
Improved Algorithms for Min Cut and Max Flow in Planar
Graphs

Robin Münstermann

August 8, 2018

Abstract

This paper deals with the problem of min cut
and max flow computation in planar graphs.

There are many algorithms for the min cut
and max flow problem in general graphs, but
these problems can be solved even faster in pla-
nar graphs than in general graphs. We will
have a closer look on computing a min cut and
a max flow in undirected planar graphs. This
paper will start by providing an overview over
some definitions, which then will be used to
introduce Reif’s algorithm as well as an im-
proved version, the so called faster min st-
cut algorithm. Reif’s algorithm finds a min
st-cut by finding a min st-separating cycle
in the dual graph, because solving this prob-
lem is equivalent. The faster min st-cut al-
gorithm improves Reif’s algorithm by using a
two phase approach, firstly running a coarse
version of Reif’s algorithm and secondly solv-
ing the min st-cut problem exactly. With this
algorithm a min st-cut can be calculated in
O(n log logn) and then a max st-flow can be
computed in O(n) starting from this. After-
wards an algorithm for min cut and max flow
in directed planar graphs and also the multiple-
sink, multiple-source problem in planar graphs
is presented briefly.

Contents

1 Introduction 2

2 Definitions 2
2.1 Face 2
2.2 Piece 2
2.3 r-Division 3
2.4 Algorithm of Frederickson . . . 3
2.5 Dense Distance Graph 3
2.6 Fast Dijkstra 4
2.7 Dual Graph 4

3 Reif’s Algorithm 4

4 Faster Min st-Cut Algorithm 5
4.1 First Phase 6
4.2 Second Phase 7

5 Faster Max st-Flow 8

6 Outlook 8
6.1 Max st-Flow In Directed Planar

Graphs 8
6.2 Multiple-Source Multiple-Sink

Max Flow in Directed Planar
Graphs 8

7 Conclusion 9

1

1 Introduction

In planar graphs many problems can be com-
puted faster than in general graphs. The same
holds true for computing a min cut and a max
flow in planar Graphs. Min cut and max flow
problems on planar graphs are appearing natu-
rally in many practical problems and also the-
oretical problems can be solved faster with the
algorithms presented in this paper [7].
When computing a max st-flow in a directed
graph G = (V,E), every edge e has a capacity
ce. In a st-flow every edge e is assigned a value
fe, so that 0 ≤ fe ≤ ce holds true for every edge
e ∈ E and also for every vertex v ∈ V \{s, t}
the total incoming flow

∑
w∈V \{v} f(w,v) equals

the total outgoing flow
∑
w∈V \{v} f(v,w). A max

st-flow maximizes the total outgoing flow mi-
nus the incoming flow of vertex s [1]. This
problem is defined analogously in undirected
graphs. The min st-cut problem can be solved
by finding a set of edges, which divides G into
two graphs with s in one graph and t in the
other one, while the total capacity of these
edges is equal or less than the capacity of any
other set of edges dividing G into two graphs
as described. To determine the value of a max
flow, also a min st-cut can be computed, be-
cause a min st-cut has the same value as a max
st-flow.
Finding a min cut and a max flow is an im-
portant topic for graph algorithms. Ford and
Fulkerson, Edmonds and Karp and many oth-
ers gave algorithms to solve this problem on
general graphs. Ford and Fulkerson also pre-
sented an algorithm for max st-flows in (s, t)-
planar graphs, graphs where s and t are on
the same face. This was later improved to a
runtime of O(n). Itai and Shiloach generalized
this algorithm to planar graphs and they gave
an algorithm taking O(n2 logn) [6]. Reif’s al-
gorithm improved this even further, which is
presented in this paper.
The approach of the presented algorithms is to

