
Max flow min cut in
undirected planar graphs

Kiril Mitev

Max flow min cut in undirected planar graphs

• Introduction and motivation

• Cuts and min cuts
• Definitions

• Algorithm

• Reif‘s Algorithm

• Complexity

• Flows
• Cuts as upper bound

• Feasible flows

• St-planar graphs

• Flows in general undirected graphs

• From max flow to shortest path problem

• References

Applications

 Introduction and motivation → Applications

• Max flow and min cut: Two very rich algorithmic problems (cornerstone problems)

• Problems with reductions to flow/cut:
• Network connectivity

• Bipartite matching

• Airline scheduling

• Image processing

• Distributed computing

• Traffic control

• Design of communication networks

• Routing of VLSI circuits (very large scale integration)

Integrating trasistors into a circuit

Network connectivity Airline scheduling Distributed computing

Bipartite matching Traffic control

• Edge set separating G into two connected components

• Each st path uses one of these edges

• Min st cut = min capacity

Cuts

 Cuts and min cuts -> Definitions

Cuts

 Cuts and min cuts -> Definitions

Cuts

 Cuts and min cuts -> Definitions

• Best known algorithm for planar graphs:

• Idea: use dual graph G*, search for separating cycle

Min st cut

 Cuts and min cuts -> Algorithm -> Idea

Separating cycle

• Dual of st cut is a cycle separating s and t

• Min st cut in G <=> min length separating cycle in G*

Min st cut

 Cuts and min cuts -> Separating cycle

Min st cut

 Cuts and min cuts -> Dual graph

Dual graph G*

• Each face becomes a vertex

Min st cut

 Cuts and min cuts -> Dual graph

Dual graph G*

• Each face becomes a vertex

Min st cut

 Cuts and min cuts -> Dual graph

Dual graph G*

• Each face becomes a vertex

• Dual e* of e
connects faces adjacent to e

Length

Min st cut

 Cuts and min cuts -> Dual graph

Dual graph G*

• One-to-one correspondence:

• V and : Faces of G*

• E and E*

• V* and F F: Faces of G

Min st cut - Algorithm

 Cuts and min cuts -> Algorithm

1. Let f,g be faces incident to s,t

Min st cut - Algorithm

 Cuts and min cuts -> Algorithm

1. Let f,g be faces incident to s,t

2. Compute SP P in G* from f to g

Min st cut - Algorithm

 Cuts and min cuts -> Algorithm

1. Let f,g be faces incident to s,t

2. Compute SP P in G* from f to g

3. Cut G* open along P

4. Compute SP for every pair of copies
of nodes of P in resulting graph

Min st cut - Algorithm

 Cuts and min cuts -> Algorithm

1. Let f,g be faces incident to s,t

2. Compute SP P in G* from f to g

3. Cut G* open along P

Min st cut - Algorithm

 Cuts and min cuts -> Algorithm

4. Compute SP for every pair of copies
of nodes of P in resulting graph

5. Return

1. Let f,g be faces incident to s,t

2. Compute SP P in G* from f to g

3. Cut G* open along P

Min st cut – Reif‘s Algorithm

 Cuts and min cuts -> Reif‘s Algorithm

Reif [1983]

• Start with the middle vertex v of P

• Divide and Conquer

Min st cut – Reif‘s Algorithm

 Cuts and min cuts -> Reif‘s Algorithm

Reif [1983]

• Start with the middle vertex v of P

• Divide and Conquer

• Total time:

• Recursion depth:

• SP Algorithm for planar graphs:
or

Min st cut - Complexity

 Cuts and min cuts -> Complexity

• Min = min separating cycle = min cut = max flow

• Complexity

1. Time for computing SP P:

2. Time for computing SP :

• 1983 Reif‘s recursive algorithm – divide and conquer:

• 2005 MSSP – modified successive shortest path:

• Best known uses r-decompositions and FR-Dijkstra:
by Italiano, Nussbaum, Sankowski and Wulff Nilsen

Flows

 Flows -> Definition

• Single- and mulicommodity flows

• Best single-commodity algorithm for planar graphs: Sleator and Tarjan

Input: Flow network N = (G, P, c)

• G = (V, E)

