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Chapter 1

Analysis of Quicksort

We start our journey into the Analysis of Algorithms with an example.
It consists of a well-known and very efficient sorting algorithm. We will
see that even a very complicated algorithm can successfully be analyzed
mathematically.

This first analysis of an algorithm contains almost every single important
ingredient that may occur in typical situations that we may encounter when
we design our own algorithms and try to analyze them. While we just take a
glance on these various aspects in this introductory chapter, we will revisit
them later on and learn about them in more detail:

1. Before starting to analyze the running time of some algorithm, we
have to understand it completly and in every detail; otherwise a pre-
cise analysis is impossible. After having learnt about the purpose
of every single instruction, we have to find an intuitive description
of the number of times this instruction s executed. If a block of
instruction is not interrupted by a branch statement, all instruction
in the block can be analyzed together. Apart from this very simple
rule we will later encounter several other method on how to reduce
the number of instructions that have to be analyzed individually.

2. If we want to carry out an Average case analysis, i.e., analyse an
algorithm’s ezpected behavior, we need a statistical model for the
inputs to model an appropriate probability distribution.

1



2 CHAPTER 1. ANALYSIS OF QUICKSORT

3. With the help of the—up to now—rather vague intuivitve descrip-
tion, we have to find a closed formula for the number of executions
of each instruction. Here we have to take the probability distribution
into account when counting the expected rather than the worst case
number. Often it is impossible to find a exact closed formula or it
requires too high an effort. In that case we have to be content with
closed, but only approximate, formula.

4. At the end we just have to add the individual times for each instruc-
tion to get the overall expected running time in relation to the input
length.

The famous Quicksort algorithm is well suited as an introductory example
because it is not too trivial and well known. We will concentrate on a
practical, highly optimized version rather than on a simplified one, which
you will often find in beginners’ textbooks.!

One drawback of naked quicksort is its bad performance on very small ar-
rays, on which it is beaten by much simpler algorithms. Hence, we use a
quicksort variant that partitions (and then recursively sorts) an array only
if its length is bigger than a constant M. At the end we can use one run
of straight-insertion sort to finish the job by cleaning up the remaining
unsorted short subarrays. Another optimization addresses space consump-
tion rathen than running time: After partitioning we sort the smaller of
the two subarrays first. This well-known trick keeps the recursion depth
small because the array size is at least halved in each recursive call. For
efficiency reason the recursive calls are simulated by direct calls and the
usage of our own stack. Figure 1.1 contains a complete program written in
the language C that implements all ideas mentioned in this paragraph.

We assume that the input consists of N different numbers and want to
analyze, how often each instruction in the program is executed on average,
if every permutation of the given numbers occurs with the same probability.
This is a standard assumption for sorting problems. Initially, the input is
located in the array all],...,a[N] and the sorted sequence is to be found
in the same spot upon program termination.

In this script we follow closely the analysis of Quicksort by Knuth [4], which is defi-
nitely not a beginner’s textbook.



void quicksort(void)
{
int 7,7,1, 7k, t;
[=1, r=N;
if(N > M)
while(1) {
1=1-1;7 =7 k=aljl;
do {
do { +++; } while(alz] < k);
do { j—; } while(k < alj]);
t =alil; ali] = alj]; aly]l =t;
} while(z < 7);
aljl = al1]; alz] = alr]; alr]l =t
if(lr—1>1—-10){
if(e—10>M){push(s+1,7); r=2—1; }
elseif(r—1>M)Il=1+1;
else if (stack_is_empty) break;
else pop(l,7);
}
else {
if(r—2>M){push(l,2—1); l=1+1; }
elseif(z—1>M)r=1—1,
else if (stack_1s_empty) break;
else pop(l,r);
}
}
for(1 =2; 1 < N; i++)
if(alt —1] > alz]) {
k=ali]; g =1
do { alj]l = alyj —1]; j—; } while(al; — 1] > k);
aly] = k;
}

Figure 1.1: C-program for Quicksort
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You can find the whole program a second time in Figure 1.2, but in a
different layout that reminds of a flow chart. Instructions that are not
separated by branches or target of branches are grouped into blocks. The
program flow is indicated by arrows between the blocks. Next to each
block you can find a symbolic name for the number of times this block is
executed in the form of a variable or a short expression that may involve
several variables.

Let us start by considering the variable A. This variable occurres next to
several block, which implies that number of execution for those blocks are
identical.

Why can we use the same variable for the two blocks 1 =1—1; 7 =17; k=
al7] and al[j] = alr]...? The answer is quite simple: The flow into a set
of blocks M must be exactly identical to the flow out of M. The flow is
the program flow, i.e., the flow into a block is the number of times the
block is entered and the flow out is the number of times the block is left.
This situation is quite similar to solenoidal vector fields in physics (e.g.,
the magnetic field) or the electrical flow in a resistor network.

If the block 2 = [—1; j = r; k = aly] is executed A times, then it will be left
A times. There is only one outgoing arrow from this block. Let us denote
the set of blocks between 2 = [—1; 7 = r; k = alj] and a[7] = alr]... by M.
Then M will be left A times, too, which is again possible only by one arrow
that leads to the block alj] = alr]; ali] = aly]; alj] = t. We can conclude
that this block is executed exactly A times, too. This line of reasoning
has been relatively easy. We can discover other relationship like this in a
similar way, e.g., that I' + I” =1 or A’ + A” = A — 1. In this way we
greatly reduce the number of independent variables whose value has to be
analyzed.

We will address reducing the number of variables using the flow relations
in a systematic way in Chapter 2.

1.1 The number of partitioning phases

Let us return to the analysis of A. What is the intuition behind this num-
ber? The while-loop in Figure 1.1 is executed exactly A times. Each
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Figure 1.2: Program flow chart for the Quicksort program
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execution corresponds to a partitioning of a subarray. Hence, we inter-
pret A as the number of partitioning phases. This intuitive description is
enormeously helpful. From this point on, we do not have to look at the C-
program anymore, when analysing A. We just have to look at the abstract
Quicksort algorithm. Even if we change the C-program the analysis of A
will remain sound—it is the number of partitioning phases that is clearly
independent of the concrete implementation.

Let AN be the expected number of partitioning phases if we sort N keys by
Quicksort. If N > M, the input is partitioned once and three subarrays are
established. The middle one consists only of the pivot element and will be
left untouched. The first and last subarray will be recursively sorted. This
leads to additional Ay and An_j_i partitioning phases if the first and last
subarray have the length k and N — 1 —k. The number k is between 0 and
N — 1. It is easy to see that the probability for each of those possibilities
is exactly 1/N: We assumed, after all, that every permutation occurs with
the same probability. These ideas lead to the following relation:

e
An = 1+ N (Ax + Anci—x)
k-0
5 N
= 14+ 5) Ay forN>M
k=0

If N < M, on the other hand, then clearly Ay = 0.

In the following we will encounter many more recurrence relations that look
familiar to this one. We can write all of them as

z

-1
Xk+fN, forN > M
0

XN =

ZIN

i

with different functions fi. In the case of Ay we have fy = 1.

It is not very hard to solve recurrences of this form. The first problem
we encounter is that Xy depends on all Xy,...,Xn_ 1 instead on only a
small number of different X;’s. To overcome this problem, the first step
is to turn the recurrence into one of finite order. We can achieve that by
subtracting Xy from Xy after having got rid of the interfering factors 1/N
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and 1/(N —1):
N—1
NXy = 2> Xi+ Nfy
k=0
N—-2
(N=DXno = 2 Xt (N—T)fny
k=0

Subtraction yields
NXn — (N—=T1)Xn 1 = 2XNn_1 + Nfy — (N = 1) fn g
or
NXN:(N—}—])XN,]—FNfN—(N—])fN,], forN > M+ 1.

This is a linear recurrence of first order. Such recurrences can routinely be
solved by a technique called summation factor, as we will see later. Here
this technique asks us to multiply the equations by 1/N(N + 1):

XN _XN71+NfN_(N_1)fN71
N+1 N N(N+1)

Using the substitutions

yields the very simple equation
Yn = Yo + gn, for N > M + 1.

