
Planar Separator Theorem
Aleksandar Timanov

RWTH Aachen University
aleksandar.timanov@rwth-aachen.de

Abstract—Divide and conquer is a widely spread strategy for
solving complex problems efficiently. It is probably known to the
reader from some of the base algorithmic approaches for sorting
of lists like merge sort and quick sort, which both recursively
divide the list into smaller ones, sort these ones, and then merge
the results in order to get the final sorted solution. In this paper
we are going to explore some of the laws by which a separator
is defined, find efficient ways to calculate one and some of its
applications.

I. INTRODUCTION

In graph theory and more specifically when talking about
planar graphs such an approach can be very useful in many
situations. In the case of graphs the vertices of the graph have
to be partitioned in such sets A, B and C that no vertices in A
and B share edges in the graph. C would be the set of vertices,
which divides the graph into two parts when removed, called
the separator. The subgraphs formed after the separation have
to be significantly smaller or in some cases with equally big
costs, if the graph is weighted, than the whole graph. Therefore
we have set the rule that no component of the graph after
the separation should have cost over 2/3 of the cost of the
whole graph or in other words no component can be more
than twice as bigger than the other one. This ensures that we
have a suitable enough separation so that the subproblems can
be solved using far less time and resources than the one we
have started with. Because we remove the vertices in the set C
from the graph when we divide it, often times an error has to
be considered when using the approach to solve problems. So
more often than not one can only approximate a solution of
the problem. How good this approximation is relies on many
factors like the number of the vertices, the distribution of the
costs or other parameters which can be included in order to
suit the algorithm better to the problem at hand.

There are many applications of the planar separator theo-
rem that we are going to discuss in this paper. As already
mentioned many complex problems can be approximated in
far less runtime. Some algorithms for approximation of NP-
complete problems, that apply the divide and conquer strategy
recursively on the given graph, can terminate in polynomial
times, which often times allows for several approximations to
be found and compared to each other in order to calculate the
error in the same time, the whole problem would have been
solved without separating the graph. Other applications can
take advantage of the strategy in a recursive manner in order
to use the separator for something, because it is defined in
such a way that its vertices always lay around the center of
the graph. By finding the separators of the formed subgraphs

recursively, a lot of problems can be solved in an efficient
manner.

In the following section (II) we are going to begin by
defining some ground rules and notation which will help us
later on. After that in section III we are going to talk about
some basic theorems and lemmas and finally define and prove
the planar separator theorem (Theorem 4). In the IV section we
are going to go through an algorithm for efficient calculation of
a separator in a given planar graph. In section V we are going
to show some applications of the theorem like solving NP-
complete problems like the maximal independent set problem
and embedding data structures. We are going to finish with a
small conclusion in the end.

II. DEFINITIONS

Throughout the paper we are going to use the notation
G(V,E) for graphs, where V is the set of vertices and E
is the set of edges connecting these vertices. The number
of vertices in a graph would be referred to as n. An edge
(v, w) is called incident to v and w and the vertices v and w
are called adjacent to each other if such edge exists. A path
with endpoints v and w ,which has length k, is a sequence
of vertices v = v0, v1, ...vk = w such that (vi−q, vi) is an
existing edge for every 1 ≤ i ≤ k. Such path is called simple
when one vertex comes more than once in the sequence and
if the start and endpoint are the same vertex, then the path is
also a cycle. The distance from one vertex to another one is
defined as the shortest path between them.

A subgraph G1(V1, E1) of G(V,E) is such a graph that
V1 ⊆ V and E1 ⊆ E. G1 is a generalized subgraph of G,
if again V1 ⊆ V , but this time each of the edges of G1 are
being mapped with a function f into the set of paths in G,
such that for every edge (v, w) ∈ E1, the path f(v, w) has
endpoints v and w and no two paths, mapped with the function,
share vertices except in the case when the shared vertex is an
endpoint of both paths. A graph G(V,E) is induced by a vertex
set V1 (where it has to apply V1 ⊆ V) when we remove all the
edges which are not connecting two vertices of V1. Shrinking
an edge means that we delete it as well as its endpoints and
substitute them with a new single vertex which then has to be
connected with the same vertices, the former endpoints of the
shrunken vertex were connected. A degree of a graph is the
maximal number of incident edges to a vertex in it.

