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Tutorial Exercise T11.1

Let z ∈ C. How can we write zn + z̄n using only real numbers if z = Reiφ?

Solution

zn + z̄n = Rn(eiφn + e−iφn) = Rn cos(φn).

We can also write zn + z̄n = |z|n cos(n arg z).

Tutorial Exercise T11.2

In this exercise we consider the following (regular) CFG G:

S → abA | bS | a
A→ bA | aS

1. Find a generating function for the number of words sn in L(G) that have length n.

2. What is the dominant singularity and what kind of singularity is it?

3. What is the exponential growth of sn?

4. How precisely can you estimate sn with just the knowledge of the dominating singularity
and its nature?

5. Find a closed formula for sn with an additive error of at most O(0.8n).

Solution

1. Since the grammar is unambiguous, the symbolic method gives us

S(z) = z2A(z) + zS(z) + z,

A(z) = zA(z) + zS(z).

We solve the latter for A(z) and obtain A(z) = zS(z)/(1− z). Now we can insert it into
the former. This yields

S(z) = z3S(z)/(1− z) + zS(z) + z.

We then solve for S(z) and get the generating function

S(z) =
z

1− z − z3/(1− z)
=

z(1− z)

(1− z)2 − z3
.
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2. The singularities are the roots of of the denominator.

We ask Maxima solve((1-z)^2-z^3,z) and get

z1 = −
(
9
√

23 + 11
√

3
) 2

3
(√

3 i+ 1
)

+ 5 2
2
3 3

5
6 i− 2

4
3 3

1
6

(
9
√

23 + 11
√

3
) 1

3 − 5 2
2
3 3

1
3

2
4
3 3

7
6

(
9
√

23 + 11
√

3
) 1

3

,

z̄1 =

(
9
√

23 + 11
√

3
) 2

3
(√

3 i− 1
)

+ 5 2
2
3 3

5
6 i+ 2

4
3 3

1
6

(
9
√

23 + 11
√

3
) 1

3 + 5 2
2
3 3

1
3

2
4
3 3

7
6

(
9
√

23 + 11
√

3
) 1

3

,

z0 =

(
9
√

23 + 11
√

3
) 2

3 + 2
1
3 3

1
6

(
9
√

23 + 11
√

3
) 1

3 − 5 2
2
3 3

1
3

2
1
3 3

7
6

(
9
√

23 + 11
√

3
) 1

3

Wolfram Alpha even gives us a nice diagram

http://www.wolframalpha.com/input/?i=(1-z)%5E2-z%5E3+%3D+0

from which we see that we have a small real and two larger complex conjugated singula-
rities. We evaluate them numerically and see that their magnitudes are |z1| = 1.32471 . . .
and |z0| = 0.5698402909980533 . . . . The dominant singularity is z0. We decomposed the
denominator of S(z) into three roots of degree one. The function S(z)(z− z0) is therefore
analytic at z0. This means that z0 is a pole of first order.

For a meromorphic generating function B(z) with poles α1, . . . , αm we know that there
exist polynomials P1(n), . . . , Pm(n) such that

[zn]B(z) =
m∑
j=1

Pj(n)αnj

and the degree of the polynomial Pj(n) is one smaller than the order of the pole αj. Since
we have three poles of first order the polynomials are constants. We have

sn = c1z
−n
0 + c2z

−n
1 + c2z̄

−n
1 .

for some constants c1 and c2.

3. The exponential growth is |z0|−n ≈ 1.754877666246692655 . . .n.

4. Note that |c2z−n1 | = O(0.8n). If we can find the factor c1 we get a good approximation
with a small additive error for sn.

S(z) =
z

1− z − z3/(1− z)
=

z(1− z)

(1− z)2 − z3
.

z(1− z)

(z − z0)(z − z1)(z − z̄1)

∼ 1− z0
(1− z/z0)(z0 − z1)(z0 − z̄1)

for z → z1

Hence c1 = (1− z0)/((z0 − z1)(z0 − z̄1)) ≈ 0.23448675 and we get the estimate

sn = c1z
−n
0 +O(0.8n).

We can use the following programm to verify the correctness numerically

s = range(0,1000)

a = range(0,1000)

s[0] = 0
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s[1] = 1

a[0] = 0

a[1] = 0

for n in range(2, 100):

s[n] = a[n-2]+s[n-1]

a[n] = a[n-1]+s[n-1]

print n, s[n], 1.0*s[n]/s[n-1], 0.23448675*1.754877666246692655**n/s[n]

The last line states

99 355268071453933228439241 1.75487766625 0.999999931817.

Indeed, after 100 iterations we only make a multiplicative error of 0.999999931817.

Homework Exercise H11.1

Prove that

[zn](1− z)w ∼ n−w−1

Γ(−w)

for w ∈ C without using the theorem of the lecture. (The idea of this assignment is to get a
deeper insight into the theorem.)

Hint: Use Newton’s formula and replace one of the implicit factorials by a gamma function.
Remember that Γ(n+ 1) = n!.

Solution

The solution is straightforward. The only place where we loose precision is the approximation
of a “falling” polynomial.
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Homework Exercise H11.2

Approximate [zn] 1
2−ez up to an error of O(12−n).

Solution

In the lecture, we found the first term (of the dominant singularity), namely 1
2
( 1
ln 2

)n+1.

So we take a look at the singularity with the second highest absolute value, which is ln 2± 2πi.
Both are poles of order 1. Let us see how S(z) behaves asymptotically for z → ln 2± 2πi. We
have that ez ∼ 2(1− ln 2∓ 2πi+ z) for z → ln 2± 2πi and therefore

1
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=
1

2

1

ln 2∓ 2πi

1

1− z
ln 2∓2πi

=
1

2

1

ln 2∓ 2πi

∞∑
n=0

(
1

ln 2∓ 2πi
)nzn

3



With Theorem 9 we get:
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with r = 1/
√

ln2 2 + 4π2 ≈ 12.58547409739904, φ = arctan( 2π
ln 2

).

4