We can easily solve the recurrence, but have to be careful that it holds only
for N > M + 1. It is a common mistake not to track exactly under which
conditions derived equations are valid.

N

YW =Yrar g+ g+ gn =Y+ ) G
K=M+2

and, after substituting back into the variable Xy, we get the solution

N
Xmr + (N +1) Z

k=M+2

N+ 1

B kfi — (kK —1)fi
M +2 ’

K(k+1)

XN
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Let us return to the analysis of An. Here fy =1 and Ay, = 1. Replacing
Xn and fy accordingly leads to

N +1 N 1
AN = +(N+1) >
M + 2 o, Kk 1)
B N+1+(N+” N  M+1\ _ 2N-M
M +2 N+1 M+2) M+2°

We finally arrived at a closed formula for Ayn. Do not forget that we proved
this formula only for N > M + 1. We also know that Ay =0 for N < M.
Finally, Ay = 1, which we had to establish earlier in the analysis of Ay.
We can write down a closed formula for Ay that is valid for all values of N
by using a case distinction:

0 if N < M,
An = 1 fN=M+1,

2N—-M

— if ;

M 12 IEN>M+1

Fortunately, however, (2N — M)/(M +2) =1 if N = M + 1 and we can
merge the last two cases into one. Our final formula, which hardly can be
simplified more, is

0 ifN <M,
AN=9{2N-—M

ANM N s M
Mt2 *0°

Let us check the validity of this formula on some special cases. What
happens if N = M + 2?7 Of course, Quicksort partitions the array once.
There are M + 2 different possibilies for choosing the pivot element and
each choice bears a probability of exactly 1/(M + 2). There are exactly
two possible choices for the pivot that force the algorithm to carry out a
second partitioning. This happens only if the pivot element is either the
smallest or the biggest key because then one of the subarrays has size M.
Hence, with a probability of M /(M + 2) the algorithm partitions once and
with a probability of 2/(M + 2) twice. The expected value is therefore
M 2 M+4 4

_ 2 _ —1 .
Anz M2 “M12 Mx2 ' "TMi2




1.1. THE NUMBER OF PARTITIONING PHASES 9

Let us see, to what our closed formula for Ay, evaluates:

2AM+2)-M _M+4_, 4
M +2 M +2 M +2

AMy2 =

Of course, they coincide. It is advisable to test the outcome of a complicated
analysis that finally yields a closed formula on some easy special cases
because you can have made a mistake.

One final remark on the analysis of AN regards the final summation we had
to carry out. When solving recurrence relations—especially when we sim-
plify them in a sequence of steps—very often we end up with a summation.
For this reason, solving summations by providing an exact or approximate
closed form turns out to be very important in the analysis of algorithms.

Here the summation was quite easy to solve. It is a telescopic sum because

i (Lo 1)
vl k k+1

and consequently almost all terms cancel each other. With the advent
of computer algebra systems, however, learning techniques how to solve

N 1
> Kk+1)

k=M+2 k

summations become less important nowadays. This summation can be
easily solved for us by a system like maxima:

Maxima 5.23.2 http://maxima.sourceforge.net

using Lisp SBCL 1.0.38-3.el6

Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.

The function bug_report() provides bug reporting information.
(%11) nusum(1/(kx(k+1)), k, M+2, N);

R
M+ 2) (N+ 1)

If the summation has no closed form we will see how to approximate its
value with very small additional error terms.
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1.2 The Number of Comparisons while Par-
titioning

If we partition a subarray of size N, the indexes ¢ and 5 point initially to
the begin and end of the subarray. When the criterion ¢ < 7 is no longer
true, the indexes have crossed over and the partitioning phase is ended.
Whenever 1 is increased of 7 decreased, exactly one comparison is carried
out. In the end i = j + 1 holds (i.e., j —i = —1) and in the beginning
j —1 = N —1. Hence, the difference between j and 1 decreases with each
comparison from N+1 to —1 and the total number of comparisons it N+1.
This is the number of comparisons in one partitioning phase. The total
expected number of comparisons in all partitioning phases can be stated
by the recurrence relation

2N—1
CN:N+1+NkZ_OCk,

which is again of the general form with fy =k + 1 and Cy;1 = M + 2.

It is now easy to get a closed formula for its solution using harmonic num-
bers H, =14+1/2+1/34+---+1/n.

N
k(k+1)—(k—1)k
Cn=N+T+(N+1) > =
vl k(k+1)
A
=N+1+2(N+1) ) o
k=M+2

=N+ 1+2(N+T)(Hne — Hwsi)

Very often only the number of comparisons is analyzed in textbooks and
usually M =1 and all comparisons occur while partitioning. If M = 1 this
yields 2(Hnit —8/6)(N + 1) = 2Hny N — N + o(N).

1.3 The number of swaps in the do-loop

Let By + 1 the number of swap operations in the do-loop. For efficiency
reasons—it saves one if-command—the algorithm performs one last swap
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that is not necessary and has to be swapped back.? It makes sense to define
Bn as the number of real swaps (that are not taken back) according to our
philosophy that variables that we analyze have a nice intuitive meaning.

If we partition the array in two subarrays of sizes k and N — 1 — k, then
the expected number of swaps that have occurred between them is k(N —
1—X%)/(N —1). This gives us the recurrence relation

N-1

1 k(N—1-—k) 2 N-—-2
BN:N§<Bk+BN—1—1+v> :—kZBk‘f‘—-

Here f, = (N —2)/6 and Byyy = (M — 1)/6. Its solution is

N
g~ NADM=T)  (N+T) 5 K(k—2)— (k—1)(k—3)

6(M +2) TG k(k+1)

k=M+2

| =

6 1
(N+1) (ZHN+1—2HM+2+1 - M—l—Z) +§-

1.4 The number of insertion phases

Let us proceed to Dy and ponder what intuition can be found behind this
variable. Whenever a[i — 1] > ali], the algorithms inserts a[i] into the
already sorted subarray a[l...i—1]. The variable Dy tells us exactly, how
often such an insertion takes place. We should not forget that this kind of
insertions happen only in the second phase of the algorithm. We get the
recurrence

for N > M. We can look at what happens in the second phase from the
perspective of the first phase. The array of length N is partitioned recur-
sively into smaller and smaller subarrays until their sizes are at most M.
Let us call these final subarrays small. At the end of the day Dy is the
sum of all Dy,’s if k; are the length of all small subarrays.

2As a do-loop is performed at least once and the array might be already sorted and no
swaps should take place, we cannot avoid at least one superfluous swap without guarding
it by an if-statement.
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We have a simple recurrence for the case that N > M, but what happens if
N < M7 Let us assume that i is the last index that belongs to the subarray
of length N where N < M. Then the insertion that we want to count take
place iff a[i — 1] > a[i] in the for-loop.

How big is the probability that a[i — 1] > a[i]? We have to consider that

a(ll,...,a[t — 1] has already been sorted by insertion sort. Before that,
a(l,...,1i] was in random order. At this point of time a[i— 1] > a[i] iff ali]
is not the biggest key in a[i — M + 1],...,a[i]. It is the biggest key only

if it is bigger than the other i — 1 keys. The probability for this event is
1—1/i.
By a simple summation we get

N
Dy=) (1—1/i) =N—Hy for N <M.

i=2
Let us look at some small values that we get from this formula: Dy = 0,
Dy =0, D, = 1/2. Are these correct? Yes, only if N > 2 the body of
the for-loop is executed at all. If N = 2 then an insertion takes place if
al2] > a[1]. This happens with probability 1.
This formula is also the key to get a grip on Dy,1, which we require to get
a closed solution of Dy.