Now we are going to explain the more important types of
graphs. In a connected graph one can draw a path from each
pair of vertices. A tree is a special type of graph which does
not have any cycles. Every tree has a root vertex r. Every

vertex v, which lays on a simple path from the root to another
vertex w, is called an ancestor of w (w is the descendant
respectively), if the distance between v and w is just one edge
then v is the parent of w and w is the child of v. The radius
of the tree is the maximal distance a vertex can be from the
root. A spanning tree in a graph is such a tree which covers
every vertex of this graph.

A planar graph is such a graph that can be embedded
(drawn) in the plane with no crossing edges. Each planar graph
divides the plane in different sections which are called faces.
A triangulation of a planar graph is the process in which edges
are being added to the graph, if needed, until every face of
the graph is a triangle.

III. THEOREM

In this section we are going to take a look at some cases
of graphs, whose separator can be found efficiently, and find
out, if there is a general theorem which allows for every graph
to be separated in a suitable way by gradually expanding the
spectre of observed graphs and applying different techniques.

First we need to establish some ground rules in order for
our further proofs to make better sense.

A. A closed curve divides the plane (Jordan curve theorem
[1])

Theorem 1. If a closed curve C on the plane is given, then
removing all the elements that are building the curve C, would
leave the rest of the components of the plane divided in two
groups. The regions that can be distinguished are the ”inside”
and ”outside” of C.

B. Kuratowski’s theorem of planarity [4]

Theorem 2. Given any graph G(V,E), we can find out, if the
given graph is planar or not by examining, if it contains either
a complete graph of n = 5 (K5) or a complete bipartite graph
(K3,3), which has 2 sets with 3 vertices each, as a generalized
subgraph. If neither of the two is found then we can conclude
that the graph G is planar.

Figure 1. Here are shown the complete graph of 5 vertices K5 (on the left)
and the complete bipartite graph with two sets of 3 vertices K3,3 (on the
right)

C. Shrinking preserves planarity [5]

Theorem 3. Given any graph G(V,E), we can shrink any
edge of G to a single vertex and the planarity will be
preserved. We can prove the theorem by contradiction.

Proof: Let us claim that the graph was planar before
the shrinking of one of its edges to a vertex, but the graph
G′, which we get after that, is non-planar. Using Theorem 2,
that we have talked about already, we can conclude that G
contains neither K5 nor K3,3 and G′ contains one of them.
Because G′ is a generalized subgraph of G, as it is constructed
by shrinking one of G’s edges, and G′ contains one of
Kuratowski’s subgraphs, but G does not, we can conclude
that our assumption is wrong, because we have been led to
a contradiction.

By applying this logic inductively on many vertices, we can
shrink whole connected subgraphs to a single vertex without
making the new graphs non-planar.

D. Spanning trees as a tool for separation [5]

Lemma 1. Given any planar graph G with non-negative
vertex costs, which sum up to no more than one. G contains
a spanning tree, whose radius is r.

We can construct partitioning of the vertices of G into three
sets A, B and C can be made. Here C is the so called
separator, it should be as small as possible so that it is
easier and faster for an algorithm to calculate it afterwards,
and A and B are the two subgraphs (sub-problems), which
have to be roughly equal to each other in the best case
and significantly smaller than the initial problem. In order
to satisfy this conditions, we strive to keep A’s and B’s costs
no bigger than 2/3 of the whole cost of G and we can prove
that using a spanning tree, this can be achieved while the size
of C would contain no more than 2r + 1 vertices.

Proof: In case, there is a vertex with cost, exceeding
1/3 of the total cost, then the lemma is true, because we
can choose, for example, A to contain only this vertex, B
to contain every vertex which does not have a direct edge to
the one in A and C to be every other one. If there is a vertex,
whose cost even exceeds 2/3, then it has to be included in C
in order to satisfy the lemma.

If no such vertices exist, then the first step of finding our
partitioning is to embed the graph in the plane and triangulate
it by adding edges. Then we can observe that every non tree
edge forms a simple cycle with some of the tree edges. That
is possible, because the spanning tree covers every vertex of
the graph and no matter which two vertices, the chosen of us
edge connects, we can follow the tree edges out of them to
the root in order to construct the cycle. We can also see that
such a cycle can not include more than 2r + 1 edges (Twice
the radius, if the endpoints of the chosen non-tree edge are on
the boundary of the graph and we also have to count the root).
Now we can claim that there exists at least one such cycle,
whose removal would divide the embedded in the plane graph
into suitable parts. Now we have to prove that this claim is
also true.

