
Parameterized Complexity Theory

Definition
A boolean circuit is an acyclic graph such that:

▶ There is exactly one vertex with outdegree 0, the Output.

▶ Every vertex with indegree 0 is an Input and labeled by xi or
¬xi .

▶ All other vertices are gates and labeled by ∧, ∨ or ¬ (with
indegree 1).



Parameterized Complexity Theory

x1 x2 x3 x4 x5

∧ ¬ ∨ ¬

∨ ∧ ∧

∨ ∧

∨ ∨

∧

To find out whether a boolean circuit has a satisfying assignment
is NP-complete.



Parameterized Complexity Theory

x1 x2 x3 x4 x5

∧ ¬ ∨ ¬

∨ ∧ ∧

∨ ∧

∨ ∨

∧

Big gates have indegree > 2.

The height is the length of the longest path.

The weft is the maximal number of big gates on some path.



Parameterized Complexity Theory

Definition
Let F(t, h) be the set of all boolean circuits with height h and
weft t.

Definition
The weighted satisfiability problem LF(t,h):

Input: (G , k), where G ∈ F(t, h)
Parameter: k
Question: Has G a satisfiying assingment of weight k

The weight of an assignment is the number of 1s.



Parameterized Complexity Theory

Definition
A parameterized problem is in the complexity class W [t] if it can
be reduced to LF(t,h) for some h by a parameterized reduction.

Example

Independent Set is in W [1].

Dominating Set is in W [2].

Question: Why?



Parameterized Complexity Theory

Definition
A problem L is W [t]-hard, if every problem in W [t] can be reduced
to L by a parameterized reduction.

Definition
A problem is W [t]-complete, if it belongs to W [t] and is
W [t]-hard.



Parameterized Complexity Theory

Theorem
Let A be a W [t]-complete problem.
Assume that A can be reduced to B by a parameterized reduction
and B ∈ W [t].
Then B is also W [t]-complete.

Proof
We already assumed that B ∈ W [t].
Since every problem in W [t] can be reduced to A, the
W [t]-hardness follows from the transitivity of parameterized
reducibility.



Short Turing Machine Acceptance

We will see later that the following problem is W [1]-complete:

Definition
Short Turing Machine Acceptance:

Input: A non-deterministic Turing maching M, a word w , a
number k .
Parameter: k
Question: Does M have an accepting path of length at most k on
input w?



The class W [1, s] and W [1, 2]

We consider the weighted satisfiability problem for very simple
circuits.

Definition
Let s > 1 be a number. By F(s) we denote the family of all circuit
whose output is an AND-gate that is connected to OR-gates with
indegrees at most s. The OR-gates are directly connected to
inputs (literals, i.e., variables or negated variables).

We define W [1, s] as the class of all problems in W [1] that can be
reduced to LF(s) by a parameterized reduction.



We will prove the following theorem:

Theorem
Short Turing Machine Acceptance ∈ W [1, 2]

For this end we need a reduction from Short Turing Machine
Acceptance to LF(2).

We have to map M, w , k to a circuit and a number k ′ = f (k) in
such a way that there is a satisfying assignment of weight k ′ iff M
accepts w in at most k steps.



We will prove the following theorem:

Theorem
Short Turing Machine Acceptance ∈ W [1, 2]

For this end we need a reduction from Short Turing Machine
Acceptance to LF(2).

We have to map M, w , k to a circuit and a number k ′ = f (k) in
such a way that there is a satisfying assignment of weight k ′ iff M
accepts w in at most k steps.



We can enumerate all configurations of M and therefore identify
them with the numbers 1, 2, . . .

A configuration consists of

▶ the position of the read/write-head,

▶ the state.

If i is a configuration and a is a symbol, then let δ(i , a) = (j , b)
hold if M changes from configuration i into j when reading the
symbol a overwriting it with b.

We model with the variable Ct,i ,j ,a,b that M changes from
configuration i to j in the tth step while reading an a and
overwriting it with a b.



We can enumerate all configurations of M and therefore identify
them with the numbers 1, 2, . . .

A configuration consists of

▶ the position of the read/write-head,

▶ the state.

If i is a configuration and a is a symbol, then let δ(i , a) = (j , b)
hold if M changes from configuration i into j when reading the
symbol a overwriting it with b.

We model with the variable Ct,i ,j ,a,b that M changes from
configuration i to j in the tth step while reading an a and
overwriting it with a b.



We can enumerate all configurations of M and therefore identify
them with the numbers 1, 2, . . .

A configuration consists of

▶ the position of the read/write-head,

▶ the state.