2 M 2 M
Dyt = =% Dy==—3 (k—Hy) =M—2Hyq +2
M+1 M 1 — k M 1 k:O( k) M+1

For N > M the closed formula for Dy is:

CONAT NI
M2 M M2

(M 42— 2Hwmu1) :(N+1)(1 —ZHM“)

N M +2

In particular we see that Dy = ©(N), if M > 1 is a constant. Hence, only
a linear number of keys is moved to correct the subarrays that were left
unsorted by the first phase. This behavior is not surprising.

1.5 Number of swaps during insertion-sort

The second phase of our highly optimized Quicksort algorithms is—as we
have seen—basically insertion sort. Exactly En pairs of keys, which are
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not in the right order, are swapped. After they have been swapped they
are in the right order and stay in this relative order for all times. This
is not exactly how the algorithm works because of efficiency reasons the
keys are not pairwise swapped but cyclicly in larger blocks. The result is,
however, the same and we can pretend they are swapped pairwise, which
is much easier to imagine (and therefore analyze).

Whenever two keys are in the wrong order, the E-blocks in Figure 1.2 are
executed once. That is exactly the number of inversions of the permu-
tation that sorts the input. An inversion of a permutation is the number
of pairs that are out of order. Formally, if 7t: {1,...,n} — {1,...,n}is a
permuation, then

i, 11 <i<j<n, n(i) >n(j) ]

is the number of inversions of . Hence we have a very nice intuitive
description of En—it is simply the expected number of inversions of a
random permutation.

A permuation of n keys has n(n — 1)/2 pairs and each pair of keys has
the wrong order with a probability of 1/2. The probability distribution
nevertheless is quite complicated because these events are clearly not in-
dependent from each other. Fortunately, we only need the expected value
of the number of inversions. Because of linearity of the expected value the
result simply is n(n — 1) /4.

Let En be the number of inversions of the input array after the first phase of
the algorithm. Then Ey is the number of times the E-blocks are executed.
We get this recurrence for Ey:

2 N-1

N Ek fur N>M
En = k=0

1/N

Again the form of the recurrence is in the familiar shape. Routinely, we
first find out what Epqq is:

Emqr =

2 ig_Mm—n
M+1k:04_ 6
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For N > M we get, again following our routine,

N+ 1 N+1MM-T1)

E :7E =
NS M2 ™M T M2 G

1.6 Conclusion

You can find all results in the following table:

2N—M
AN = M +2
By = L(N+1)(2Hn — 2Hys +1— — 2 ) 41
N — 6 N+1 M+2 M+2 2

Cn = N+T+2(N+1)(Hnp — Hwy2)
Dn = (N+1)(1T—2Hm /(M +2))

Ev = c(NFTIMM=1)/(M+2)
Svo o= (N+1)/2M+3)—1

—

Figure 1.3 contains the C-program from figure 1.1 in the assembler language
of a MIPS-processor. We choose this type of processor for the following
reasons:

1. It is a typical RISC-processor and representative for processor used
today and at least in the near future.

2. Among existing processors it has a relatively easy to learn instruction
set. There are no special purpose register, no register windows, or
other rather specialized features. You can easily learn all important
instructions within a few minutes and you can read MIPS assembler
programs immeadiately if you have been exposed to similiar machine
languages before. This processor is also used in many embedded
systems and portable computers today, which proves that it has a
realistic, real world design.

3. We will also see later that it is not sufficient to analyse a program
written in high level, compiled language if you are interested what
effects small changes in your algorithm imply. One good example are
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quicksort:
1

$L23:

$L4:
B+A+C’'—2

$L3:
CI

B+A

$L5:
C//

B+A

la
1w
1i
1i
move
la

s1l
addu
s11
1w
addu
addiu

move

addiu
move

1w
slt
bne
addiu

addiu
s11
addu

1w
addiu
slt
bne
addiu

s11
addu
slt
sW
bne
sW

s11
addu
1w
s11
sW
addu
1w

$7,a
$2,sp
$3,1000
$5,1
$13,87
$4,s

$6,$3,2
$6,$7,$6
$10,$5,2
$14,0($6)
$10,$7,$10
$8,85,-1
$L3

$9,83

$10,$10,4
$8,$6

$11,0($10)
$12,$11,$14
$12,$0,5L4
$6,$8,1

$12,$9,-1
$12,$12,2
$12,87,812

$24,0($12)
$9,89,-1
$15,$14,824
$15,$0,$L5
$12,$12,-4

$15,$9,2
$15,$7,$15
$12,$6,$9
$24,0($10)
$12,$0,$L4
$11,0($15)

$14,$6,2
$14,$13,814
$9,0($14)
$12,$3,2
$9,0($15)
$12,$13,$12
$24,0($12)

}\//471//

s

$L7:
AII+I,/75//

$L6:
A+1-S"

Al+17

$L10:
A'+1'-S’

$L25:

subu
subu
slt
sW
bne
sW

slt
bnel

slt
addiu
s11
s1l
addu
addiu
addu
sW
addiu
sW

move

beq
addiu

slt
bnel

slt
addiu
s1l
sll
addu
addu
sW
addiu
sSW

addiu

beq
move

$10,$3,$6
$9,$6, 85

$15,$10,$9
$24,0($14)
$15,$0,3L6
$11,0($12)

$9,$9,4
$9,$0,8L7

$10,$10,4
$9,$2,1
$10,$2,2
$9,8$9,2
$10,$4,$10
$6,$6,1
$9,84,$9
$6,0($10)
$2,$2,2
$3,0($9)
$L23
$3,$8

$10,$0,$L23
$5,$6,1

$L25
$10,$10,4
$10,$0,3$L10

$9,$9,4
$9,$2,1
$10,$2,2
$9,8$9,2
$10,84,$10
$9,$4,$9
$5,0($10)
$2,$2,2
$8,0($9)
$L23
$5,$6,1

$9,$0,8L23
$3,$8

S/'+S5"+1

545"

$L26:

$L16:
N—-1

$L15:

$L28:
N—1

beq
addiu

addiu
s11
s1l
addu
addu
1w

1w

1i
SW
ori
la
1i
la
1i

1w
1w
slt
beql

addiu
addu
s11
addu
move

1w

1w
slt
sW
addiu
bne
addiu

s11
addu
SW
addiu

bne
addiu
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$2,$0,3$1.26
$3,$2,-1

$2,$2,-2
$3,$3,2
$5,8$2,2
$3,$4,$3
$5,$4,$5
$3,0($3)
$L.23
$5,0($5)

$9,1073676288
$0,sp
$9,$9,0xffff
$4,a+4

$2,2

$7,a

$8,1001

$5,4(84)
$3,0($4)
$3,$5,$3
$3,$0,$L28

$2,$2,1
$3,82,%9
$3,8$3,2
$3,$7,83
$6,$2

$10,-4($3)
$11,0($3)
$10,$5,$10
$11,4($3)
$6,$6,-1
$10,$0,$L15
$3,$3,-4

$6,56,2
$6,57,56
$5,0($6)
$2,$2,1

$2,$8,3L16
$4,84,4

$31

Figure 1.3: Assembler listing of our C-program translated into MIPS ma-
chine code. On the left of each basic block you find the expected number
of executions expressed by the variables introduced in this chapter.
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sentinel elements whose usage can improve the performance of your
program, but can also slow it down—it really depends on the details.

It you look at an assembler program you can estimate much better
how long each instruction takes than in a high level programming
language. For the older, not as sophisticated processors as today’s,
you could lookup in the hardware manual how many cycles each in-
struction takes. Today this is becoming harder and harder because
the execution time depends on so many additional factors. There are,
for example, one or more caches that speed up the execution of a read
instruction from memory tremendously if its data value can be found
in the cache. To analyze the cache behavior is not easy (although
you can good data from simulations). The deep pipelining of instruc-
tions, branch prediction strategies, speculative computing, and super
scalarity are further examples of moderns features that make the ex-
act estimate of the duration of a specific maching instruction very
hard. Nevertheless, the rule of thumb that one machine instruction
of a RISC processor takes one cycle is still very good—that was af-
ter all one of the original design goal when RISC architectures were
introduced.

Appendix B contains a short description of most MIPS instructions. You
can easily find more detailed charts online.