We have to find such a non-tree edge (x, z), which mini-
mizes the bigger cost between the inside or the outside of the
simple cycle it forms. If two non-tree edge’s cycles separate
the vertices equally good, then we choose the one whose cycle

contains less faces. If we still have two cycles, which are
equally suitable then it does no longer matter which one we
will choose and we can choose arbitrarily. This would ensure
that the two parts are as equal in cost as possible. Observing
the different possibilities for such cycles we can conclude that
neither cost of the sides of the separated graph according to
them would be more than 2/3, as that would always violate
the rules, by which we have chosen the non-tree edge (x, z)
and we would always have a better choice for it.

Why is this lemma important?: Now that we have seen
that every graph, which contains a spanning tree can be
separated in an efficient matter, it is only a matter of finding
a spanning tree in order to calculate the separation of a graph.

E. Layering [5]

Lemma 2. Given any connected graph G, whose vertices
are evaluated to have costs, whose sum does not exceed one.
The vertices are also partitioned into levels according to their
distance from some vertex v, which is chosen beforehand. Here
applies the following notation: L(li) is the number of vertices
on the level li, which is i-edges away from v, r would be the
maximum distance from v and finally we are also going to add
an additional layer at distance r + 1 which does not contain
any vertices, but is going to be used in our proof. We have
to find the two layers l1 and l2, for which applies that the
vertices in the levels from level 0 to l1 and those on levels
between l2 and r + 1 do not exceed in cost 2/3.

Once we have satisfied these rules we can conclude that a
partition of G’s vertices into the sets A, B and C exists that
there are no edges connecting vertices from A and B, the cost
of vertices in both A and B is at most 2/3 and finally that C
contains no more than L(l1)+ l(l2)+max{0, 2(l2− l1− 1)}
vertices.

Proof: In order to prove the lemma we need to take a
look at all the possibilities for graphs it can be applied on.

The first option is that we have the two layers l1 and l2
overlapping each other, which means that l1 ≥ l2. In this
case the lemma is true, because we can simply assign A to
contain all vertices between levels 0 to l1 − 1, we know that
their cost is under 2/3 form the rules of the lemma, B would
contain the levels beyond l1 + 1, so from l1 + 1 to r, and
finally C would contain all vertices that were on the level l1,
whose count is equal to L(l1) which is obviously less than
L(l1) + l(l2) +max{0, 2(l2 − l1 − 1)}.

The second variant is that we have l1 < l2, in which case
we have to make some adjustments to the graph in order to
prove the lemma. Firstly we are deleting all the vertices on
both layers l1 and l2, which leaves the graph divided into
three parts. Because of the rules, by which l1 and l2 have
been chosen we know that the outer most and the inner most
part can not exceed 2/3 in cost, but the middle part can have
a cost which is more than 2/3.

In the case, that the middle part is with lesser cost than
2/3 of the whole cost, then we let A contain all vertices on
this part of the three, which has biggest cost, B would have

those that are on the remaining two parts and C would get
the vertices on levels l1 and l2. The cost of the vertices in
A would be under 2/3, B’s cost in the worst case (when the
three parts all have the cost of 1/3, would also be 2/3, and
C would contain L(l1) + L(l2) vertices, which again is less
than L(l1) + l(l2) +max{0, 2(l2 − l1 − 1)}.

If the middle part is with bigger cost than 2/3, we again
have to make some changes to the graph. We delete all the
vertices on level l2 and above, we shrink those on levels l1 and
below to a single vertex, which preserves planarity (Theorem
3). Because the layers were assigned we know that there is
a path to every vertex, which starts in v, that means that the
newly formed graph also contains a spanning tree and it has
a radius of l2 − 1 − l1. Now that we have found a spanning
tree we can apply lemma 2 and we will get as a result the
three sets A∗, B∗ and C∗. Now we can assign the vertices in
A∗ or B∗, depending on which has the higher cost, to A, C
would get those on levels l1 and l2 as well as the ones in C∗,
and B would be assigned the rest of G’s vertices. The worst
case here would be that the middle part (from l1+1 to l2−1)
takes the whole graph. In such case we have already seen in
the proof of lemma 2 that neither of the sets A and B would
have cost greater than 2/3, C would contain the vertices on
C∗ which are equal to twice the radius plus one, but because
after the shrinking of the levels between 0 and l1 − 1 we do
not count the root so we do not add the one, in the end we
are left with 2(l2 − 1 − l1), added to the number of vertices
on l1 and l2 we have L(l1) + l(l2) +max{0, 2(l2 − l1 − 1)}
as the number of vertices in C. Thus the lemma is true for all
the cases.