find the min st-cut first and with an algorithm
of Hassin and Johnson the max st-flow can be
computed in O(n).
Firstly some definitions are given to under-
stand the algorithms, which are presented af-
terwards. The first algorithm presented is
Reif’s algorithm, which can solve the min st-
cut problem. The second algorithm, faster min
st-cut algorithm, speeds up Reif’s algorithm by
using two phases. In the first phase a coarse
version of Reif’s algorithm is used. Only a sub-
set of the vertices of a given Graph G is consid-
ered, what leads to a faster algorithm, which
does not calculate the min st-cut, but divides
G in order to use these parts of G in the sec-
ond phase to calculate the exact min st-cut,
while having the advantage that only a part of
G needs to be considered in each computation.
Afterwards it is shown, that with a given min
st-cut solving the max st-flow problem in G
takes O(n). At the end other algorithms for
max flow problems in planar graphs are briefly
presented.

2 Definitions

2.1 Face

If a planar graph is drawn on a paper or in the
plane without any edges crossing each other,
the edges and vertices create regions. These
regions are called faces [10]. Also there will be
at least one region, which is not bounded by
any vertices and edges. This region is also a
face and it is called outer face (see Figure 1).

2.2 Piece

Given a graph G a piece P of G is defined as
the subgraph of G induced by a subset of E
[7]. All vertices of P , which are not incident to
a vertex not in P , are called interior vertices.
Vertices which are incident to a vertex not in
P are called boundary vertices. Pieces of G

2

A

B D

C

F

E

face face outer face

Figure 1: Example for faces in a planar graph.

will be found using r-division. The r-division
does not have normal, disjunct subgraphs as
output, but pieces which share their boundary
vertices. For example a boundary vertex v of
piece a can also be a boundary of another piece
b.

2.3 r-Division

To find pieces in a graph a modified algorithm
of Frederickson is used. Frederickson gave an
algorithm, which divides a given graph G into
O(n/r) pieces for any parameter r ∈ (0, n)
[3]. The output of this algorithms is pieces
with each having O(r) vertices and O(

√
r)

boundary vertices. Fredericksons algorithm
has O(n log r + (n/

√
r) logn) running time.

The parameter r will later be chosen so, that r
is suitable for the runtime of the faster min st-
cut algorithm. But a stronger result is needed
for the faster min st-cut algorithm. This is
given in theorem 2.1. Therefore a hole is de-
fined as a bounded face of P , which is not a
face of G. A hole can exist, if a piece contains
another piece inside of it. This will increase
the complexity of the algorithm, so we do not
want to find pieces with many holes. When r-
division is mentioned it is defined as followed.

Theorem 2.1. For a plane n-vertex graph, an
r-division in which each piece has O(1) holes
can be found in O(n log r + (n/

√
r) logn).

The goal of the r-division is to divide G and
using dense distance graphs to speed up the
first phase of the faster min st-cut algorithm.

2.4 Algorithm of Frederickson

The algorithm of Frederickson divides G into
O(n/r) pieces. Only the idea of the algorithm
will be explained. The algorithm is divided
into two phases: The first one takes O(n/

√
r)

and the second phase O(n log r). This gives us
a runtime of O(n log r + (n/

√
r) logn).

In the first phase we find a spanning forest in
G with trees of size Θ(

√
r). Then we contract

these trees to a graph G′ and try to find pieces
in G′ recursively. This gives us O(n/r3/2)
pieces, therefore a second phase transforms G′

back to G and divides pieces more, so that fi-
nally there are only O(n/r) pieces. For a de-
tailed description of the algorithm see [3].
This algorithm gives us a r-division in
O(n log r + (n/

√
r) logn), but does not ensure

that there are only O(1) holes. We need a con-
stant number of holes to achieve our runtime
of O(n log logn) in the faster min st-cut algo-
rithm. Hence the recursive algorithm is a bit
modified by using Miller’s cycle separator the-
orem [9]. This theorem ensures, that if a piece
P is split into two subpieces, where the number
of holes of one piece P ′ has increased, we split
this piece again, so that the number of each
of the subpieces of P ′ have again maximum
the number of holes of P by using an idea of
Fakcharoenphol and Rao [7]. This modifica-
tion of the algorithm of Frederickson ensures
O(1) holes for each pieces resulting from the r-
division, so that finding shortest paths can be
prepared for each piece so the faster min st-cut
algorithm is able to have its fast runtime.