On the other hand, most of the time we do not want to analyze an algorithm
in such detail. In the rare cases that we do need such a precise analysis,
usually the additional tedious work of looking at every machine instruction
by itself takes a long time, but is still almost neglectable relative to the
work that the mathematical analysis requires. After all, without a very
precise mathematical analysis, counting instructions makes no sense.

Very often we do not have an implementation of an algorithm, nor do we
need one for a cruder analysis. In the case of Quicksort and other sorting
algorithm you will see very often only the analysis of one variable: The
number of comparisons. Even this single number gives us a lot of insight.
If, for example, a comparison is very expensive, then C is the dominating
factor in the overall running time and we do not need the other variables.
In our case—sorting numbers—this assumption does not hold.
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If we count the number of executions of every single instruction in Fig-
ure 1.3 and add them together, we get the total expected number of exe-
cuted machine instruction as a function of N and M.:

I =37A+11B+5C + C' 48D + 7E + 158 + 25" + 7N + 14 + 2I'

The contribution of every variable to the running time is a constant number
of machine instructions. That is not surprising since the program length
itself is fixed and every instruction belongs to one (or sometimes more)
of the variables. Each variable is a function of N. Only B and C grow
superlinear, so only they contribute to the asymptotic running time and
will dominate the other terms for large N. In practice, however, we cannot
be concerned by only big N’s. With our very precise analysis we can
estimate the running time very precisely for every N.

There is also a second reason why purely asymptotic analysis are dangerous—
we usually do not clearly know what for big N exactly means. It is the
essence of asymptotic analyses that this question has to remain unanswered.

Let us turn our attention to M. This is a parameter of the algorithm
and we can choose M in such a way that the running time becomes as
small as possible. It is clear that the optimal choice of M also depends
on N, but we expect that this dependence will be noticable only for very
small N. If, however, N is very small, then Quicksort is not the right
choice as a sorting algorithm and you should choose, e.g., insertion sort
instead. Figure 7?7 shows the dependence of the running time of Quicksort
for N =100 in dependence of M. You can see that the primitive choice of
M =1 is not good at all.

Exercises

1.1 Prove that the number of executions of block » = 5 — 1 is exactly A’—S’—S'.
1.2 The relationship S’ + S” = 5’ + S” cannot be found by using flow relations.
Nevertheless it is a sound and useful equation that helps reducing the number of
independent variables. Prove that this equation indeed holds.

Hint: Consider the depth of the stack.

1.3 Complete the C-program from Figure 1.1 by adding macros push, pop, and
stack_1s_empty. The first two macros are suppossed to push two integers onto or
pop them from a stack, while the third one should test whether the stack is empty
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(and return O iff it is non-empty). Then add a main routine that calls quicksort
on inputs that consist of the numbers 1,..., N randomly permuted.

Introduce a new variable in the program that counts the number of partitioning
phases. Choose a suitable value for M and establish by experiments the approxi-
mate value of A for different values of N.

1.4 Let SN, N > 1 be a solution to the recurrence relation Sy = ZD:1 Si/k. All
solutions form a subvector space of R, the space of real sequences. What is the
dimension of this subvector space and how does a general solution look like?

1.5 Find a closed solution for ZE:M ) k(kfz)lz(gj:];)(k*m by using maxima (or a
similar system) and by doing the summation by hand.

1.6 Analyse the remaining variable Sy. First find an intuitive description behind
Sn. Then construct a recurrence relation for Sy and solve it.

1.7 We have seen that I’ +1” = 1 and that I',1” € {0,1}. We do not have to
analyze their behavior in greater detail because the number of machine instruction
that belong to I’ and I” is the same, so only their sum matters. If we use a highly
optimizing compiler, however, it is possible that there is one machine instruction
more in the I”-branch than in the I’-branch. If we strive for ludicrous precision
in our analyses we cannot ignore this single instruction.

So please analyze the expected value of I’. What do think it will be? Did you
guess correctly?

1.8 How many machine instructions are executed on average in Figure mips-quickl
if the program is used to sort N pairwise distinct keys in random order?

1.9 The assembler listing in Figure 1.3 contains a branch instruction in the basic
block starting at label $1.3. The purpose of this exercise is to analyze the penalties
for wrong branch predictions on this instruction.

A commonly used branch prediction strategy is the following: The processor has
two states for branch instructions, which we call YES and NO. In the state YES,
the processor predicts that the branch is taken and in the state NO that it is not
taken. The state is changed when two prediction in a row are wrong.

Analyze how often the branch prediction is correct. Assume that the initial state
is YES. Do you expect that the prediction is good or bad for this instruction?
Do a similar analysis for the instruction bne $12,$0,%L4 in the block after la-
bel $L5.

1.10 Extend the C-program for Quicksort with instruction that count A, B, C,
D, E, and S.

Run this program once for every Permutation of the numbers 1,...,10 and find
out what Ajg,...,Sj0 are. Use M = 3.

Compare the counted results with the predictions of our formulee.

1.11 Write a C-program for Mergesort and analyse in the same depth as we did
for Quicksort.
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1.12 Consider the following algorithm to find a maximal key in an array con-
taining natural numbers. We assume all numbers are pairwise distinct and every
permutation occurs with uniform probability.

int mazElem(int a[],int N) {
int 7, maz = —1;
for(z=0; 1 < N; 1++)
if(alz] > maz)
maz = al1);
return maz;

}

How often are the instructions a[z] > maz and maz = a[z] executed on average?
1.13 The next program is presented in x86 assembler language: Again the array
ds[0]...ds[2 *x N — 2] contains N pairwise distince natural numbers. Each per-
mutation occurs with the same probability. How often is each instruction of this
program executed on average?

maxElem: mov ax, OxFFFF A ax «— —1;
xor dx, dx A dx « 0;
next: cmp dx, N Bi<N?
jae done B jump if above or equal (i > N)
mov bx, ds:[2*xdx] C bx « aldx]
cmp bx, max C bx > max ?
jna skip C jump if not above (bx < N)
mov ax, bx D ax «+ bx
skip: add dx, 0x0002 E ax < ax + 1;
jmp next E jump
done: push ax F push the maximum on the stack

1.14 Student party! DJ O*D*D is present and brought with him infinitely many
songs in the three genres Rock, Gabba, and Blues. Tonight he will play n songs,
so there are theoretically 3" different combinations of genres possible. He has,
howver, to obey some strange rules:

1. After a rock song, he cannot play Gabba because readjusting the equalizer
takes too much time.

2. You cannot play two Gabba songs in sequence because it causes visitors to
die of accelerated stupification.

3. If he plays a Blues song, he has to stick to Blues for the remaining time
because everybody is feeling blue.

Set up a recurrence for the number of genre combination and solve it.
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1.15 We have an array a of length N. It contains N numbers drawn independently

and uniformly at random from {1,...,N}. How often is each instruction of the
following program executed on average?

count = 0;

1 =1,

while(z < N)
if(alt]%2 ==1)
count++;
1+t
return count;
1.16 Let w € {a,b}™ a word that has been chosen uniformly at random. How
often is the body of the while-loop executed on average in the following algorithm?
The function is_palindrome tests whether a word in a palindrome, i.e., the same
when read backwards.
1 =2,
while(z < n)
if (2s_palindrome(w(1], ..., w[z]))
return true;
1+,
return false;
1.17 Two natural numbers m # n are friendly, if the sum of all proper divisors
of m is n—and vice versa. A son and his father wrote these two programs that
compute friendly numbers. What are the running times of both programs?

