Application 1

Max-Leaf-Spanning-Tree:
Input: A graph G and a number k
Parameter: k

Question: Does G have a spanning tree with at least k leaves?

Both the 2 x k grid and the k-circus graph contain a tree with k
leaves.

That is, Max-Leaf-Spanning-Tree is fixed parameter tractable.

Application 1

Max-Leaf-Spanning-Tree:

Input: A graph G and a number k

Param Does the following statement hold?

If a graph contains a tree with k leaves,
then it also contains a spanning tree with
at least k leaves.

Questi sast k leaves?

Both the 2 x k grid and the k-circus graph contain a tree with k
leaves.

That is, Max-Leaf-Spanning-Tree is fixed parameter tractable.

Application 2

Feedback Vertex Set:
Input: A graph G and a number k
Parameter: k

Question: Are there < k nodes whose removal makes G acyclic?

Application 2

Feedback Vertex Set:
Input: A graph G and a number k
Parameter: k

Question: Are there < k nodes whose removal makes G acyclic?

Theorem
Feedback Vertex Set is fixed parameter tractable.

Feedback Vertex Set

Theorem
Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender's theorem.

1. Small tree decomposition:

Feedback Vertex Set

Theorem
Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender's theorem.

1. Small tree decomposition: Courcelle

Feedback Vertex Set

Theorem
Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender's theorem.

1. Small tree decomposition: Courcelle
2. 2 x 3k grid:

Feedback Vertex Set

Theorem
Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender's theorem.

1. Small tree decomposition: Courcelle
2. 2 x 3k grid: No

Feedback Vertex Set

Theorem
Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender's theorem.

1. Small tree decomposition: Courcelle
2. 2 x 3k grid: No
3. 4k-circus graph:

Feedback Vertex Set

Theorem
Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender's theorem.

1. Small tree decomposition: Courcelle
2. 2 x 3k grid: No

3. 4k-circus graph: Remove the tip and check for a FVS of size
k—1.

Overview

Parameterized Complexity Theory

Parameterized Complexity Theory

Classical complexity theory:

» Complexity classes P, NP, etc.
» Languages Le P, LC¥*

» Framework insufficient for parameterized problems

Parameterized Complexity Theory

Definition

A parameterized problem over the alphabet ¥ is a set of pairs
(w, k), where w € ¥* and k € N.

It is not allowed that there exists w and k # k’ with (w, k) € L
and (w, k) € L, if L is a parameterized problem.

The second condition states that k is a function of w.

Parameterized Complexity Theoery

We like to state parameterized problems as follows:

Input: A graph G and a number k

Parameter: k

Question: Does G contain a clique of size k as a subgraph?

Parameterized Complexity Theory

The parameter can be some arbitrary number, if it can be easily
computed from the input.

Input: A graph G and a number k
Parameter: The diameter of G

Question: Does G contain a clique of size k as a subgraph?

Here it is easy to compute (G, A(G)) from G in order to get
formally a parameterized problem.

Parameterized Complexity Theory

One goal of complexity theory is to categorize problems into easy
and hard ones.

For this purpose P and NP are best known.

Others are:

» NC and L
» ACY and NC!
» EXPTIME and EXPSPACE

> etc. etc.

Parameterized Complexity Theory

In parameterized complexity theory the easy problems can be found
in the class FPT.

Definition
The class FPT contains all parameterized problems that are fixed
parameter tractable.

Formally: L € FPT, if there is an algorithm solving (w, k) € L in
at most f(k)|w|¢ steps, where c is a constant and f: N — N an
arbitrary function.

Parameterized Complexity Theory

A fundamental concept in complexity theory are reductions.
Important example: polynomial time many-one reductions:

g: X* — ¥* reduces the problem L; to Ly, if

l.wely < g(w)e L.
2. g(w) can be computed in |w|%(1) steps.

Important property: If Ly can be reduced to Ly and Ly ¢ P, then
Ly ¢ P.

“I can’t find an efficient algorithm, but neither can all these famous people.”

Important property: If Ly can be reduced to Ly and Ly ¢ P, then
Ly ¢ P.

Parameterized Complexity Theory

Question: Is this reduction useful for parameterized problems?

1. wel; < g(w) € L.
2. g(w) can be computed in |w|%(1) steps.

Does the corresping property hold?

If L1 can be reduced to Ly and Ly ¢ FPT, then Ly ¢ FPT.

Parameterized Complexity Theory

That corresponding property does not hold:
We can map (w, k) to (w, |w|)!

If we reduce a problem to itself like this, we have f(|w|)|w|¢ steps
instead of f(|w|)|w|¢ steps to compute a solution.

It that way we can solve every computable problem.

A polynomial time reduction is not fine grained enough.

Parameterized Reductions

Definition
A parameterized problem L; C ¥* can be reduced to L, C " by a
parameterized reduction if
» r,s: N — N are computable functions,
> there is a function g: ¥* x N — I, (w, k) — (w/, k'), that
can be computed in r(k)|w|%() steps and k' = s(k),
» (w, k) € Ly if and only if g(w, k) € L.

Parameterized Reductions

Theorem

If Ly ¢ FPT and there is a parameterized reduction from L to Lo,
then Ly ¢ FPT.

Proof

Assume Ly € FPT. We can computed (w’, k') = g(w, k) in
r(k)|w|€ steps such that k" = s(k) and |w/| < r(k)|w|¢.

Then test whether (w/, k) € L, taking

FI(KN)|w'|7 < F/(s(k))r(k)¥|w|® steps.

Because (w, k) € L; < (w/, k') € Ly, we answered whether
(w, k) € Ly holds and therefore L; € FPT.

Parameterized Reductions

Look at some classical reductions:

» Vertex Cover to Independent Set
» CNF-SAT to 3SAT (weighted)
» Clique to Independent Set

Classical reductions are usually not parameterized reductions.