If i is a configuration and a is a symbol, then let δ(i , a) = (j , b)
hold if M changes from configuration i into j when reading the
symbol a overwriting it with b.

We model with the variable Ct,i ,j ,a,b that M changes from
configuration i to j in the tth step while reading an a and
overwriting it with a b.



We can enumerate all configurations of M and therefore identify
them with the numbers 1, 2, . . .

A configuration consists of

▶ the position of the read/write-head,

▶ the state.

If i is a configuration and a is a symbol, then let δ(i , a) = (j , b)
hold if M changes from configuration i into j when reading the
symbol a overwriting it with b.

We model with the variable Ct,i ,j ,a,b that M changes from
configuration i to j in the tth step while reading an a and
overwriting it with a b.



The variable Mt,p,a,b models that at the beginning of the tth step
the symbol a can be found at the pth position of the tape and that
it is overwritten with a b during this step.

Our next goal is to construct a formula whose satisfying
assignments model a computation of the Turing maching M.

In particular there will be a satisfying assignment with Ct,i ,j ,a,b = 1
iff there is a computation where M goes from configuration i to j
in its tth step reading an a and overwriting it with a b.

Every possible computation path should correspond to exactly one
(weighted) satisfying assignment.

Moreover: There should exist only accepting computation of
length k and satisfying assignments with weight f (k).



The variable Mt,p,a,b models that at the beginning of the tth step
the symbol a can be found at the pth position of the tape and that
it is overwritten with a b during this step.

Our next goal is to construct a formula whose satisfying
assignments model a computation of the Turing maching M.

In particular there will be a satisfying assignment with Ct,i ,j ,a,b = 1
iff there is a computation where M goes from configuration i to j
in its tth step reading an a and overwriting it with a b.

Every possible computation path should correspond to exactly one
(weighted) satisfying assignment.

Moreover: There should exist only accepting computation of
length k and satisfying assignments with weight f (k).



We need a lot of constraints in order to make this model work.

We will express each constraint by an AND of ORs.

We define clauses in such a way that a wrong modelling
automatically leads to a non-satisfying assignment.

In that way, satisfying assignments are those that do not overstep
any rule.



Rule 1:

“Nothing exists twice because we have a computation path”

More precisely: In step t the machine M is in exactly one state,
changes to exactly one other, reads exactly one symbol, and
overwrites it by exactly one symbol.

How can we enforce Rule 1 by clauses?

Ct,i ,j ,a,b → Ct,i ′,j ′,a′,b′

or, equivalently,
Ct,i ,j ,a,b ∨ Ct,i ′,j ′,a′,b′

for all t, i , j , a, b, i ′, j ′, a′, b′ with (i , j , a, b) ̸= (i ′, j ′, a′, b′) and

Mt,p,a,b → Mt,p,a′,b′

for all t, p, a, b, a′, b′ with (a, b) ̸= (a′, b′).

Question:
Why only one possibility? We have
nondeterministic TMs after all?



Rule 1:

“Nothing exists twice because we have a computation path”

More precisely: In step t the machine M is in exactly one state,
changes to exactly one other, reads exactly one symbol, and
overwrites it by exactly one symbol.

How can we enforce Rule 1 by clauses?

Ct,i ,j ,a,b → Ct,i ′,j ′,a′,b′

or, equivalently,
Ct,i ,j ,a,b ∨ Ct,i ′,j ′,a′,b′

for all t, i , j , a, b, i ′, j ′, a′, b′ with (i , j , a, b) ̸= (i ′, j ′, a′, b′) and

Mt,p,a,b → Mt,p,a′,b′

for all t, p, a, b, a′, b′ with (a, b) ̸= (a′, b′).

Question:
Why only one possibility? We have
nondeterministic TMs after all?



Rule 1:

“Nothing exists twice because we have a computation path”

More precisely: In step t the machine M is in exactly one state,
changes to exactly one other, reads exactly one symbol, and
overwrites it by exactly one symbol.

How can we enforce Rule 1 by clauses?

Ct,i ,j ,a,b → Ct,i ′,j ′,a′,b′

or, equivalently,
Ct,i ,j ,a,b ∨ Ct,i ′,j ′,a′,b′

for all t, i , j , a, b, i ′, j ′, a′, b′ with (i , j , a, b) ̸= (i ′, j ′, a′, b′) and

Mt,p,a,b → Mt,p,a′,b′

for all t, p, a, b, a′, b′ with (a, b) ̸= (a′, b′).

Question:
Why only one possibility? We have
nondeterministic TMs after all?



Rule 2:

“M and C must fit together.”