Son Father
#include (i0stream) #include (stdio.h)
int e[150000]; #define N 1000000
int echteil(int a) { int teilersumme|[N];
int n =0 int main() {
for(int 2 =1; 14+ 1 < a; 1++) int 7;
if(a%i ==0) n+=1; for(i=1; i< N; i++) {
elal = n; int p =7
return n; while(p < N) {
} teilersumme(p] +=1;
main() { p+=1;
for(int 2 = 0; 7 < 150000; 72++) { }
int a = echteil(1); }
if(a > 1) continue; for(1=1; i < N; i++) {
if(ela] == 1) std = cout << 1 int a = teilersummeli] — 1;
<< ""<< echteil(1) << 'nn" if(a < 1 && 1 == teilersummelal — a)
} printf ("%d %dn n', a,1);
} }
return 0;

}



Chapter 2

The Kirchhoff laws

When we analysed quicksort, we learned several methods who to reduce
the numbers of variables that have to be analysed. A general technique
to do so, which we will develop formally now, uses Kirchhoff’s laws from
Electrical Engineering. We begin by looking at a directed graph whose
notes are the instructions of our program.

There is an edge between two nodes if and only if the second instruction
follows directly behind the first one. In the case of a branch instruction
more than one edge will emerge from a note. It is also possible that there
is more than one edge that leads into a note because this note could be the
goal of several branch instructions.

We also assume that there is a special note which we will call START and
another one which is denoted by STOP. The program flow starts at the
START note and ends at the STOP note. Let us assume, the graph has
exactly n notes including START and STOP and m edges. We denote the
edges by e; by i=1,...,m.

For symmetry reasons we add another edge called e, that goes from STOP
to START. With E; we denote the number of times that e; is used in a
program run. We set Ey = 1 as if the program will return to its start after
terminating. All together we have m different variables E;. It will turn out
that there are not all independent of each other but are subject to several
equations. These equations are derived from Kirchhoft’s law:

Theorem 1. (Kirchhoff’s Law)
Let I be the set of all i for which the edge e; ends in some node X and let

21
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Figure 2.1: Example of a flow diagram with and without a spanning tree.

O be the set of all i for which e; emerges from X. Then the sums

SE-YE
iel ie0
are identical and the corresponding number expresses how often the struc-
tion X is executed all together.

In the following we will develop a method which lets us choose a subset of
the set of independent variables E; such that we can derive the value of all
other variables from them.

The first step is to choose a spanning tree for the undirected graph. In
this step we ignore that edges are directed. Figure 7?7 contains a simple
example and a spanning tree depicted by drawing its edges thicker. The
spanning tree consists of the edges e;, ey, e3, e4, €5, and ey.

If we add any other edge to this spanning tree, then we get a unique cycle.
We denote these cycles as fundamental cycles. In our example the edges
eo, €6, and eg create such fundamental cycles. We provide each edge of a
fundamental cycle with a label: “4”, if the direction of this edge is the
same as the direction of the unique edge in the cycle which does not belong
to the spanning tree. Otherwise, we use the label “—”.
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In our example we have the following fundamental cycles:

Co = e+e+e+e3s+es+e;
Cc = es—es—e3t+ey

Cs = esteztes

Co = e+e+e3

An interesting fact which is what makes this definition interesting for the
analysis of algorithm, is that every fundamental cycle delivers a solution
of Kirchhoft’s laws: We set all E; = 0 for which e; is not part of the
fundamental cycle. If on the other hand e; belongs to the fundamental
cycle, then we set E; = 1 or E; = —1, according to the label of e; in the
fundamental cycle.

In our example the four corresponding solutions look as follows:

1. Eg=1,E;=1,E,=1,E3=1,E,=0,Es=1,E¢=0,E, =1, Eg = 0,
Eo =0

2. EOZO,E1:O,EZZO,E3:—1,E4:1,E5:—1,E6:1,E7:O,

So far we have four different solutions. The underlying equations are linear.
Therefore, linear combinations of their solutions are again solutions. Using
vector notation we can write the linear combinations of our four solutions
as follows:
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o O O

my
I
I
z

+ A2 + A3 + A4

crj'1
OO0 4 0 =4 O — — =
—_
O 4 00 40 40 OO
— 0000 = 2o o

o O O —

o O O

|
—

(2.1)

OO — O = O = oed ed e
-
—_—
o = O O = O = O O O
— O O O O ©C = —= O O
>
w

o o o —

For every combination of A;, Ay, A3, A; € R we get one solution of Kirchhoft’s
laws and every solution can be derived in this way.

At this point we can also notice that Ey = E; = E; and E4 = E¢, because
the rows of the matrix are identical for them.

At this point it is easy to choose three linearly independent E; and analyse
only them. Then all other E; can be expressed by them. In our example
we choose E, because we already know that Ey = 1. We have to choose
three more. Let us assume, we choose A = E;, C = E3 and D = E4. For
this choice we get the following equation:

1 10 00\ [N
Al |1 0 01 A2
c| |1 -1 11 As
D 01 00/ \ N
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This is a linear system of equations that can be solved with the usual
methods. Here we get the result Ay =1, A, =D, As = —-A + C+ D, and
A; = A — 1. If we insert these in (2.1) then we get the solution of all other
Eil

o © O

rmy
I
I

C+D—-A 1+
A—1

C+D-A
A—1

™
(o))
OO OC — O — O — = =
—_—
o - OO - O - O O O
—_ O O O O O — — O O

S O o =

All these computations can be done by computer algebra systems like Math-
ematica, Maple or Macsyma. In general the matrizes can become quite big.

We chose A, C, and D as the variables that we wanted to analyse. Which of
the variables are chosen for this purpose depends on the concrete problem.
It remains to get C and E: In this case we can express them as B = E;+E4 =
C+D andE=E5+E6=1+C+D—A.

You can find a deeper exposition to this technique Knuth [3, Section
2.3.4.1].

Exercises

2.1 If a flow diagram consists of n nodes and m edges, how many fundamental
cycles do we get?

2.2 Prove or disprove: In every flow diagram you can find a spanning tree such
that all fundamental cycles contain only edges that are labeled with plus.

2.3 In dieser Aufgabe betrachten wir den Algorithmus von Prim, mit dessen
Let us look at the algorithms of Prim that is used to compute minimal span-
ning trees in a connected weighted Graph.The input consists of an undirected
graph G = (V,E), and a weight function w : E — R, and a starting node r.
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for each u € V do
key[u] + oo
7tfu] « NIL
keylr] «+ 0
MV
while (M # 0) do
u « min-from(M)
for each v € neighbors(u) do
if (ve M)A (w(u,v) < key[v]) then
vl —u
11 key[v] «— w(u,v)

© 00 O Ot b W N+

—
o

Draw a flow diagram for this algorithms that contains all blocks. Construct a
spanning tree and a corresponding fundamental cycles. Choose a minimal set of
blogs whose running time can be analysed, and explain how you can derive all
other variables from them.



Chapter 3

Recurrence relations

If you analyse the running time or some other parameter of an algorithm,
you want to find a closed mathematical formula that describes the param-
eter you are analysing. More often than not you will not be able to find
such a formula right away, but only some related formula that describes
the parameter you are insterested in in an indirect way. When we analysed
quicksort as an example we could describe an interesting parameter Xy by
formulas that looked like

MZ

5 N
XN = — Xy + fn-
N 0 T TN

i

An equation that contains not only the variables Xy but also variables Xy
with k < N are called recurrences.

To solve a recurrence relation means to find a closed formula for Xy.

In general no closed formula for the solution of a recurrence relation needs
to exist—in practice, on the other hand, the analysis of algorithms very
often leads to recurrence relations that indeed have a closed solution, or,
whose solution can be at least very well approximated by some nice closed
formula. There are also some classes of recurrence relations that can be
solved by some easy fixed algorithm. Much of the material in this chapter
can be found in three books [1, 2, 3|, in particular in the second one by
Greene and Knuth.

27
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3.1 Classification of recurrence relations

The most general recurrence relation, which we consider, has the general

form

a, = f(an_1,an_2,...,aq9) for n > t. (3.1)
We consider a, only for n > 0 and definea 1 =a ,=a 3=---=0.
Because (3.1) holds only for n > t, we can compute any a,, if ap, aj,..., i

are already known. In general the solution of the recurrence relations will
depend on these starting values. If the recurrence relation originates from
the analysis of an algorithm, then the starting values ay, ay,...,aqi; are
usually fixed by the algorithm.

