
Parameterized Algorithms

Peter Rossmanith

Lehr- und Forschungsgebiet Theoretische Informatik
RWTH Aachen

October 15, 2021

Overview

Introduction

Parameterized Algorithms

Further Techniques

Parameterized Complexity Theory

Advanced Techniques

Introduction

Parameterized algorithms are a method for the exact solution of
hard problems.

Other such methods:

▶ Heuristics

▶ Simulated annealing

▶ Approximation algorithms

▶ Genetic algorithms

▶ Branch- and Bound

▶ Backtracking

▶ Total enumeration

NP-complete Problems

Many problems encountered in practice are NP-complete.

We know from complexity theory:

Definition
A language L is NP-complete, if

▶ L ∈ NP

▶ Every problem in NP can be reduced to L in polynomial time.

Theorem
If there is a polynomial time algorithm for an NP-complete
problem, then P = NP.

Question: Does that mean that NP-complete problems are hard to
solve in practice?

NP-complete problems

Why is SAT (satisfiability) NP-complete?

Because the computation of a nondeterministic Turing-maching
can be simulated by a combinatorial circuit.

The existence of a successful computation of a Turingmachine can
be reduced to the existence of a satisfying assignment for a circuit.

Therefore there are formulas whose satisfiability is as hard to
determine as to solve any problem in NP.

If look at the set of all formulas, then some of them are indeed
very hard.

But most formulas are not constructed in this way!

Example: TSP

51.050611

Example: TSP

435.489475

Example: TSP

2107.739054

Running Times

NP-complete problems are hard in practice because there are no
algorithms that always go in the right direction.

▶ Greedy-Algorithms

▶ Divide-and-Conquer

▶ Dynamic Programming

Hence, many wrong partial solutions have to be considered, leading
to exponential running times.

Comparing Running Times

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1 10 100

1.1**n
n**3
n**2

Comparing Running Times

1

100

10000

1e+06

1e+08

1e+10

1e+12

1e+14

1e+16

1 10 100

1.2**n
n**3
n**2

Comparing Running Times

1

1e+10

1e+20

1e+30

1e+40

1e+50

1e+60

1e+70

1 10 100

2**n
n**3
n**2

NP-Completeness as an Excuse

Molecular biologist Joseph Felsenstein:
About ten years ago, some computer scientists came by
and said they heard we have some really cool problems.
They showed that the problems are NP-complete and went
away!

Overview

Introduction

Parameterized Algorithms

Further Techniques

Parameterized Complexity Theory

Advanced Techniques

Easy and Hard Instances

▶ Exponential running time in the worst case

▶ Running time needs to be huge only for some instances

▶ Practical instances might be easy

▶ How can we distinguish between hard and easy instances?

Parameter

We assign a number, the parameter, to each instance.

Our hope:

▶ Good running times for small parameters

▶ Instances occuring in practice have small parameters

There is no contradiction to the NP-completeness of the problem!

Main Definition

Let there be an algorithmic problem.

Let n be the size of some instance and k the corresponding
parameter.

The problem is fixed parameter tractable, if there is an algorithm
solving the problem whose running time is

O(f (k)nc).

Here c is a constant and f an arbitrary function.

Running Time of a Parameterized Algorithm

1.2**k*n**2

20 40 60 80100120140160180200
2040

6080
100120

140160
180200

1
100000
1e+10
1e+15
1e+20
1e+25

The running time is 1.2kn2. The parameter is between 1 and n.

Running Time of a Parameterized Algorithm

1.2**k*n**2

01002003004005006007008009001000
2 4 6 8 1012

1416
1820

1
10
100
1000

10000
100000
1e+06
1e+07
1e+08

The running time is 1.2kn2. The parameter is small.

Running Time of a Parameterized Algorithm

1.2**k*n**2
1.1**n

01002003004005006007008009001000
2 4 6 8 1012

1416
1820

1
100000
1e+10
1e+15
1e+20
1e+25
1e+30
1e+35
1e+40
1e+45

The running time is 1.2kn2. The parameter is small. The
non-parameterized algorithm has running time 1.1n.

Running Time of a Parameterized Algorithm

1.2**k*n**2
1.1**n

20 40 60 80100120140160180200
2040

6080
100120

140160
180200

1
100000
1e+10
1e+15
1e+20
1e+25

Example: Vertex Cover

Input: A graph G = (V ,E).