• P: set of source-sink pairs

• c: capacity function

Output: An st flow of max value

Ford-Fulkerson Algorithm

1. Initialize zero flow
Initialize residual graph G‘

2. While (Augmenting path P in G‘)

1. Determine bottleneck b of P

2. Increase flow along P by b

3. Update residual graph G‘

Flows

 Flows -> Definition

Flows

 Flows -> Cuts as upper bound

• Max st flow uses (at most) all edges of s-t cut

• Max st flow bounded by min s-t cut

• 1956 Ford and Fulkerson proof equality

Feasible flows

 Flows -> Feasible flows

• Respect capacities:

• Satisfy the flow conservation rule:

• Can be tested in

• Graph is st-planar if s and t both
lie on the outer (unbounded) face

• St-planar for s=1 and t=8

• Not st-planar for s=1 and t=6

st-planar graphs

 Flows -> St-planar graphs

• Initialize

• Start with zero flow

• Find the uppermost path
if none exists then stop

st-planar graphs – Uppermost path

 Flows -> St-planar graphs -> Algorithm

• Initialize

• Start with zero flow

• Find the uppermost path
if none exists then stop

• Let

• Increase the flow by b units along P

• Decrease capacities

• Delete edges of zero capacity

st-planar graphs – Uppermost path

 Flows -> St-planar graphs -> Algorithm

• Add edge (s, t) to E

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm

• Add edge (s, t) to E

• Construct Dual G*

• The new face is s*

• The unbounded face is t*

• No need for dual edge (s*, t*)

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm

• Add edge (s, t) to E

• Construct Dual G*

• The new face is s*

• The unbounded face is t*

• No need for dual edge (s*, t*)

• Length

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm

• Add edge (s, t) to E

• Construct Dual G*

• The new face is s*

• The unbounded face is t*

• No need for dual edge (s*, t*)

• Length

• An st cut in G corresponds to
an s*t* path in G*

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm

• Thus, min cut can be computed by
computing a shortest path in G*

• Motivation for adding extra node s* is to
convert a cycle problem into a path problem

• The cut does not by itself give the max flow

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm

• Thus, min cut can be computed by
computing a shortest path in G*

• Motivation for adding extra node s* is to
convert a cycle problem into a path problem

• The cut does not by itself give the max flow

• SP distances in G* can
be used to obtain the max flow

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm

• Compute SP Tree rooted at s*

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm -> SP

• Compute SP Tree rooted at s*

• Flow f on edge (i, j) is
f(i, j) = d(j*) – d(i*)

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm -> SP

• Compute SP Tree rooted at s*

• Flow f on edge (i, j) is
f(i, j) = d(j*) – d(i*)

• SP distances are feasible flow function

• Satisfy capacity constraints

• Satisfy flow conservation

st-planar graphs - Algorithm

 Flows -> St-planar graphs -> Algorithm -> SP

Feasible flows

 Flows -> Flows in general undirected graphs -> Feasible flows

• Cycle in G* <=> cut in G

• Negative cycle in G* <=> cut in G with negative residual capacities

• Flow is feasible <=> SP distances in G* are well defined
<=> SP distances respect capacities
<=> No negative reduced lengths
<=> G* has no negative cycles

• feasible flow of value <=> contains no negative cycles

• Break condition: negative cycle in the SP Tree

• Compute feasible st flow with fixed value by reduction to a SSSP problem in appropriately
weighted dual graph G*

• Zero flow is always feasible

• Start with = 0 and increase continuously

• Construct SP Tree for each value of

Idea for Max flow Algorithm

 Flows -> Flows in general undirected graphs -> Idea

• Search for max between 0 and C
• binary search

• C is bound on the integer capacities

• Construct SP Tree for each value of :

• Check for negative cycle and update accordingly
• Negative cycle => too high

• No negative cycle => too low

• Total time:

Max flow Algorithm

 Flows -> Flows in general undirected graphs -> Algorithm

Max flow to parametric SP

 Flows -> Flows in general undirected graphs -> Algorithm -> SP

Construct parametric SP Tree

• Maintain SP Tree as increases

• distances induced by the costs

• In each iteration one edge is replaced: iterations

• Choose edge with lowest slack

• iterations, each takes

• Total time:

Erickson‘s Algorithm

 Flows -> Flows in general undirected graphs -> Algorithm -> SP

References

Combinatorial Optimization
Theory and Algorithms

Planar Graphs
Theory and Algorithms

Combinatorial Optimization
Networks and Matroids

 References

Thanks for listening!

