WS 2010/11 Tutorial 13 25.01.2011

Tutorial Exact Algorithms

Exercise T27 SINGLE MACHINE SCHEDULING. We are given a set of n tasks T_1, \ldots, T_n and each task has associated with it three integers: a positive execution time l(i); a nonnegative release time r(i); and, a positive deadline d(i). We wish to determine whether there exists a single-machine schedule starting at time 0 such that the execution of each task takes place in the interval bounded by its release time and its deadline. A feasible solution may be viewed as a set \mathscr{I} of disjoint open intervals on the real line such that the following hold:

- 1. Each interval I is assigned a label from the set $\{1, \ldots, n\}$ and if I is assigned label i, then I = (a, a + l(i)), where a is an integer satisfying $r(i) \le a$ and $a + l(i) \le d(i)$.
- 2. Each integer from $\{1, \ldots, n\}$ is a label of some $I \in \mathcal{I}$.

Use Inclusion-Exclusion to find out the number of feasible schedules.

Exercise T28 MAX INTERNAL SPANNING TREE. Let T be a tree with at least three vertices. A vertex $v \in V(T)$ is a leaf if $\deg(v) \leq 1$. A vertex is *internal* if it is not a leaf. If the tree is rooted at r, then the root is defined *neither* an internal vertex nor a leaf. The MAX INTERNAL SPANNING TREE problem is defined as follows:

Input: A connected graph G = (V, E) and a positive integer $1 \le c \le |V|$. Question: Is there a spanning tree of G with at least c internal vertices?

The objective of this exercise and Assignment H29 is to solve this problem using Inclusion-Exclusion.

- 1. We first establish a connection with branching walks. Show that: There exists a spanning tree of G with at least c internal vertices iff there exists a vertex $s \in V$ and a branching walk $B = (T, \varphi)$ from s of length |V| 1 such that $\varphi(V(T)) = V$ and T has at most |V| (c+1) leaves. Assume that $|V| \geq 3$.
- 2. We now count the number of branching walks with the properties in (1) above using Inclusion-Exclusion. To do this we need to define what the objects are and what properties they must satisfy. The objects in this setting are all branching walks $B = (T, \varphi)$ of length n 1 such that T has at most n (c + 1) leaves. An object $B = (T, \varphi)$ has property A_v for $v \in V$ if $v \in \varphi(V(T))$. Formulate the problem of counting branching walks as an IE-expression.
- 3. For $X \subseteq V$, what does the term $\left|\bigcap_{u \in X} \bar{A}_i\right|$ represent? We will now evaluate this term. For $X \subseteq V$, $u \in V \setminus X$, $1 \le l \le n-1$ and $1 \le q \le n-(c+1)$, define $M_X(u,l,q)$ to be the set of all branching walks in $G[V \setminus X]$ from u of length l and with q leaves. Also define $m_X(u,l,q) := |M_X(u,l,q)|$. Write down $\left|\bigcap_{u \in X} \bar{A}_i\right|$ in terms of $M_X(u,l,q)$.
- 4. What is $m_X(u,0,q)$? For $l \geq 1$, write down a recurrence for $m_X(u,l,q)$.

Homework Assignment H28 (10 Points) In the context of the SINGLE MACHINE SCHEDULING problem, the total completion time of a schedule $T_{\pi(1)}, \ldots, T_{\pi(n)}$ is defined as time at which the last job $T_{\pi(n)}$ finishes. Use Inclusion-Exclusion to obtain the minimum completion time of a feasible schedule.

Homework Assignment H29 (10 Points) Complete the solution of the MAX INTERNAL SPANNING TREE problem by proving that the recurrence for $m_X(u, l, q)$ is correct. Analyze the time and space complexity of evaluating $m_X(u, l, q)$ for a fixed $X \subseteq V$ and all u, l, q. What is the time and space complexity of the algorithm deciding MAX INTERNAL SPANNING TREE?