Figure 2. A possible case for the separation using this lemma is shown on this
picture. A would receive the bigger part of those between levels 0 through
l1−1 and l2+1 through r as well as the bigger of the components left after
the separation of the middle part (which in this case was with bigger cost
than 2/3 of the whole graph). B would be assigned all other vertices except
the ones that are exactly on the layers l1 and l2 as well as on the separator
of the middle part C∗, because these would go to C.

F. The Planar Separator Theorem [5]

Theorem 4. Given any n-vertex planar graph G (here the
graph does no longer have to be connected like in lemma 2).

The vertices of G again have non-negative costs, whose sum
is not exceeding one.

The vertices of G can be separated into the sets A, B and
C in such a way that vertices in A and B do not have shared
edges, A and B both have costs under 2/3 and C contains
no more than 2

√
2
√
n number of vertices. Once proved this

theorem can be used in order to separate any planar graph
which is in fact commonly used to solve problems efficiently
as we are going to see later on.

Proof: For this proof again we have to observe the
different possibilities for graphs the theorem can be applied
on and prove each one separately.

Firstly we are going to take a look at connected graphs. If
G is connected than the lemma is obviously true, because we
only have to apply the layering strategy and use lemma 2. This
will result in a suitable separation as we have already proved.
In order to estimate how many vertices there would be in C
we first have to find the suitable layers for lemma 2. Firstly we
are surching for such a level l1, so that the sum of the costs on
levels between 0 and l1−1 is less than 1/2 and between 0 and
l1 at least 1/2. We will refer to the number of vertices on levels
0 through l1 as k. Once we have found l1 we also have to find
a level l0, which is closer to the root v than l1 is. According to
[3] every planar graph on n vertices has treewidth of O(

√
n),

so L(l0) + 2(l1 − l0) ≤ 2
√
k should apply. After that we

search for the layer l2, which lays further from the root than
l1 does. For l2 has to apply L(l2)+2(l2− l1−1) ≤ 2

√
n− k.

If such layers exist than after the separation C would have
2(
√
k+
√
n− k) ≤ 2(2

√
n/2 = 2

√
2
√
n number of vertices.

The second case is when G is not connected. This would
mean that there are k components of the graph for k ∈ N.
We are going to call these components respectively G1, G2,
G3, ...,Gk and their vertex sets V1, V2, V3, ..., Vk. Now we
have to observe the costs these components have and prove
the theorem accordingly.

If there is no connected component which exceeds the cost
of 1/3 then we can simply take a union of some of theirs sets
of vertices. We have to find the minimal possible index i ∈ N
for which applies V1 ∪ V2 ∪ ... ∪ Vi’s cost is more than 1/3
then we can assign V1∪V2∪ ...∪Vi to A, Vi+1∪Vi+2∪ ...∪Vk
to B and C would be left to contain no vertices. In such a
partition all the rules of the theorem apply so it is proven to
be true.

In the case when there is a component (Gi) with a cost
between 1/3 and 2/3 we can assign all its vertices (the set
Vi) to A, all other vertices to B and C would be assigned no
vertices. All of the guidelines have obviously been satisfied so
here the theorem also applies.

The last case that is left is when there is a component, whose
cost exceeds 2/3. Here we again can use lemma 2 to partition
its vertices into the suitable sets A∗, B∗ and C∗. After that
we A can be assigned either A∗ or B∗, whichever has greater
cost, C would take the vertices in C∗ and B would be left
with the rest. We can easily calculate the worst case in order
to see, if every rule of the theorem is satisfied. The lowest

cost that A can have in the end would be when there is a
component, which has cost of 2/3, and after the separation
1/2 of it are assigned to A, so we get 2

3 ∗
1
2 = 2

6 , which is
less than 4

6 = 2
3 . In this worst case B would get less than 4

6 .
For the number of vertices in C we can use the same logic as
in the first case we have observed and prove it that way.

IV. AN ALGORITHM FOR FINDING A SEPARATION
EFFICIENTLY

We are now going to take a look at an algorithm [5] which
is based on the proof of Theorem 4. This algorithm has a
linear runtime O(n) as we are going to see.

Step 1: The first step is to embed the graph in the plane.
Once we have done that we can store the information about
the embedding in the following data structure. For each of the
edges we are storing four pointers to incident edges positioned
immediately clockwise and counter-clockwise to the endpoints
of the described edge. For each of the vertices an incident edge
is being stored. There is a way for this step to be done in O(n)
described in [3].