More precisely: If we read a symbol, it has to be there beforehand.
If we write a symbol, it must be there afterwards.

How can we enforce Rule 2 by clauses?

Ct,i ,j ,a,b → Mt,p(i),a,b

for all t, i , j , a, b, where p(i) is the position of the read/write head
in configuration i .

Question:
Do we need the other direction, too?
“If there is a symbol on the tape, then
this symbol is read.”



Rule 2:

“M and C must fit together.”

More precisely: If we read a symbol, it has to be there beforehand.
If we write a symbol, it must be there afterwards.

How can we enforce Rule 2 by clauses?

Ct,i ,j ,a,b → Mt,p(i),a,b

for all t, i , j , a, b, where p(i) is the position of the read/write head
in configuration i .

Question:
Do we need the other direction, too?
“If there is a symbol on the tape, then
this symbol is read.”



Rule 2:

“M and C must fit together.”

More precisely: If we read a symbol, it has to be there beforehand.
If we write a symbol, it must be there afterwards.

How can we enforce Rule 2 by clauses?

Ct,i ,j ,a,b → Mt,p(i),a,b

for all t, i , j , a, b, where p(i) is the position of the read/write head
in configuration i .

Question:
Do we need the other direction, too?
“If there is a symbol on the tape, then
this symbol is read.”



Rule 3:

“Subsequent steps have to fit together.”

More precisely: If one step ends with a configuration, the next step
has to start with the same one. The tape content cannot change
from step t to step t + 1 at most places.

How can we enforce Rule 3 by clauses?

Ct,i ,j ,a,b → Ct+1,i ′,j ′,c,d

for all t, i , j , i ′, j ′a, b, c , d with i ′ ̸= j and

Mt,p,a,b → Mt+1,p,c,d

for all t, p, a, b, c , d with b ̸= c .



Rule 3:

“Subsequent steps have to fit together.”

More precisely: If one step ends with a configuration, the next step
has to start with the same one. The tape content cannot change
from step t to step t + 1 at most places.

How can we enforce Rule 3 by clauses?

Ct,i ,j ,a,b → Ct+1,i ′,j ′,c,d

for all t, i , j , i ′, j ′a, b, c , d with i ′ ̸= j and

Mt,p,a,b → Mt+1,p,c,d

for all t, p, a, b, c , d with b ̸= c .



Rule 4:

“The beginning and the end have to be correct. The computation
path must be accepting.”

→ Exercise

Because all rules have to hold simultaneously we can combine
them with a big AND.

This yields an F(2)-formula as desired.

There is an accepting path of length k iff there is a satisfying
assignment with weight k ′.

Question:
How big is k ′?



Rule 4:

“The beginning and the end have to be correct. The computation
path must be accepting.”

→ Exercise

Because all rules have to hold simultaneously we can combine
them with a big AND.

This yields an F(2)-formula as desired.

There is an accepting path of length k iff there is a satisfying
assignment with weight k ′.

Question:
How big is k ′?



Rule 4:

“The beginning and the end have to be correct. The computation
path must be accepting.”

→ Exercise

Because all rules have to hold simultaneously we can combine
them with a big AND.

This yields an F(2)-formula as desired.

There is an accepting path of length k iff there is a satisfying
assignment with weight k ′.

Question:
How big is k ′?



Remember:

We just proved the following.

Theorem
Short Turing Machine Acceptance ∈ W [1, 2]



The class antimonotone-W [1, s]

We consider the weighted satisfiability problem for very simple
structured circuits.

Definition
Let s > 1 be a number. By antimonotone-F(s) we denote the
family of all circuits whose output is an AND-gate connected to
OR-gates with indegree at most s. The OR-gates are connected to
negative literals only (negated variables).

Antimonotone-W [1, s] is the class of all parameterized problems in
W [1] that can be reduced to LAntimonoton-F(s) by a parameterized
reduction.



Theorem
LAntimonoton-F(s) can be reduced to Short Turing Machine
Acceptance be a parameterized reduction.

Corollary

antimonotone-W [1, s] ⊆ antimonotone-W [1, 2]

Proof
Construct a turing machine that works as follows:

1. Guess k variables onto the tape.

2. Visit all subsets of size s of them.

3. Verify for each subset that it does not cover a clause.

Question:
What is the running time?

Our real goal is:

W [1] ⊆ antimonotone-W [1, 2]



Theorem
LAntimonoton-F(s) can be reduced to Short Turing Machine
Acceptance be a parameterized reduction.

