
RWTH Aachen

Lehrgebiet Theoretische Informatik

Dreier—Kuinke—Rossmanith

WS 2018

Problem Set 2
29.10.2018

Parameterized Algorithms Tutorial

Tutorial Exercise T1

In this exercise, we wish to design an algorithm for the Feedback Vertex Set problem.
An input to this problem is a graph G = (V,E) and an integer k and the question is
whether the graph has a vertex subset of size at most k whose deletion results in a forest.
Such a vertex set is called a feedback vertex set.

1. A feedback vertex set hits all cycles in the graph. Therefore vertices which do not

belong to cycles may be safely removed. Use this observation to design reduction

rules to simplify the graph.

2. Can you bound the girth of the reduced graph? Use the bound to design an algo-
rithm for the problem.

3. What is the running time of your algorithm?

Solution

We start by designing so-called reduction rules. These are polynomial-time algorithms
that transform an instance (G, k) into an equivalent instance (G′, k′) such that the new in-
stance is “simpler” or has “more structure.” In this case, “equivalence” of input instances
means: (G, k) is a yes-instance if and only if (G′, k′) is a yes-instance.

Reduction Rule 1. Iteratively delete vertices of degree one and keep the parameter
fixed. Intuitively, this rule deletes “tree-like” portions of the graph and since no such
vertex can be part of an optimal solution, this rule is sound.

Reduction Rule 2. Short-circuit vertices of degree two and keep the parameter fixed.
That is, if v is a vertex of degree two with neighbors x and y (not necessarily distinct),
then delete v and add an edge between x and y (even if they were connected by an edge).
A vertex of degree two may or may not be in the solution, but any solution that selects
this vertex can be transformed into a solution of the same size by removing it and picking
one of its neighbors. This shows that this rule is sound. However this rule transforms a
simple graph into a multi-graph. Try this rule on a cycle to see its effect.

ReductionRule 3. If a vertex has a loop then select it in the solution, delete it from
the graph, and decrement the parameter by one.

Apply these rules in the order stated until they can’t be applied any more. The instance
that we obtain is said to be reduced wrt to the above rules. Any vertex in the reduced
graph has degree at least three. An interesting property of such graph is that they always
have a cycle of length at most 2 logn + 1. This can be seen by doing a BFS from an
arbitrary vertex. Each vertex spawns two child nodes (except the root which spawns
three children) and hence the depth of the BFS tree cannot exceed log n. Hence there is

a cycle of length at most 2 logn + 1 (climb down at most log n edges in the tree, use a
cross edge and then climb up at most logn edges).

Since one of the vertices in this cycle must be in an optimal solution (in particular, in a
feedback vertex set of size at most k), we could branch on the vertices of the cycle. This
gives us an algorithm with run-time O((logn)k · nO(1)). Another interesting fact is that
(log n)k is indeed an FPT-function (that is, it is bounded above by a function of the form
f(k) · nO(1)).

Case 1. k ≤ log n/ log log n. In this case, we have: k log log n ≤ log n. Raising both sides
to the power of 2, we obtain:

(logn)k ≤ n. (1)

Case 2. log n/ log log n < k. In this case, we claim that log logn < k. Suppose not. Then
we must have:

log n < k · log log n ≤ (log log n)2,

which is false. Hence log n < k2, which gives us:

n < 2k
2

. (2)

By Inequalities 1 and 2, we conclude that

(log n)k ≤ n+ 2k
2

.

Tutorial Exercise T2

Given a boolean formula ϕ in CNF with n variables and m clauses and an integer k, you
have to decide whether there exists an assignment to the variables that satisfies at least k
clauses. Assume that the literals appearing in a clause are all distinct and that no clause
contains a literal and its negation. We first consider several special cases.

1. If ϕ contains only unit clauses (clauses with one literal), then how can you find the
optimum assignment?

2. If there are k clauses in ϕ that each contain k literals, then show that one can find
an assignment satisfying all these clauses in |ϕ| time.

3. Show that one can always find an assignment that satisfies at least m/2 clauses of
ϕ.

Use these facts to design an FPT-algorithm with k as parameter.

Solution

1. Set a literal to true or false depending on which satisfies more clauses.

2. Let the clauses be denoted C1, . . . , Ck. Pick an arbitrary literal from C1 and set it
such that C1 is satisfied. Inductively, proceed to Ci and pick a literal li that has
not been set in the previous i − 1 rounds. We are guaranteed that such a literal
exists since there are at least k distinct literals in the k clauses that we started out
with. Set li such that Ci is satisfied. The total time taken is linear in the sizes of
all the clauses C1, . . . , Ck.

3. Start will the all-false assignment. If this does not satisfy at least half the clauses,
then it falsifies half the clauses. But then the all-true assignment satisfies all those
clauses falsified by the all-false assignment. In either case, you have an assignment
that satisfies at least half the clauses.