The recurrence relation for the number of comparisons during partitioning
for the Quicksort algorithm was

Z

2
Cn=N+1+ NchforN>M

with the starting conditions Co =C; =C, =... =Cy =0.

We can derive these starting conditions easily from the algorithm: If N <M
then no partitioning takes place.

In general we classify recurrence relations as follows:

an, = f(an 1,an 2y...,Qn ) Recurrence relation of t-th order
n—1

a, = E x(k,m)ay homogeneous, linear recurrence relation
k=0
n—1

= E x(k,n)ay + f(n) linear recurrence relation
k=0

ap = X10p—7 +X20n—7 + + - + X¢a,—¢ linear with constant coefficients

In this chapter we will look at various methods to solve typical recurrence
relations that originate from the analysis of algorithms.
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3.2 Creating a table

Usually a first step that we should always take is to compute some values
of the solution of the recurrence relation and put them into a small table.
Let us look for example at the recurrence relation

an =01 +2ap2forn>1and ay =a; =1.

We can compute a, = a; +2a9 =3, a3 = a; +2a; =5, as = az +2a, =11,
as = 21, ag =43. and get the following table:

n|0 123 4 5 6
a, |1 1 3 5 11 21 43

By looking at the table we get a first impression how the solution looks
like and we can reuse the table later to see whether our closed formula is
correct. If the first values of the table coincide with the values predicted
from our solution we can be reassured that we have not made any mistakes
when finding the closed formula.

3.3 Guessing a solution and
proving it by induction

With the help of some solutions from our short table we can try to guess
a closed formula. Let us look for example at the table above for a,,. If we
look at it it seems that the sequence consists of numbers that almost double
in each step. It seems that there are not exactly doubling, but sometimes
they are twice the predecessor plus one and sometimes minus one. If this
is true, a good idea might be to look at the sum of two consequent values
of a,. We get 2, 4, 8, 16, 32, 64.

This suggests that the solution should be approximately 2"*'/3. So let us
look at a table of 2™'/3:
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Indeed it seems that the values in this table are almost the solution but
they are alternatingly % too small or too big. This suggest a closed formula
as follows: : :
— _2n+1 —(=1)"
an = 32"+ 2 (1)

Let us verify this formula on some values. If n = 0 we get %2 + %(—1 )0 =1,
forn =1 we get }4+1(—1)' =1, and finally for n =5 we get 164+1(—1)° =

& 21,

It seems that our guess was correct but we still have to prove its correctness.
Usually induction is the best method to prove such a claim. We already
showed that the closed formula is correct for n = 0 and n = 1. So let us
assume now that n > 1.

From the induction hypothesis we get

1 1 2 2
Qn = 0n 1 +2an 2 = gzn + 5(—1)“*‘ + gznq + g(—1 "2

1 1
— _2n+1 — (=1 n—2
and this coincides with our closed formula for a, because (—1)"2 = (—1)".

This proves without doubt that indeed a, = %2““ + %(—1 ™.

3.4 Looking up the solution

There is a very interesting book that contains most known integer sequences
in lexicographical order. Of course, only the beginning of each sequence is
listed together with a short description and pointers to places this series
was used. You can find our series 1,1,3,5,11,21,43, ... in this book. There
it has the name “A(N) = A(N —1) + A(N — 2)” and there are pointers
to two papers in the journal Eureka, the Journal of the Archimedeans
(Cambridge University Mathematical Society) and Nouwvelles Correspon-
dance Mathématique. You can find more about this series in those two
publications.

Meanwhile in the mordern world of the WWW there is an alternative that
you can find under the URL

https://oeis.org
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At this webpage you can enter the beginning of your series and the answer
to the input 1,1,3,5,11,21,43 is depicted in Figure 3.1. The web page also
reveals a name of our series: Jacobstahl sequence. Moreover you find more
pointers to literature and also a closed formula for the term a,,.

3.5 Mathematica, Maple, Maxima, etc.

There are some computer algebra systems that are able to solve simple re-
currence relations directly. For the system Mathematica the corresponding
function is named RSolve. We can use Mathematica to solve our example
problem:

Reolve[{a[n] ==a[n-1] +2a[n-2],
a[0] ==a[l] ==1}, a[n],
nj

—1y* 2rz+1
fam -2 2 0
3 3
Mathematica finds the same solution as we did. The other well-known
algebra system Maple can solve the recurrence, too:

> rsolve({a(n) = a(n-1)+2*a(n-2), a(0..1)=1}, a(n));
n n
1/3 (-1) + 2/3 2

The free computer algebra system maxzima is also able to solve such a
simple recurrence:

Maxima 5.23.2 http://maxima.sourceforge.net

using Lisp SBCL 1.0.38-3.el6

Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.

The function bug_report() provides bug reporting information.
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A001045 - OEIS https://oeis.org/A001045

login
This site is supported by donations to The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

Annual appeal: Please make
a donation to keep the OEIS

running! Over 6000 articles Donate %esr
have referenced us, often ., 5] © Pl %
saying "we discovered this - donate

result with the help of the
OEIS".

Hints
Search
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A001045 Jacobsthal sequence (or Jacobsthal numbers): a(n) = a(n-1) + 2*a(n-2), with 575
a(0) =0, a(l) =1.
(Formerly M2482 N0983)
e, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381,
174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485,
178956971, 357913941, 715827883, 1431655765, 2863311531, 5726623061 (list; table; graph; refs; listen;
history; text; internal format)
OFFSET 0,4

COMMENTS Number of ways to tile a 3 X (n-1) rectangle with 1 X 1 and 2 X 2 square tiles

Also, number of ways to tile a 2 X (n-1) rectangle with 1 X 2 dominoes and 2 X 2
squares. - Toby Gottfried, Nov 62 2008

Also a(n) counts each of the following four things: n-ary quasigroups of order 3
with automorphism group of order 3, n-ary quasigroups of order 3 with
automorphism group of order 6, (n-1)-ary quasigroups of order 3 with
automorphism group of order 2 and (n-2)-ary quasigroups of order 3. See the
McKay-Wanless (2008) paper. - Ian Wanless, Apr 28 2008

Also the number of ways to tie a necktie using n + 2 turns. So three turns make an
"oriental", four make a "four in hand" and for 5 turns there are 3 methods:
"Kelvin", "Nicky" and "Pratt". The formula also arises from a special random
walk on a triangular grid with side conditions (see Fink and Mao, 1999). -
arne.ring(AT)epost.de, Mar 18 2001

Also the number of compositions of n + 1 ending with an odd part (a(2) = 3 because
3, 21, 111 are the only compositions of 3 ending with an odd part). Also the
number of compositions of n + 2 ending with an even part (a(2) = 3 because 4,
22, 112 are the only compositions of 4 ending with an even part). - Emeric
Deutsch, May 08 2001

Arises in study of sorting by merge insertions and in analysis of a method for
computing GCDs - see Knuth reference.

Number of perfect matchings of a 2 X n grid upon replacing unit squares with
tetrahedra (C_4 to K 4):

0----0----0----0...

I\ 1\ | \/ |

(AN VAN EVANN]

0----0----0----0... - Roberto E. Martinez II, Jan 07 2002

Also the numerators of the reduced fractions in the alternating sum 1/2 - 1/4 + 1/8
- 1/16 + 1/32 - 1/64 + ... - Joshua Zucker, Feb 07 2002

Also, if A(n), B(n), C(n) are the angles of the n-orthic triangle of ABC then A(1)
= Pi - 2A, A(n) = s(n)*Pi + (-2)"n*A where s(n) = (-1)"(n-1) * a(n) [1l-orthic
triangle = the orthic triangle of ABC, n-orthic triangle = the orthic triangle
of the (n-1)-orthic triangle]. - Antreas P. Hatzipolakis
(xpolakis (AT)otenet.gr), Jun 05 2002

Also the number of words of length n+l in the two letters s and t that reduce to
the identity 1 by using the relations sss = 1, tt = 1 and stst = 1. The
generators s and t and the three stated relations generate the group S3. - John

10of 10 11/20/2017 10:15 AM

Figure 3.1: Erste Seite der Antwort der On-Line Encyclopedia of Integer
Sequences auf die Eingabe 1,1,3,5,11,21,43.
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(%i1) load("solve_rec");
(%hol) /usr/share/maxima/5.23.2/share/contrib/solve_rec/solve_rec.mac
(%12) solve_rec(al[n]-al[n-1]-2*a[n-2], aln], al0]l=1, al[1l=1);

n+1 n

(%02) a = ------ + mmms

3.6 Hidden products and sums

The most simple recurrence relations are of the form
Qn = XnQn 1 and by, = by 1 + Yn-

Both forms are related to each other. If you substitute a, = log(a,) then
the left recurrence relation turns into a recurrence relation of the right hand
type. We will call these two types of recurrence relations hidden products
and hidden sums.

