Parameterized Algorithms Tutorial

Tutorial Exercise T31

The problem Red-Blue Dominating Set is defined as follows: given a graph G whose vertex set is partitioned into two color sets $R \cup B = V(G)$ and an integer k, decide whether there exists a set of k red vertices that dominate all blue vertices.

Express the above problem as a $MSO_1[L]$ formula, where $L = \{\text{red,blue}\}\$ is the set of allowed labels. Can this problem be expressed in MSO_2 without labels? What does this mean for the logics $MSO_1[L]$ and MSO_2 ?

Tutorial Exercise T32

Recall the definition of MSO_1 and MSO_2 . In the following, let G be a graph and A be some vertex subset of G. Which one of the following properties are expressible in either logic?

- 1. A forms a cycle
- 2. A forms an induced cycle
- 3. G has some hereditary graph property \mathcal{P} characterized by a finite set of forbidden subgraphs
- 4. G has some hereditary graph property \mathcal{P} characterized by an infinite set of forbidden subgraphs

What consequence do items 1 and 2 have for Hamiltonian Cycle?

Tutorial Exercise T33

Develop dynamic programming algorithms for the following problems on graphs of bounded treewidth:

- 3-Colorability
- Triangle Packing (vertex disjoint)

State the running time of each algorithm.