Our algorithm works as follows:

1. If k > m output “No” and halt.

2. If k ≤ m/2 output “Yes” and halt.

3. Separate the clauses of ϕ into short and long clauses: short clauses have fewer than
k literals and long clauses have at least k literals. Let ϕl and ϕs be the conjunction
of the long and short clauses respectively. Let there be b long clauses. If b ≥ k then
output “Yes” and halt.

4. Construct a binary tree of the following type: the root is labeled with the pair
(ϕs, k − b). In general, each node of the tree is labeled by a pair (ψ, j), where ψ is
a boolean formula in CNF and j is a non-negative integer. If the label of a node
satisfies one of these three categories it is a leaf node:

(a) If j exceeds the number of clauses in ψ, then (ψ, j) is a leaf-node labeled “No.”

(b) If j = 0, then (ψ, j) is a leaf-node labeled “Yes.”

(c) If no literal in ψ occurs positively and negatively then (ψ, j) is a leaf node
labeled “Yes.”

Pick a literal v that occurs both positively and negatively in ψ. Let the number
of clauses that contain this literal in the positive form be lpos and the number of
clauses that contain it negatively be lneg. Let ψv and ψv̄ be the formulas obtained
by setting v to true and false, respectively. Then (ψ, j) has two children labeled
(ψv, j − lpos) and (ψv̄, j − lneg). If the tree has a leaf node labeled “Yes”, output
“Yes” and halt. Since lpos and lneg are both at least 1 and j is at most k, we get a
branching algorithm of 2k.

Homework H1

Consider the following algorithm for Vertex Cover. Choose an arbitrary edge e =
{u, v} that has not yet been covered and branch on the two subcases: on one branch
include u in the solution and in the other include v in the solution. Return the smaller
of the two solutions.

Does this algorithm run in FPT-time if parameterized by the size of the minimum vertex
cover? If yes, provide a formal proof. If no, provide a generic counterexample.

Solution

This algorithm does not run in FPT-time. Consider the star graph Sr. The recursion
tree of this algorithm on this graph will be one long path of length r with a single
further vertex attach to each vertex of the path, in total this tree has r + 1 leaves. Now
consider a graph consisting of l distjoint copies of Sr labeled S

1
r
, S2

r
, . . . , Sl

r
. Without loss

of generality, we assume that the algorithm first branches on the edges of S1
r
, then on the

edges of S2
r and so on.

This results in a recursion tree of size (r + 1)l: regard the whole search tree for a single
star as a node with r + 1 children, then the depth of this reduced tree is exactly l.

The graph clearly has a minimum vertex cover of size l, but the size of the search tree and
therefore the running time depends also exponentially on l. It follows that this algorithm
does not run in FPT-time.

Homework H2

Consider the following algorithm for Independent Set. Given a graph G = (V,E), we
first check whether the maximum degree is at most two. If this is the case, we can find a
maximum independent set (in polynomial time) and return the solution. Else we find a
vertex u of largest degree (which is at least 3) and branch on it. There are two cases: we
can either include u in the independent set in which case we must delete all its neighbors;
if we choose not to include it in the independent set then we can safely delete it from the
graph. We branch on these two cases and return the bigger of the two solutions.

1. Does this algorithm compute a largest independent set? How would you prove it?

2. Write down the recurrence that governs the running time of this algorithm. Solve
the recurrence using methods from the lecture. What is the exponential factor in
the running time?

In case you’re worried about what the parameter is in this case, it is simply the number
of vertices in the graph. Remember that the parameter must decrease in each branch of
your recursion tree, and with this choice of parameter, this requirement is satisfied.

Solution

1.
This algorithm computes a largest independent set, because it iterates over all possible
solutions. For every vertex we check if it is inside or not and by construction the Algorithm
will never output a set S that is not an independent set.

Let S∗ be an optimal independent set of G. We now show that our agorithm can find
it. If G has bounded degree by 2 we are done. Otherwise the algorithm finds a vertex u.
If u ∈ S∗, we consider the branch where the algorithm includes u in the set S. None of
the neighbors of u are in S∗ so deleting them is safe. If u 6∈ S∗ we consider the branch
where we the algorithm does not include u ∈ S. Deliting it is safe. Following this until
the algorithm terminates we have that S = S∗ and because the algorithm exhaustively
searches the whole search tree this solution will be found.

2.
We have two cases. In the first case we include u and then delete it and all its neighbors
from the graph. Since u has at least three neighbors, we delete at least four vertices.
In the second case we only delete u. This gives us a branching of n − 4 and n − 1,
or the branching vector (4, 1). Using the theorem from the lecture we have to solve
z4−z3−1 = 0 and obtain the largest (absolut value) solution, which is 1.3803. Therefore
we get a runtime of O(1.3803n).