Figure 3. The above drawn graph is mapped in the data structure we have
described already. For every vertex one of its incident edges is stored and for
every edge the incident edges to its endpoints clockwise and counterclockwise
are also stored.

Step 2: Now we need to find which are all the connected
components. We scan, if there are exists a component which
has a cost bigger than 2/3. If no such component is found,
then we can partition the vertices as described in the proof of
Theorem 4. Otherwise we have to proceed to the next step.
This calculations run at O(n).

Step 3: A spanning tree of the most costly component is
needed and we acquire it by executing a breadth-first search
from the root vertex v, that has been chosen before the
algorithm started. We store the level of each vertex as well
as the number of vertices on each level (L(li) for i ∈ [0, r]).
This step can also be done in O(n).

Step 4: In this step we are searching for the level l1, that
was described in the proof of Theorem 4. The summed cost
of the levels from 0 through l1−1 has to be no more than 1/2
and the cost from 0 through l1 has to be at least 1/2. Again
we are using k to refer to the number of vertices on levels
between 0 and l1. With the information from Step 3 this step
also can be done in O(n).

Step 5: Using l1 we find the highest level l0 ≤ l1 and
the lowest l2 ≥ l1. Where L(l0) + 2(l1 − l0) ≤ 2

√
k and

L(l2)+2(l2− l1−1) ≤ 2
√
n− k have to apply. Finding these

two levels can be done in O(n).
Step 6: In order to simplify our graph we delete all

vertices on level l2 and above and shrink all vertices on levels
0 through l0 into a single vertex x. The shrinking can be done
by constructing a boolean table which contains the information
for every vertex on levels 0 through l2 − 1, if it is on level 0
through l0 or not. We scan the edges incident to the subtree
that was calculated for levels between 0 and l0 and either
delete the clockwise incident edge to the tree, if it has value
true in the table or exchange it with one incident to x if its
value is false. After this step we can apply lemma 2 on the
shrunken graph. The step is done in O(n).

Step 7: We calculate a spanning tree of the newly formed
graph by doing a breadth-first search, which can be done based
on the previously calculated spanning tree for the whole graph
to spare runtime. We store information about the parents of
each vertex as well as the total cost of its descendants in order
to simplify further work with this structure. Finally in this step
we triangulate the graph by adding new edges, where they are
needed. Here the time is also O(n).

Step 8: Then we choose an edge (v1, w1), either ar-
bitrarily or in some preprogrammed way that compliments
the specific graph that we are working with, so that the
optimization in the next step are done faster or are not needed
at all. We follow the parents of the endpoints of the chosen
edge up to the root using the parents that were stored in the
previous step. Then we calculate the costs of the sectors that
can be distinguished according to the formed cycle. The side
of the cycle with bigger cost is chosen to be the inside and is
referred to as such later on. Using the data structure we have
established in step 7 this step takes linear time as well.

Step 9: Now that we have chosen the cycle we are going
to work with, we have to optimize it in order for it to satisfy
the rules of theorem 4. This can be done by iterations of
choosing more suitable cycles and then checking if they satisfy
the theorem. Let us call the currently analyzed non-tree edge
(vi, wi). Firstly we check, if the cost inside this cycle is greater
than 2/3, if that is the case we have to find a better candidate.

Here we have two different cases in which we have to
continue accordingly with the calculations. Firstly we choose

a triangle (vi, y, wi) where y is a vertex inside the (vi, wi)
cycle. If one of the edges (vi, y) or (y, wi) is a tree edge and
the other is not, then we chose (vi+1, wi+1) to be the non-tree
edge of the two. After that we can recalculate the cost inside
the new cycle, using the cost inside the (vi, wi) cycle and the
costs of vi, wi and y respectively.

Figure 4. This diagram shows the case when one of the edges (vi, y) or
(y, wi) is a non-tree edge (in this case (vi, y). The area marked with yellow
is the part of the graph that is in the cycle we are currently checking. After
the step the only changes thing is that the edge (vi, wi) is no longer a part
of the cycle. By repeatedly shrinking the size of the cycle in such way we
get a suitable one.

If neither of the two edges (vi, y) and (y, wi) is a tree edge,
then we firstly have to find the tree path from the edges vi and
wi to y, by following their parents. Once we have done that
we calculate the costs inside the (vi, y) and (y, wi) cycles. We
chose (vi+1, wi+1) to be the edge which has the greater cost
inside of its cycle.