2.5 Dense Distance Graph

Given these pieces, which can be computed
with the algorithm of Frederickson, preprocess-
ing of the pieces can be done, in order to com-
pute shortest paths fast. Given a piece P from
every boundary vertex to every other boundary
vertex all shortest paths are computed. This

3

A

B D

C

F

E

1

1

1

1

1

1

1

(a)

A

B F

E

1 13

2

2
3

(b)

Figure 2: (a) Piece with A,B, F,E boundary
vertices. In (b) the resulting dense distance
graph is shown.

preprocessing results in a dense distance graph.
This graph is a graph with weight of an edge
(v, w) equal to the shortest path from a bound-
ary vertex v to a boundary vertex w (see Figure
2).
Klein’s algorithm can compute a dense dis-
tanse graph for one piece P in O(r log r).
By given r-division dense distance graphs of
O(n/r) pieces have to be calculated. Therefore
this step takes in total O(n/r) · O(r log(r)) =
O(n log(r)) time [7].

2.6 Fast Dijkstra

If the graph is divided in dense distance graphs,
what is obtained by the r-division and Klein’s
algorithm, shortest path can be computed
faster, because we do not have to take every
vertex of G into account, but only the bound-
ary vertices. Let G be a graph consisting of
dense distance graphs only and b be the total
number of boundary vertices of G. A short-

est path computed with fast Dijkstra, which is
essentially Dijkstra considering only boundary
vertices, takes O(b log2(n)) time. Because of
the r-division and Klein’s algorithm, we can
transform a given graph, where the min st-
cut problem should be solved in, in a graph
with the structure of G and then b equals
O(
√
r). So for our problem fast Dijkstra runs

in O(
√
r log2 n).

2.7 Dual Graph

Both algorithms, Reif’s algorithm and the
faster min st-cut algorithm are not operating
on the given graph G, but they first transform
the given graph into a dual graph G′. For
the dual graph we first determine all faces of
G. Then all the faces become vertices of the
dual graph. Every face is separated from an-
other face by one or more edges of the primal
graph and for every edge of these edges a edge
is added to the dual graph with vertices cor-
responding to faces separated by the edge of
the primal graph (see also figure 3) [7]. If a
edge of the primal graph has a weight, then
this weight will also be the weight of the cor-
responding edge in the dual graph. Moreover
if from the dual graph again the dual graph is
computed, the result is the primal graph again,
so we can always revert this operation and fig-
ure out which edges of the primal and dual
graph and which faces and vertices of the pri-
mal and dual graph belong together.

3 Reif’s Algorithm
Reif’s algorithm solves the min st-cut problem
for a given Graph G′ by computing a min st-
separating cycle of the dual Graph G of G′. A
min st-separating cycle is a simple cycle, which
contains a face s or t inside of the cycle and
the other face is outside of the cycle, so that s
and t will be divided or separated by this cycle
[7]. Now the min st-cut will be found by using

4

A

B D

C

F

E

f1 f2 f3f1 f2 f3

Figure 3: Dual graph of the graph given in
figure 1. The vertices f1, f2, f3 are the faces of
the primal graph.

the following Lemma, which was proven by Itai
and Shiloach [6]:

Lemma 3.1. A min st-separating cycle of a
dual graph G defines a min st-cut of the corre-
sponding primal graph G′.

