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Tutorial Exact Algorithms

Exercise T5

The problem Independent Dominating Set is defined as follows:
Input: A graph G = (V, E) and an integer k.
Question: Is there a set U ⊆ V , such that |U | = k and U is both, independent

and dominating?

Which of the following reduction rules or solution strategies known for Independent

Set and/or Dominating Set can be applied or slightly adjusted for this problem?

• Deletion of degree zero vertices

• Deletion of degree one vertices

• Folding

• Domination

• Reduction to Set Cover

Design an algorithm for this problem that for every k is exponentially faster than simple
enumeration.

Solution

• Isolated nodes must be in any solution in order to be dominated.

• We do not have something like “at least k nodes”, but “exactly k”. In particular,
the property of being an independent dominating set is not a monotone property
in the sense that if I ⊆ V is an independent dominating set, then either any subset
or superset of I is an indepenendet dominating set. We therefore cannot derive
any easy, suitable exchange arguments for degree one vertices similar to the case of
Independent Set. This one is a “no” so far.

• If v is a node of degree two and u1, u2 are the neighbors of v, and, say, u2 must
be contained in any solution, then we cannot derive any rule whether or not the
new “folded” node will be contained in the solution or not. In particular, the cycles
of length five, four and three give a series of counter examples, where both cases
occur. Hence, “no”.

• Degree one is a special case of domination, so “no” is easy here.



• A simple reduction to Set Cover as in the case of Dominating Set seems
unlikely, since for Set Cover there is no notion of “independence”.

Note that any NP-complete problem can be reduced in polynomial time to Set

Cover, i.e., in particular Independent Dominating Set. However, to capture
the “indepenence” aspect, we need to use some kind of gadget to encode “indepen-
dence” of vertices into the Set Cover instance. This gadget will most likely have
a very negative impact to the running time of the algorithm.

The algorithm now first applies the first reduction rule, and then branches on whether a
node v is contained in the solution or not. If v is in the solution, no neighbor of v can be
contained in the solution. We therefore get a branching vector of at least (1, 2), and the
running time of the algorithm is at most O∗(τ(1, 2)n) = O∗(1.619n), which is significantly
faster than the O∗(2n) brute-force enumeration.

Exercise T6

The problem MaxCut is defined as follows:
Input: A graph G = (V, E).
Feasible solutions: Any bipartition V = V1 ∪ V2.
Goal: Maximize the number of edges that are cut by the bipartition.

Design an algorithm or this problem with a running time of O∗(τ(3, 3)m), where as usual
m = |E|.

Solution

Next week!

Homework Assignment H5 (10 Points)

Let F be a formula in 3-CNF. A clause {l1, l2, l3} is not-all-equal satisfied if there are
literals li, lj such that li is true and lj is false. A formula is not-all-equal satisfied by an
assignment if each clause is not-all-equal satisfied.

Find an algorithm that decides whether a formula F in 3-CNF can be not-all-equal
satisfied that is exponentially faster than simple enumeration, i.e., with a runnign time
of O∗(cn), where c < 2 and n is the number of variables in F .

Solution

Each clause must be satisfied. Among the 23 = 8 ways to assign values to the literals,
two are forbidden: All literals to zero (does not satisfy), all literals to one (all equal).

The algorithm therefore picks a clause of length three and branches on all the six possible
assignments to its variables. Since each clause can be assumed to contain at least three
literals — if there are only clauses of length two left, the problem can be solved in
polynomial time — we gain three variables in each branch and hence a branching vector
of (3, 3, 3, 3, 3, 3) with τ(3, 3, 3, 3, 3, 3) = 1.817121.



Homework Assignment H6 (10 Points)

Find an optimal independent set in the following graph (and mark the vertices in the
solution). How big is your solution?



Lösungsvorschlag The following picture shows an optimal vertex cover C for this
graph G = (V, E) in red, which contains 217 vertices. Since I = V \ C is an optimal
independent set, the black vertices in this figure form an independent set of size ≈ 213
vertices.