We repeat the steps described in this step until we have
found a cycle, whose inside cost is no more than 2/3. Because
we delete at least one face with every iteration we can conclude
that this step also runs in O(n).

Step 10: Now that we have calculated all the structures
that we need like the levels and the the cycle, we can finally
partition the vertices using the techniques we have seen in
the proofs of the lemmas and theorems we have already seen.
Because we already have the data structures needed at our
disposal this step can be terminated in O(n) time.

Thus we are done with the algorithm and the result is a
partitioning of G’s vertices in the sets A, B and C, which
satisfy the parameters for a separator described in theorem 4.

V. APPLICATIONS OF THE PLANAR SEPARATOR THEOREM

Now that we have seen how the algorithm works and what
its costs are, we are going to discuss some of its usages. There
are a lot of problems that can be solved significantly faster by
using the divide and conquer strategy. There are also some
other interesting applications and we are going to mention
some of them.

A. Approximating NP-complete problems (Maximum indepen-
dent set) [6]

Many NP-complete problems can be approximated using
theorem 4 and the algorithm, we have described above. This
can help solve the problem significantly faster but often at
the cost of the answers accuracy. In many situations we have

to choose, if we want to sacrifice runtime for more precise
solution. One such problem is the maximum independence set
problem. We are given an n-vertex graph G and the aim is to
find such a set of vertices, that no two vertices within it are
connected by a shared edge. In order to solve it with the divide
and conquer strategy the problem has to be simplified, so in
the end we would not get the precise solution to the maximum
independent set problem but rather an approximation for it.
Instead of searching for vertices, that are not connected, we are
going to find connected components of a suitable for us size,
which have no edges, that connect the different components
with each other, by recursively dividing the graph.

Theorem 5. Given a planar graph G with non-negative
vertex costs summing to no more than one and given a
constant 0 ≤ ε ≤ 1, we can find a set C, which contains
O(
√
n/ε) vertices, whose removal would leave the graph with

no connected components of cost exceeding ε. Furthermore
this set can be found in time O(n log n).

Proof: If ε ≤ 1√
n

, then the theorem applies by taking the
whole graph G. If that is not the case than we have to execute
the following recursive algorithm.

Initialization: In the beginning we initialize the algorithm
with an empty set of vertices in the separator C (C = ∅).

General step: As long as there can be found any compo-
nents with cost bigger than ε we choose one such component
K and apply Theorem 4 to it which separates it in three sets
as described in Section 3. After that we unite the sets of the
C we had before the step and the separator of K that we have
found. We also assign a level to every component using the
following pattern. The levels which exist when the algorithm
terminates are assigned level 0 and every component, which
was separated, gets a level equal to the maximum level of the
components, it was split in, plus one. Using this approach we
can ensure that any two components on the same level do not
have shared edges between each other. The algorithm looks as
follows in pseudo code:

1 w h i l e (∃K ∈ G(V − C,E) wi th cost(K) > ε) {
2 a p p l y Theorem 1 t o K r e s u l t i n g i n : {
3 A1 wi th cost(A1) ≤ 2/3cost(K) ,
4 B1 wi th cost(B1) ≤ 2/3cost(K) ,
5 number o f v e r t i c e s i n C1 ≤ 2

√
2
√
nk

6 }
7 C = C ∪ C1 ;
8 level(K) = level(max(level(A1), level(B1)) + 1 ;
9 }

Analysis: Each components with cost at least one has
a cost bigger than ε, because it was obviously split by the
algorithm so it satisfied the conditions of the while loop. We
would have costs for the levels of such pattern:

1) At level 1 we would have cost greater than ε
2) At level 2 the cost would be greater than 3/2ε
3) At level 3 it would be at least (3/2)2ε

...

So we can conclude that each component on level i ≥ 1 the
cost would be at least (23)

i−1ε. Because the total cost of G
is always at most 1 as stated in the theorem we can calculate
the number of vertices on each level as

Ni ≤
1

(3/2)i−1
ε =

(2/3)i−1

ε

Since we know that 0 ≤ ε ≤ 1 for the maximum level k it
applies that

1 ≤ (2/3)k−1

ε
≤ (2/3)k−1

√
n

That means that k ≤ (log3/2 n)/2+1, or put in other words we
have a logarithmic rising number of separations in comparison
to the number of vertices. So the algorithm has O(log n) steps.
We know that a separation happens in linear time so the whole
algorithm runs in time O(n log n).