This works basically because a min st-cut
defines the bottleneck of the max st-flow. We
find this bottleneck by calculating a cycle in
the dual graph, which includes edges with the
least weight possible, while dividing s and t.
From this follows the idea of Reif’s algorithm,
which works on the dual graph G to com-
pute the min st-separating cycle. The min
st-separating cycle has to include at least one
vertex from a path from s to t. The idea is
to take the shortest path as this path. Then
we compute all min st-separating cycles, which
include each a vertex of this path, so that we
find the min st-separating cycle of those cy-
cles. But first we modify the graph in a way,
that we can search for shortest paths instead
of min st-separating cycles, which include each
one vertex of the path from s to t, to speed up
the algorithm.
First we compute the shortest path π from a
vertex p1 of face s to a vertex p|π| of face t.
Then an incision along π is made: All edges Er
outgoing on the right of π are deleted. Now an

copy of π called π′ is inserted and Er is inserted
back in, but instead of pi ∈ π the correspond-
ing node pi′ ∈ π′ is set. Next a shortest path
% from p|π|/2 to p|π′|/2 is computed. The result
of these operations can look like it is shown in
Figure 4. The incision and the shortest path
divide the graph into two subgraphs, where we
search recursively for a shortest path. We al-
ways take pi ∈ π, which divides the subgraph
in the middle, resulting in shortest path from
pi ∈ π to the corresponding p′

i ∈ π′ for every
pi ∈ π. The goal of this algorithm is to find the
min st-separating cycle, which has to include
at least one pi ∈ π in order to separate faces s
and t. We already computed the shortest path
for all pi ∈ π, so we can just pick the short-
est path of all these computed shortest path,
which all define a min cycle including one pi
and separating s and t and we get a min st-
separating cycle. With this cycle found also
the min st-cut is found.
The runtime will only be covered briefly here,
because in the faster min st-cut algorithm the
runtime will be covered in detail and this al-
gorithm has a faster runtime. Reif’s algorithm
runs in O(n log2 n) by using normal Dijkstra to
find a shortest path. If a faster shortest path
algorithm, like for example Frederickson’s al-
gorithm is used, the runtime is improved to
O(n logn) [3]. For 25 years this was the fastest
algorithm for this problem, but the faster min
st-cut algorithm improves this even more.

4 Faster Min st-Cut Algo-
rithm

The faster min st-cut algorithm of a given
graphG′ computes, like Reif’s algorithm, a min
st-cut by computing a min st-separating cy-
cle of the dual graph G of G′, but only takes
O(n log logn) by using two phases.
The first phase roughly computes the shortest
paths for those pi ∈ π, which are boundary ver-

5

Figure 4: Example how a Graph can look like
after the third step of Reif’s algorithm.

tices, while taking advantage of dense distance
graphs and only takes boundary vertices into
account. Just Reif’s algorithm is executed on a
graph, which only consist of boundary vertices
and the edges of dense distance graphs. This
leads to a faster runtime, because this phase
works on a smaller graph. In figure 6 the re-
sult of the first phase is illustrated. The in the
first phase found st-separating cycles split G
into subgraphs for the second phase, where the
not yet computed cycles are calculated. Each
subgraph can be taken separately into account,
because a st-separating cycle with start and
end vertex p in a subgraph H, which just uses
vertices of H cannot be longer than another st-
separating cycle with the same start and end
vertex p, which can use all vertices of G. The
shortest paths for the remaining, in the first
phase not considered, interior vertices can be
calculated by using this characteristic.
In the second phase we do this exact calcula-
tion of st-separating cycles and therefore we
need to compute a shortest path for interior
vertices of every piece P on a subpath π′ of π
on a subgraph H induced by the shortest paths
found in the first phase.

Lemma 4.1. Let π′ be a subpath of π of length
O(logc n) with constant c.

Figure 5: Illustration of a graph after the first
phase of the faster min st-cut algorithm.

The subproblem, finding shortest paths from
every p ∈ π′ to the corresponding vertex of
the incision on a subgraph H can be solved in
O(|H| log logn).

Proof. A piece has O(r) vertices, because the
r-division has this as a property. If we choose
r = logc n we get |π′| = O(r) = O(logc n),
because if a piece has vertices limited by
O(logc n), a path inside a piece cannot be
longer than all vertices of this piece contained
once. Recursion depth of Reif’s algorithm
is O(log(logc n)) = O(log logn). So using a
shortest path algorithm [5] we get a total run-
time of O(|H| log logn).

Now we will have a closer look on both
phases and why problems, where vertices are
considered more than once, do not affect the
runtime of O(n log logn).

