus, min cut can be computed by 
computing a shortest path in G*

• Motivation for adding extra node s* is to 
convert a cycle problem into a path problem

• The cut does not by itself give the max flow

• SP distances in G* can 
be used to obtain the max flow

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm



• Compute SP Tree rooted at s*

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm -> SP



• Compute SP Tree rooted at s*

• Flow f on edge (i, j) is
f(i, j) = d(j*) – d(i*)

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm -> SP



• Compute SP Tree rooted at s*

• Flow f on edge (i, j) is
f(i, j) = d(j*) – d(i*)

• SP distances are feasible flow function

• Satisfy capacity constraints

• Satisfy flow conservation

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm -> SP



Feasible flows

 Flows -> Flows in general undirected graphs -> Feasible flows

• Cycle in G* <=> cut in G

• Negative cycle in G* <=> cut in G with negative residual capacities 

• Flow is feasible <=> SP distances in G* are well defined 
<=> SP distances respect capacities
<=> No negative reduced lengths
<=> G* has no negative cycles

• feasible flow of value    <=> contains no negative cycles

• Break condition: negative cycle in the SP Tree



• Compute feasible st flow with fixed value    by reduction to a SSSP problem in appropriately 
weighted dual graph G*

• Zero flow is always feasible

• Start with    = 0 and increase continuously

• Construct SP Tree for each value of

Idea for Max flow Algorithm

 Flows -> Flows in general undirected graphs -> Idea



• Search for max    between 0 and C
• binary search

• C is bound on the integer capacities

• Construct SP Tree for each value of    :

• Check for negative cycle and update    accordingly
• Negative cycle =>    too high

• No negative cycle =>    too low

• Total time: 

Max flow Algorithm

 Flows -> Flows in general undirected graphs -> Algorithm



Max flow to parametric SP

 Flows -> Flows in general undirected graphs -> Algorithm -> SP

Construct parametric SP Tree

• Maintain SP Tree        as    increases 

• distances induced by the costs 

• In each iteration one edge is replaced:           iterations

• Choose edge with lowest slack

• iterations, each takes 

• Total time: 



Erickson‘s Algorithm

 Flows -> Flows in general undirected graphs -> Algorithm -> SP
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