Now we have to calculate the size of C in order to prove
the whole theorem. We are going to refer to the components
on some level i ≥ 1 as K1,K2, ...,Kl of size n1, n2, ..., nl

respectively. The number of vertices that are added to C
with every separation is bounded by 2

√
2
∑l

j=1

√
nj . As

we have already seen that l ≤ (2/3)i−1/ε and we know
that

∑l
j=1 nj ≤ n, it can be concluded that

∑l
j=1

√
nj is

maximized when we set nj = n/l for 1 ≤ j ≤ l. So we get

2
√
2

l∑
j=1

√
nj ≤ 2

√
2
√
nl ≤ 2

√
2
√
n/ε(2/3)(i−1)/2

So the size of C can be estimated as
∞∑
i=1

2
√
2
√
n/ε(2/3)(i−1)/2 = O(

√
n/ε)

.
With that we have proved the theorem and can now use it in

order to approximate the maximum independent set problem.
The algorithm we are going to use needs a function k(n)

to be defined later on and has the following structure:

1) Step 1: We apply Theorem 4 to G and set ε = k(n)/n
and each vertex’s cost to 1/n. In this way we get the
separator set C, which is no bigger than O(n/

√
k(n)).

2) We search for a maximum independence set in every
connected component after the separation. The maxi-
mum independent set I for the whole graph is then
formed as a union of all the maximum independent sets
from each connected component.

The first step runs in O(n log n) as we have proved already
in Theorem 5. Because we have to check for every subset of
every component to see whether there exists an independent
set, we get a runtime of O(ni2nj) for checking a component
with ni vertices. The total time for step 2 to terminate is then

O(max{
n∑

i=1

ni2
nj |

n∑
i=1

ni = n and O ≤ ni ≤ k(n)})

= O(n

k(n)
k(n)2k(n))

= O(n2k(n)).

Figure 5. Even for a graph as simple as a triangle the set of subsets of vertices
includes: {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. So the number
of subsets is 8 = 23.

So the entire algorithm takes O(n·max{log n, 2k(n)}) time.
But as we mentioned earlier this is not the exact solution to
the problem but rather an approximation, which means that
we should expect an error. Now we are going to analyze
the impact of the error and give a suggested value for the
function k(n), which offers a balance between the runtime of
the algorithm and its error.

Let us assuming that I∗ is the maximum independent set
of G. its restriction to one of the components formed after
the separation step is surely lesser than the restriction of I
to the same component. From that follows that |I∗| − |I| =
On/

√
k(n)). The planarity of G means that it is also four-

colorable [2], so |I∗| ≥ n/4. This means that the relative error
is (|I∗| − |I|)/|I∗| = O(1/k(n)). The conclusion is that the
relative error tends to zero when the number of vertices in
G razes. Running the algorithm on larger graphs would also
require more steps so the runtime is getting longer.

If we let k(n) = log n the algorithm would take O(n2)
time algorithm which produces a relative error which does not
exceed O(1/

√
log n). Another option would be to set k(n) =

log log n, which would speed up the algorithm to O(n log n)
time and O(1/

√
log log n) relative error.

As we have shown a polynomial time can be achieved at
the cost of an error in the calculations. Using this approach to
solving the maximum independent set problem also requires
careful planning and setting the parameters of the algorithm to
the most suitable values in order to archive balance between
speed and accuracy.

B. Embedding of data structures [6]

Another interesting application of the planar separator the-
orem can be found in the case when we want to represent
one data structure using another. We want to preserve the
information about the adjacency of two nodes in the first
structure by placing them close to each other in the second.
Before talking more about this problem we have to introduce
some more notations.

An embedding of an undirected graph G1 = (V1, E1) in
another undirected graph G2 = (V2, E2) is a one-to-one
map φ : V1 → V2, in other words φ is a bijective function
which projects every node from V1 in exactly one of the
nodes in V2 and vice versa. The worse case proximity of
this function has to be at most {d2(φ(v), φ(w))|{v, w} ∈
E1}, where d2(x, y) represents the distance between x and
y in the second graph G2. The average case would be
(1/|E1|)/

∑
{d2(φ(v), φ(w))|{v, w} ∈ E1}. So to sum things

up the problem is to make such an embedding for G1 that the
worst case proximity is minimized.