4.1 First Phase

Given a graph G′ firstly the dual graph G of
G′ is computed. Then an r-division is made on
this graph and on the produced pieces dense
distance graphs are calculated.
In this first phase Reif’s algorithm is executed
not on a G, but a modified Graph only consist-
ing of boundary vertices found with r-division

6

and edges resulting from dense distance graphs
on the pieces. Or in other words we are using
fast Dijkstra to compute shortest path for the
boundary vertices of π.
It takes O(n) to create the dual graph G
of G′. For the r-division r = log6 n is
chosen to attain a total runtime of this al-
gorithm of O(n log logn). Following The-
orem 2.1 computing the r-division takes
O(n log r + (n/

√
r) logn) = O(6n log logn +

(n/log6n) logn) = O(n log logn). Having a di-
vision of G in pieces, there is also a problem
called cutting pieces open. This happens when
an incision is made in a piece. That means
if π is cutting through a piece P , for example
v ∈ P , v ∈ π and v is interior vertex of P ,
there will be a boundary vertex x ∈ π and a
boundary vertex x′ ∈ π, which are divided by
the incision. Then we just choose x and x′ to
be still a part of P . They belong to the same
piece P . Although these nodes are doubled
during the incision, this ensures a total num-
ber of O(

√
r) boundary vertices in each piece.

Dense distance graphs can be computed in
O(n log(r)) as it was shown before. With
the chosen r, this yields in a runtime of
O(n log r) = O(n log log6 n) = O(n log logn).
Fast Dijkstra can now be applied on the graph
taking O((n/

√
r) log2 n) = O(n/ logn) time.

Recursion depth is O(n logn), what leads to a
runtime of O(logn(n/ logn)) = O(n) for com-
puting shortest path from every boundary ver-
tex p ∈ π to the corresponding boundary ver-
tex p′ ∈ π′.
Now given shortest paths, these paths can
share vertices and we have to ensure, that these
shared vertices are not too many. In Figure 6
this problem is illustrated. %1 and %3 are shar-
ing some nodes, but if every vertex of G is con-
sidered too often our runtime will increase.
Although shortest path are not unique, we can
assume that there will be an entry vertex qi
and an exit vertex q′

i, where %1 and %3 share
the same path and therefore some same ver-

Figure 6: Problem of shortest path sharing
nodes.

tices. If now starting from p3 ∈ π the short-
est path reaches qi, we start searching q′

i from
p′

3 ∈ π′. All vertices in %3 between qi and q′
i will

now be substituted by an edge π1 from qi to q′
i

with weight corresponding to the path between
qi to q′

i. Also there will be a path from p′
3 to

p3, which maximal has one entry and one exit
vertex on %1. %3 can share nodes also with %2,
but cannot share nodes with any other short-
est path without the nodes being included in
%1 or in %3, because the adjacent shortest path
limit the area for shortest paths. If %3 shares
nodes with %2, we handle this the same way
with a new edge π2. Now we can assume that
we have at most 4 entry and exit nodes. All
other nodes %3\(π′

1 ∪ π′
2) are only contained in

%3 and are not included in any other shortest
path. It follows, that the size of a subgraph
induced by a shortest path is limited by a con-
stant multiplied with the number of boundary
vertices plus the number of dividing the graph
in subgraphs through shortest paths.

4.2 Second Phase

In the second phase we take the divided graph
by the shortest paths of the first phase and by
using Lemma 4.1 we can compute the remain-
ing shortest path of the interior vertices of π
and π′ in O(n log logn) time, because we chose
our c = 6 while choosing r = log6 n.
When talking about subgraphs induced by

7

shortest path of the first step, we are talk-
ing about an implicit representation of short-
est path by using preprocessed paths of dense
distance graphs. Transforming an implicit rep-
resentation in an explicit representation takes
O(n) time, because a planar graph G has con-
stant degree and Klein’s algorithm can com-
pute the explicit representation in linear time
depending on the length of the path [8].
Nevertheless we have to face a similar problem
as in the first phase: Paths should not share
too many boundary vertices in order to achieve
an O(n log logn) runtime. A shortest path %2
from p2 ∈ π to p′