Output: A minimal Vertex Cover C ⊆ V .

Definition
A set C ⊆ V is a Vertex Cover of G = (V ,E), if at least one
vertex of each edge in E is in C .

Example

Example

Expressing Vertex Cover as an ILP

Let G = (V ,E) be a graph with V = {v1, . . . , vn}.

Minimize v1 + . . .+ vn

subject to 0 ≤ vi ≤ 1 for i = 1, . . . , n

vi + vj ≥ 1 for {vi , vj} ∈ E

vi ∈ Z for i = 1, . . . , n

Every NP-complete problem can be reduced to an ILP (but often it
is a bad idea to do so).

British Museum Method

Many important NP-complete problems are indeed search
problems. In some (very big) search space the solutions are well
hidden.

One possible plan of attack is consequently to exhaustively search
the whole search space.

In the case of vertex cover this amounts to looking at all C ⊆ V .

That makes 2|V | different subsets.

The running time is O(|E |2|V |).

Backtracking

Consider some vertex v ∈ V .

There are the two possibilities v ∈ C or v /∈ C .

If v /∈ C , then N(v) ⊆ C , because all edges incident to v must be
covered.

(N(v) is the neighborhood of v , i.e., all nodes adjacent to v .)

These simple observations lead immediately to an algorithm.

Backtracking

Input: G = (V ,E)

Output: An optimal vertex cover VC (G)

if V = ∅ then return ∅
Choose an arbitrary node v ∈ G
G1 := (V − {v}, { e ∈ E | v /∈ e })
G2 := (V −{v}−N(v), { e ∈ E | e∩N(v) = ∅ })
if |{v} ∪ VC (G1)| ≤ |N(v) ∪ VC (G2)|
then return {v} ∪ VC (G1)
else return N(v) ∪ VC (G2)

Backtracking

G

G1 G2

Backtracking (a different approach)

Every edge e = {v1, v2} must be covered by v1 of v2.

Hence, we can look at an edge {v1, v2} and try recursively both
possibilities:

▶ v1 ∈ C

▶ v2 ∈ C

This again leads to immeadiately to a simple algorithm:

Backtracking (a different approach)

Input: G = (V ,E)

Output: An optimal vertex cover VC (G)

if E = ∅ then return ∅
Choose some edge {v1, v2} ∈ E
G1 := (V − {v1}, { e ∈ E | v1 /∈ e })
G2 := (V − {v2}, { e ∈ E | v2 /∈ e })
if |{v1} ∪ VC (G1)| ≤ |{v2} ∪ VC (G2)|
then return {v1} ∪ VC (G1)
else return {v2} ∪ VC (G2)

This recursive algorithms computes an optimal vertex cover.

Heuristics

1 2 3

4 5 6

Always choose a vertex with maximal degree (greedy).

Approximation Algorithms

Every edge has to be covered by at least one of its vertices.

Problem: Which one?

Solution: Take both.

▶ Naturally there is no guarantee that we find an optimal
solution.

▶ The vertex cover found in this way can be at most twice as
big as an optimal one.

Approximation algorithms

The algorithm might look like this:

C := ∅;
while E ̸= ∅ do
Choose some e ∈ E ;
V := V − e;
C := C ∪ e;
E := { e ′ ∈ E | e ∩ e ′ = ∅ }

od;
return C

Parameterized Algorithm

Input: G = (V ,E), k

Parameter: k

Output: A vertex cover VC (G , k) of size k or smaller, if it exists.

if E = ∅ then return ∅
if k = 0 then return “no solution”
Choose some edge {v1, v2} ∈ E
G1 := (V − {v1}, { e ∈ E | v1 /∈ e })
G2 := (V − {v2}, { e ∈ E | v2 /∈ e })
if |{v1} ∪ VC (G1, k − 1)| ≤ |{v2} ∪ VC (G2, k − 1)|
then return {v1} ∪ VC (G1, k − 1)
else return {v2} ∪ VC (G2, k − 1)

Questions:

1. What does “no solution” mean?

2. Why is the running time O(f (k)nc)?

3. What exactly is f (k)?

4. Do we always find an optimal vertex cover?

5. Can we simplify the last lines of the algorithm?