The recurrence relation on the left hand side can be solved by repeatedly
inserting the right hand side. The procedure leads to a product:

n
An = Xnln—1 = XnXn-1Qn—2 = =+ = XnXn-1Xn—2Xn-3 - - - X2X104p = Qo I I Xn-
k=1

In the same way iteratively inserting leads to a sum for the recurrence
relation on the right hand side.

Theorem 2. The solutions of the recurrence relations
An = XnQn—g and by, =bng + Yn

are
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3.7 Linear recurrence relations with constant
coefficients

A very simple recurrence form are homogeneous linear recurrence relations
with constant coefficients. In the most general form they look like

a, =0¢10n 1 +Cap 2+ +cap s forn>t (3.2)

Here we have a recurrence relation of t-th order. The coefficients ¢; € R
are the coefficients of the recurrence relations and do not depend on n
(therefore constant coefficients.)

Linear recurrence relations with constant coefficients can always be solved
and additionally they can be solved with a fixed algorithm. In the fol-
lowing we will develop such a general algorithm that solves these kind of
recurrences.

Let us first assume that there exists a solution of the form a,, = o™ where
o € C. If we insert this solution into the recurrence and set n = t then we
get

- -2
"™+ e+ e

ot =t
Such a solution implies that « is a root characteristic polynomaial.

1 2

x(z) =z —cizt ' —ct - =iz — ¢

On the other hand it is also clear that a, = «" is indeed a solution to (3.2)
if o is a root of the characteristic polynomial.

If « happens to be a root of x with multiplicity k then additionally a, =
nJa" for 0 < j < k are solutions to the recurrence relations. We can check
this fact by inserting the solution into the recurrence:

t
na™ = Z c(n—r)a™T,
r=1
which is equivalent to
t
not — Z e(n—r)at T =0.
r=1
The left hand side of the above equation is a linear combination of x(a),

x' (), x" (), ..., X9 (). The first k derivatives of x are 0 at « because
is a root of x with multiplicity k.
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Theorem 3. The homogeneous linear recurrence relation with constant
coefficients

aQn =CiQn 1 +Can 2+ --+ca, ¢ forn>t

has the solutions a, = nJ&™ for all roots « of the characteristic polynomial

x(z) =z —cizt T — ezt — - — Lz — gy

and for all j =0,1,...,k — 1 where k is the multiplicity of the root «. All
these solutions are linearly independent. They form a basis of the vector
space of all solutions.

Because the recurrence relation is linear and homogeneous multitudes of
a solution and sums of solutions are again solutions of the recurrence. In
that way we have constructed exactly t linearly independent solutions and
we noted that they are a basis of the vector space of all solutions.

If we have t initial conditions, for example the values of ay, a;,..., ai_1,
then we get exactly one solution by a linear combination of the solutions
in our basis. To find the right linear combination we just have to solve a
linear system of equations.

Let us look at

aQn =0p1+2ap > furn>1und ap=a; = 1.

The characteristic polynomial is q(z) = z2 —z— 2. We can see immediately

that —1 is a root. Using polynomial division of q(z) by z + 1 we get the
result z — 2 and a second root is 2. All solutions are therefore of the form

an =A2" + u(—1)™

To establish the values of the constants A and p we have to use the initial
conditions. If we insert the initial conditions into the recurrence relation
we get 1 = A+ pand 1 = 2A — . Solving this system of equations yields
A= % and pu = %

3.8 Summation factor

We can always convert a linear recurrence relation of first order into a sum.
We used this technique already when solving the recurrence relations for
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Quicksort. After we turned them into a first order recurrence relation they
took the following form:

NXn = (N 4+ 1)Xnog + Nfy — (N —=1)fnoq, for N> M+ 1

We multiplied this equation with 1/N(N + 1) and finally got after a sub-
stitution the very simple equation of the form

YN = Yno1 + gne

In the following we will develop a technique that allows us to do a similar
transformation with all linear recurrence relations of first order.

Theorem 4. The linear recurrence relation of first order
Qn = XnQn 1 +Yn forn >0

and ay = 0 has the solution

n—1

0n =Yn + E YijXj+1Xj42 « - - Xn.«
j=1

We prove this theorem by dividing the recurrence relation by x,,xn_1%xn—2 ... %1,
which gives us

an an1 Yn

= + .
XnXn—-1Xn—2...Xq Xn—1Xn-—2Xn—-3...%X1 XnXn—-1Xn—2...%Xq

If we substitute b, = a,/(XnXn 1Xn_2...%1) we get the simpler recurrence

relation
Yn

XnXn—-1Xn-2...X1

bn = bn—l +

that we can easily solve by a summation. In this method we call the
product 1/x.Xn 1Xn_2...X1 @ summation factor. It gives this method its
name. Very often the summation factor is quite simple because a lot of
cancellation goes on.

Let us try to apply the technique of summation factors on the reccurence
relation
a,=2a, 1+nforn>0
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and ay = 0. In this case x, = 2 and y, = n. Therefore the solution is
n—1
Gn=m+) j-2")=2""-2-n.

j=1

Indeed Mathematica can solve this recurrence relation, too:

In[4]:= RSolve[{a[0]==0, a[n]==2a[n-1]+n}, a[n]l, n]
1 +n
Out [4]= {{a[n] -> -2 + 2 - n}}

3.9 The Repertoire Method

We can use the repertoire method mainly for linear recurrence relations.
This method shows that solving recurrence relations is more art than sci-
ence. To master the repertoire method we need a lot of intuition. When
analysing algorithms, usually we know how the solution will roughly look
like. In general when applying the repertoire method we start from a re-
currence relation of the form

an = X1,nQn—1 + XonQn-—2 + X3nan-3 +...+ XenQn—t + fh.

At this point we imagine some solution of the equation and find out for
which f,, we get this solution. We do the same for many different potential
solutions and each time we get a different f,. Because linear combinations
of solutions are again solutions of a recurrence relation we can get the
solution of the original recurrence relation by forming a linear combination
of our potential solutions such that the corresponding linear combination
of the different f,,’s yields the original f,, of the orginial recurrence relation.
We demonstrate the repertoire method on Quicksort (with M = 0):
2 n—1
a, =f,+ — ax

We start with a potential solution a, = 1 and get

n—1
Zak:1—3 1=-1.
k=0 n

fo=ay —

S
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This means that our guessed solution a,, = 1 is indeed correct if f, = —1.
But the real f,, is different. We proceed by trying other potential solutions,
computing the corresponding f,, and see what linear combinations of these
f.'s we can get.

For our Quicksort equation we will choose the following repertoire:

n—1
2
an fn:an__E ax | Qo

1 —1 1
H,. 2—H, 0
nH, Im—1)+H, 0

Let us assume we want to analyse the number of comparisons. In that case
fno =n+ 1. Not suprisingly we don’t have a solution for this specific f,, in
our repertoire. On the other hand, we can get n + 1 as a linear combation
of the three f,’s which are contained in our repertoire:

n+1 :2<%(n—1)+Hn> +2(2—H,)+2(-1)

Consequently, we can get a solution for the recurrence relation with f, =
n+1 as
an =2(MmHy) +2(Hy) +2(1)=2n+1)H, + 2.