2 ∈ π′ can be limited again
by the adjacent shortest paths %1 and %3, but
we cannot handle this by using an edge as in
phase one again, because we want to have the
shortest paths as a result. Therefore another
approach is chosen. If %2 and %1 share the same
subpath, we have again one entry v1 and one
exit point v2. A path can be represented as a
concatenation of different paths. Let %v1,v2 be
the path between v1 and v2, %p2,v1 a shortest
path between p2 and v1, %v2,p′

2
a shortest path

between v2 and p′
2. Then %2 can be represented

as a concatenation of %p2,v1 , %v1,v2 and %v2,p′
2
.

%1 can be represented analogously. Maximum
number of doubled considered vertices, the en-
try and exit points of the adjacent shortest
paths, is four for each shortest path. With this
method with can ensure a runtime of O(n) for
explicit representation.
With this algorithm we can solve the min st-
cut problem in undirected planar graphs in
O(n log logn) time.

5 Faster Max st-Flow

With the faster min st-cut algorithm we
can compute the min st-cut in O(n log logn).
Knowing the value of the min st-cut respec-
tively the value of the max st-flow, we can now
compute a max st-flow in O(n). This is done

with an algorithm of Hassin and Johnson [4]
using a faster shortest path algorithm of [5].
Therefore first the faster min st-cut algorithm
can be used and then the algorithm of Hassin
and Johnson to solve the max st-flow problem
in undirected planar graphs in O(n log logn).

6 Outlook

After explaining the algorithms for solving the
min cut and max flow problem in undirected
planar graphs in detail, a brief outlook to other
max flow and min cut problems will be given.

6.1 Max st-Flow In Directed Planar
Graphs

When looking at this problem in directed pla-
nar graphs, it is not possible to use Reif’s algo-
rithm, because Reif’s algorithms uses heavily
the graph-characteristic of undirected edges.
Therefore Glencora Borradaile and Phillip
Klein presented an algorithm for max st-flow
[1], which takes O(n logn). This algorithm
works in two steps. The first step is a prepro-
cessing step, where single-source shortest-path
distances in the dual are computed. In the sec-
ond step the algorithm iterative saturates the
leftmost path from source s to sink t of the
residual graph. This algorithm, presented in
2009, was the fastest algorithm for this prob-
lem.

6.2 Multiple-Source Multiple-Sink
Max Flow in Directed Planar
Graphs

The problem computing a max flow in a graph
with multiple sources and multiple sinks in
a directed planar graph G given a algorithm
for single-source single-sink max flow on di-
rected planar graphs is not trivial like in gen-
eral graphs. In general graphs we can solve

8

this problem by manipulating G. We can in-
troduce a super-source and connect this vertex
to all previous existing sources, while they are
becoming normal vertices and proceed analo-
gously with the sink vertices. For more than
twenty years this method was also the fastest
methods for this problem in planar graphs,
but actually this method possibly destroys the
given planarity of G.
While manipulating G would lead to a run-
time of O(n2 logn), Borradaile et al presented
a faster algorithm for this specific problem by
using the planarity of G. This algorithm has
a runtime of O(n log3 n) [2]. To achieve this
runtime a very complex algorithm was cre-
ated, so that only the used methods will be
mentioned. In the presented faster min st-
cut algorithm a divide and conquer strategy
is used, which is also used for this problem.
Also both algorithms are operating on dense
distance graphs to speed up the computation.
But the algorithm for multiple-sink multiple-
source uses also a lot of other techniques like
multiple source shortest path or pseudoflows.
In the end this algorithm takes O(n log3 n) and
is the first algorithm for this problem, which
can take advantage of the planar characteris-
tic of G and therefore allows, amongst other
problems, some computer vision problems to
be solved faster.