Corollary

antimonotone-W [1, s] ⊆ antimonotone-W [1, 2]

Proof
Construct a turing machine that works as follows:

1. Guess k variables onto the tape.

2. Visit all subsets of size s of them.

3. Verify for each subset that it does not cover a clause.

Question:
What is the running time?

Our real goal is:

W [1] ⊆ antimonotone-W [1, 2]



Theorem
LAntimonoton-F(s) can be reduced to Short Turing Machine
Acceptance be a parameterized reduction.

Corollary

antimonotone-W [1, s] ⊆ antimonotone-W [1, 2]

Proof
Construct a turing machine that works as follows:

1. Guess k variables onto the tape.

2. Visit all subsets of size s of them.

3. Verify for each subset that it does not cover a clause.

Question:
What is the running time?

Our real goal is:

W [1] ⊆ antimonotone-W [1, 2]



Theorem
LAntimonoton-F(s) can be reduced to Short Turing Machine
Acceptance be a parameterized reduction.

Corollary

antimonotone-W [1, s] ⊆ antimonotone-W [1, 2]

Proof
Construct a turing machine that works as follows:

1. Guess k variables onto the tape.

2. Visit all subsets of size s of them.

3. Verify for each subset that it does not cover a clause.

Question:
What is the running time?

Our real goal is:

W [1] ⊆ antimonotone-W [1, 2]



Theorem
LAntimonoton-F(s) can be reduced to Short Turing Machine
Acceptance be a parameterized reduction.

Corollary

antimonotone-W [1, s] ⊆ antimonotone-W [1, 2]

Proof
Construct a turing machine that works as follows:

1. Guess k variables onto the tape.

2. Visit all subsets of size s of them.

3. Verify for each subset that it does not cover a clause.

Question:
What is the running time?

Our real goal is:

W [1] ⊆ antimonotone-W [1, 2]



The class W [1, 1, s]

Now we consider the weighted satisfiability problem for different,
but still very simple circuits.

Definition
Let s > 1 be a number. By F(1, 1, s) we denote the family of all
circuits whose output is an OR-gate connected to AND-gates that
are connected to OR-gates with indegree at most s.

By W [1, 1, s] we denote the class of problems in W [1] that can be
reduced to LF(1,1,s) by a parameterized reduction.



Simplification of Weft-1-Circuits

Theorem
Consider a circuit of weft 1 and height h.
Then we can construct an equivalent circuit F(1, 1, s) in
polynomial time, where s depends only on h.

Proof
▶ DNF und CNF

▶ de Morgan

▶ Combination of gates of same type

▶ Distributive law



Simplification of Weft-1-Circuits

Theorem
Consider a circuit of weft 1 and height h.
Then we can construct an equivalent circuit F(1, 1, s) in
polynomial time, where s depends only on h.

Proof
▶ DNF und CNF

▶ de Morgan

▶ Combination of gates of same type

▶ Distributive law



LF(1,1,s)

Goal: Reduce LF(1,1,s) to STMA.

Intermediate step:

Reduce LF(1,1,s) to one TM Mi for all subcircuits below the output
gate.

One TM guesses whicht Mi will be used for the simulation.

Still not known:

How to reduce LF(1,s) to STMA.



LF(1,1,s)

Goal: Reduce LF(1,1,s) to STMA.

Intermediate step:

Reduce LF(1,1,s) to one TM Mi for all subcircuits below the output
gate.

One TM guesses whicht Mi will be used for the simulation.

Still not known:

How to reduce LF(1,s) to STMA.



Reduction of LF(1,s) to STMA:

Construct a TM that guesses an assignment on the tape and then
computes two numbers:

▶ A = the number of clauses that are satisfied by negated
variables.

▶ M = the number of clauses that are satisfied only by positive
literals.

Assignment is satisfying iff A+M = number of clauses.



Reduction of LF(1,s) to STMA:

Construct a TM that guesses an assignment on the tape and then
computes two numbers:

▶ A = the number of clauses that are satisfied by negated
variables.

▶ M = the number of clauses that are satisfied only by positive
literals.

Assignment is satisfying iff A+M = number of clauses.



Reduction of LF(1,s) to STMA:

Construct a TM that guesses an assignment on the tape and then
computes two numbers:

▶ A = the number of clauses that are satisfied by negated
variables.

▶ M = the number of clauses that are satisfied only by positive
literals.

Assignment is satisfying iff A+M = number of clauses.



Reduction of LF(1,s) to STMA:

Construct a TM that guesses an assignment on the tape and then
computes two numbers:

▶ A = the number of clauses that are satisfied by negated
variables.

▶ M = the number of clauses that are satisfied only by positive
literals.

Assignment is satisfying iff A+M = number of clauses.