Theorem 6. Any planar graph with maximum degree k can
be embedded in a binary tree so that the average proximity is
O(k)

Proof: This problem can also be solved recursively. The
algorithm, we are going to apply, works as follows. If G
contains only one vertex v, then the tree T that it is embedded
in also contains one vertex, which is the image of v. Otherwise
if that is not the case, we apply theorem 4 with vertex costs of
1/n on every vertex in G. Once we have acquired the partition
in the sets A, B and C we choose one of the vertices laying
on the separator C (if the set of the separator is empty then we
choose one of the vertices in A), we will refer to the chosen
vertex as v. We embed the subgraph which includes only the
vertices in A ∪ C − {v} in the tree T1 recursively. The part
of G that is induced by the set B is then being embedded in
a binary tree T2 also by recalling the algorithm recursively.
Finally we create the tree T by setting v as its root and the
two children it has would be the root of T1 and the root of
T2. T obviously consists of exactly n vertices.

The maximum depth of a tree T with n vertices, which was
produced in the way we have described, would be referred to
as h(n). Then it applies that

h(n) ≤ h(2n/3 + 2
√
2
√
n− 1) + 1 ≤ h(29n/30) + 1

That proves that the height of the binary tree we have induced
is O(log n).

If we let G1 be the subset of G with the vertices from A∪C
and G2 to be the one induced by the set B, we can define a
function s(G) =

∑
{d2(φ(v), φ(w))|{v, w} ∈ E} in order to

represent the proximity. This function can also be displayed
as follows

s(G) ≤
{

0, for n = 1
s(G1) + s(G2) + 2k|C|h(n), for n > 1

It is so, because the edges that were in G but were not
derived in neither of the graphs G1 and G2 were incident to
a vertex in C. So if we call s(n) the maximum value of s(G)
for the n-vertex graph G, then

s(n) ≤ max{s(i) + s(n − i − 1) + ck
√
n log n|n/3 −

2
√
2
√
n ≤ i ≤ 2n/3 + 2

√
2
√
n}

if n > 1for some positive constant c

We can conclude that s(n) is in O(kn).
In order to say if the proximity really is O(k) we first have

to observe the cases for a connected and non-connected graph
G. For a connected n-vertex graph and it was embedded using
the algorithm we have described, then G contains at least
n − 1 edges, and the average proximity would be O(k). If
G is not connected on the other side then by embedding each

component and combining the results would get us an average
proximity again of O(k). So we have confirmed the theorem.

VI. CONCLUSION

As we have seen the planar separator theorem can be very
useful in many algorithmic approaches. There are some data
structures that are very helpful by applying the theorem like a
spanning tree in the connected components, whose vertices
we wish to partition, the leveling system we have shown
in Lemma 2, which can speed up the process of finding
the suitable separator significantly and other ones, which can
narrow the variables in the calculations and in this way speed
them up, but also limit the targeted graph set, the algorithm
can be successfully applied on.

Separating a problem to smaller ones of the same kind
has proven over time to be a very effective method for
solving complex problems in applicable times. There are many
examples of that and we have also shown in the paper that NP-
complete problems can be sped up to polynomial times at the
cost of the error, that is caused by removing the vertices in the
separator set form the graph. Often times an approximation of
the exact solution for a problem is useful enough for one to
make conclusions about the certain situation he is researching
and the divide and conquer approach is widely spread option
for finding such approximations.

Recursion is also a technique that works very well in
combination with the divide and conquer strategy. Often times
the vertices in the separation set can be chosen as suitable
elements for algorithms, as they, by definition, should lie
around the center of the graph. By separating the graph and
choosing such vertices recursively a lot of non deterministic
decisions can be made comparably faster. We have shown that
embedding one data structure in another without changing
the semantics significantly is possible by using this exact
approach.

REFERENCES

[1] Guilford L. Spencer D. Wick Hall. Elementary Topology. Bulletin of the
American Mathematical Society, 1955.

[2] Peter Dörre. Every planar graph is 4-colourable – a proof without
computer. 8.

[3] John Hopcroft and Robert Tarjan. Efficient Planarity Testing. Journal of
the ACM, 21(4):549–568, oct 1974.

[4] Casimir Kuratowski. Sur les espaces complets. Fundamenta Mathemati-
cae, 15(1):301–309, 1930.

[5] Richard J. Lipton and Robert Endre Tarjan. A Separator Theorem for
Planar Graphs. SIAM Journal on Applied Mathematics, 36(2):177–189,
apr 1979.

[6] Richard J. Lipton and Robert Endre Tarjan. Applications of a Planar
Separator Theorem. SIAM Journal on Computing, 9(3):615–627, aug
1980.

[7] Dániel Marx. The Square Root Phenomenon in Planar Graphs. pages
28–28. Springer, Berlin, Heidelberg, 2013.