7 Conclusion

Reif’s algorithm can solve the min st-cut prob-
lem in planar undirected graphs. This algo-
rithm uses that a min st-separating cycle on
the dual graph can be found, in order to find a
min st-cut. Then on the dual graph a shortest
path π from face s to face t can be computed
and the shortest path from every vertex of π
to a copy of itself can be calculated. Because
of that, we get all st-separating cycles, which
are minimal while including a vertex p ∈ π and

a minimum of these can be chosen to get the
min st-cut.
This idea was developed further resulting in
the faster min st-cut algorithm. This algo-
rithm uses a two phase approach and does
some preprocessing to achieve a runtime of
O(n log logn). A given dual graph is divided
in O(n/r) pieces, what allows dense distance
graphs to be created. Then the first phase
takes place. Basically Reif’s algorithm is ex-
ecuted on a graph consisting only of boundary
vertices and edges of the dense distance graphs,
what allows this phase to be faster than the
original algorithm. Afterwards in the second
phase the remaining shortest path for the inte-
rior vertices can be computed. Because of the
first phase, the graph is divided by shortest
path of the boundary vertices, what speeds up
the second phase, since again not many vertices
have to be taken into account for this compu-
tation.
The max st-flow problem in undirected pla-
nar graphs can be solved by using this algo-
rithm and an O(n) algorithm of Hassin and
Johnson, resulting in a total runtime of also
O(n log logn).
At the end of this paper an algorithm for max
st-flow in directed planar graphs was presented
with a runtime of O(n logn). Furthermore an
outlook on the, in planar graphs non-trivial,
multiple-source multiple-sink problem in di-
rected planar graphs was given. An algorithm,
which is the first one for this problem in planar
graphs, can solve this problem in O(n log3 n).

References
[1] G. Borradaile and P. Klein. An o(n log

n) algorithm for maximum st-flow in a di-
rected planar graph. J. ACM, 56(2):9:1–
9:30, Apr. 2009.

[2] G. Borradaile, P. N. Klein, S. Mozes,
Y. Nussbaum, and C. Wulff-Nilsen.

9

Multiple-source multiple-sink maximum
flow in directed planar graphs in near-
linear time.

[3] G. N. Federickson. Fast algorithms for
shortest paths in planar graphs, with ap-
plications. SIAM Journal on Computing,
16(6):1004–1022, 1987.

[4] R. Hassin and D. B. Johnson. An
O(n log2 n) algorithm for maximum flow
in undirected planar networks. SIAM
Journal on Computing, 14(3):612–624,
1985.

[5] M. R. Henzinger, P. Klein, S. Rao, and
S. Subramanian. Faster shortest-path al-
gorithms for planar graphs. journal of
computer and system sciences, 55(1):3–23,
1997.

[6] A. Itai and Y. Shiloach. Maximum flow in
planar networks. SIAM Journal on Com-
puting, 8(2):135–150, 1979.

[7] G. F. Italiano, Y. Nussbaum,
P. Sankowski, and C. Wulff-Nilsen.
Improved algorithms for min cut and max
flow in undirected planar graphs. pages
313–322, 2011.

[8] P. N. Klein. Multiple-source shortest
paths in planar graphs. In Proceedings of
the sixteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 146–
155. Society for Industrial and Applied
Mathematics, 2005.

[9] G. L. Miller. Finding small simple cycle
separators for 2-connected planar graphs.
Journal of Computer and system Sci-
ences, 32(3):265–279, 1986.

[10] R. Trudeau. Introduction to Graph The-
ory. Dover Books on Mathematics. Dover
Publications, 2013.

10

	Introduction
	Definitions
	Face
	Piece
	r-Division
	Algorithm of Frederickson
	Dense Distance Graph
	Fast Dijkstra
	Dual Graph

	Reif's Algorithm
	Faster Min st-Cut Algorithm
	First Phase
	Second Phase

	Faster Max st-Flow
	Outlook
	Max st-Flow In Directed Planar Graphs
	Multiple-Source Multiple-Sink Max Flow in Directed Planar Graphs

	Conclusion

