Analysis of Algorithms WS 2022 Prof. Dr. P. Rossmanith M. Gehnen, H. Lotze, D. Mock



## Old Exam (2020) 0

This is an old exam from 2020.

Task K1 (10 Points)

Order the following four power series by their asymptotic growths. Justify your answer.

- a)  $[z^n]e^{z+z^2}$
- b)  $[z^n]e^{z+z^2/2}$
- c)  $[z^n]\sqrt{1-z-z^2}$
- d)  $[z^n] 1/\sqrt{1-z-z^2}$

Task K2 (10 Points)

Solve the following recurrence relation:

$$a_n = n + 1 + \frac{1}{n} \sum_{k=0}^{n-1} a_k$$
 for  $n > 0$  and  $a_0 = 2$ 

Task K3 (1+7+2 Points)

Consider the following context-free grammar G:

 $S \rightarrow aSbS \mid cSdS \mid \epsilon$ 

- a) Write down all words up to length four of L(G).
- b) Find out whether the number of words of length up to n grows asymptotically faster or slower than  $3^n$ . Justify your answer.
- c) The generating function has two dominant singularities on the real axis. Explain why this is normally not the case but happens here.

Task K4 (10 Points)

Consider the problem *Triangle Deletion:* 

Input: A graph G and budget  $k \in \mathbf{N}$ .

*Output:* Yes iff there is a set  $W \subseteq V(G)$  and a set  $F \subseteq E(G)$ 

such that  $2|W| + |F| \le k$  and G - W - F is triangle-free.

We propose the following branching algorithm  $\mathcal{A}(G,k)$  for this problem.

1. If k < 0, return NO.

- 2. If G is triangle-free, return YES.
- 3. Otherwise, find a triangle  $\{v_0, v_1, v_2\}$  in G.
- 4. Call  $\mathcal{A}(G v_i, k 2)$  for each  $0 \le i \le 2$ .
- 5. Call  $\mathcal{A}(G-e, k-1)$  for each edge  $e \in \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_1\}\}$ .
- 6. If any of the recursive calls returns YES, return YES. Otherwise NO.

Analyze the number of recursive calls in the worst-case for a given budget k. The exponential growth of the number of recursive calls is precise enough.