While we have a solution now, unfortunately, the starting condition ay =0
is not fulfilled. Instead we get ay = 2. To remedy this situation we need
a bigger repertoire so that the linear combinations do not yield only the
correct f, but also the correct starting condition. For this end we add
another function to our repertoire:

n—1
2

an fn:an——Zak ao

N
1 —1 1
H, 2—H, 0
nH, Jn—=1)+H, 0
n 1 0

Now we can express n+ 1 as a linear combination of 2 —H,, %(n— 1)+ H,
and 1 and get a solution with the correct starting condition because in all
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these cases ay = 0 holds:
n—+1 :2<%(n—1)+Hn> +2(2—H,)—2(1)

and the solution is

2(nH,) + 2(H,) — 2(n) = 2nH,, + 2H, — 2n.

The general procedure when using the repertoire method is as follows: we
start with a recurrence relation of the form

t
an = Z XinQn—t + f(n)

i=1
The coefficients x; , may depend on n.

Step 1: We choose a repertoire by, ¢, dy,,- .. of different series and compute
for each of them f,(n) = b, — ZL] Xinbn_t. In this way b, is a closed
solution of the recurrence relation

t
bn = in,nbn—1 + 1:b (Tl) forn Z t
i=1

Step 2: If we can express f(n) as a linear combination of fy(n), f.(n),...,
let us say as

f(n) = Bfp(n) + yfc(n) + dfg(n) +---

then we get
an = PBbny +ven +0dn +---

and he have a solution of the recurrence relation with some specific starting
conditions.

Step 3: If we want to find a solution for a, for different starting conditions,
which is usually the case, then we have to use a different linear combination.
For this end the repertoire must be big enough in order to have as many
linearly independent solutions for a, such that we can enforce the correct
starting conditions by some linear combination of the solutions.
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3.10 Order Reduction

Sometimes we can reduce a recurrence relation of higher order to several
recurrence relations of smaller order. For this end we define the so-called
shift operator E, which maps sequences to sequences. This operator is
defined via

Efy = fi,

which means that this operator shifts all elements in a sequence by one
position to the beginning. We can interpret the expression Ef,, in two
different ways: If we interpret f,, as a sequence, then Ef,, = f,,; is simply
the shifted sequence. A second possibility is to interpret f,, as an operator,
too, which gives us f,g, if applied to the sequence g,. Then Ef, = f,, 4 E.

To work with linear operators can be counterintuitive in the beginning.
While the associative law is still valid (for example E(f,g,) = (Efy)gn),
which means that we don’t have to care about the setting of parenthesis,
the commutative law certainly is invalid. For example En = (n+ 1)E (n
is interpreted here as a series whose n’s element is n). Similarly En? =
(n? —2n + 1)E.

It is always possible to write a linear recurrence relation of t’s order as
follows:

p(E)a, = f(n),
where p is a polynomial of degree t whose coefficients are themselves se-
quences because

an = X1,;n0n—1 + X2nQn—2 +- XenOn—t + f(n))
which is equivalent to
(Et - XLnEti] - XZ,nEtiz - X3,nEt73 - Xt,nEo)anft - f(n)

While it is always possible to factor polynomials whose coefficients are
complex numbers, for polynomials whose coefficients are sequences, this
is not always the case. If we are lucky, however, we can write p(E) =
q(E)r(E). In that way, it is sometimes possible to factor a polynomial
p(E). If we indeed succeed in factoring the polynomial, we still have to
solve q(E)r(E)a,, = f(n). We start with the substitution b,, = r(E)a,, and
first solve the recurrence relation
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which is a recurrence relation of lower order than the original one. In that
way, we can get a closed formular for b,. In the next step we solve the
recurrence

r(E)a, = by,

which is again a recurrence relation of lower order and after solving it we
get the solution for a,.

In general we use the following recipe:

First you write a linear recurrence relation in operator form as

and try to factor it as p(E) = q(E)r(E). In the next step you solve
q(E)b, = f(n) and r(E)a,, = b,.

The recurrence relation is in that way reduced to two recurrence relations
of smaller order.

As an example, let us again look at the recurrence relation
ni2 — (N4 2)ang + na, = n. (3.3)
In operator notation this recurrence relation looks as follows:
(E2—(M+2)E+n)a, =n

We can indeed factor this polynomial because (E—1)(E—n)=FE>— (n+
2)E + n. Please note that En = (n+ 1)E. The recurrence relation has now
the form

(E—1)(E—m)a,=n

and we start by solving (E — 1)b,, = n or, equivalently b,,; = b, + n.
This is a hidden sum and we get the solution with the help of Theorem 2
resulting in

= nn-—1) nmn-—1)

b, = —1)=——+by=—F7F— .
%(n ) 5 + Do 7 + a4

In the final step we have to solve (E—n)a, = b, =n(n—1)/2+ a;, which
1s a recurrence relation that can also be written as
nmn-—1)

an1 = Na, + T + aj. (34)
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This is a linear recurrence of first order. Solving it yields

n—1
a, = (n;U!(Z%)%ﬁh(n_m_ (3.5)
k=1 )

As usual the result is in the form of a summation. Let us take a closer look
at the interesting part inside the big parentheses:

n—1 n—1 00 n-3
k,(k— ]) +2(11 2(1] 1 1
K! - 1 T Z Z ! +2a; Z
k=1 k=2 =0 k=
n-3 n—1 00 0o
1 1 1 1
=D+ 2a ﬁ_1>:e_ 2= 51
k=0 k=0 k=n—-2 k=n

=e—0(1/(n=2))+2a;(e—0O(1/n!)—1) =2a;(e—1)+e+0(1/(n—2)!)
Inserting the result into (3.5) gives us an asymptotic estimate of a,:

(n—1)!
2

a, =

(2a1(e—1)+e+0(1/(n—2)!)> +ai(n—1)!
=M —T1)!(are +e/2) +0O(n)

Let us choose a; as the starting condition. Then a;y = 1479610 and the
estimate is 1479615.164 ..., which is about 5 too high, but still very close.

3.11 Extracting recurrence relations from al-
gorithms

Let us look at the following while-loop:

while 1 <j do
1e—i+1je—j—1
od

We can ask the question: How often will the body of this loop be executed?
Obviously, the answer to this question depends on the values the variables
i and j contain at the beginning. Let us call these values 1ij, jo and fur-
thermore, denote by 1i,, j, the values of the variables i and j after the n’s
iteration of the loop.
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Let us start by constructing a small table for a small example. For this
purpose, let us choose iy = —3 and j, = 10.

n\o 1 2 3 4
i.|-3 =2 -1 0 1
jn | 10 12 13 13 12 10

Because 1; > j;, the loop will not be executed for the 8’s time.

It is now easy to write down a recurrence relation for i,, and j,:
:Ln :inf1 +1 and jn :jn71 —'i,n,1 —1

These two recurrence relations are interleaved but only the second with
the first. We can solve the recurrence relation for i, immediately and the
result is simply i, = ip + n. This closed form can be inserted into the
second recurrence relation

jn:jnfl —(10+T1—1)—1 :jnfl —io—n-

Again, this is a hidden sum and the solution is

jn =jo— D _(io+Kk) =jo—nio—
P

nn+1)
—

The body of the loop is executed as long as i < j holds. The (n + 1)st
execution takes place if and only if the nth execution took place and ad-
ditionally j, — i, > 0. If iy > jo, then the loop will not be executed at
all.

Let us take a closer look at the condition j, —1i, > O:

nn-+1)

1 1
7 —TL"Lo—|-j0—"Lo—TL:——nz——(3+210)n+jo—ioZO

Jn T =" 2t T2

If we multiply this inequality by —2, we get the following one, which looks
a little bit nicer:

n* 4+ (34 2ig)n —2(jo—1i0) <0 (3.6)

The equation x* + (3 + 2iy)x — 2(jo — ip) = y describes a parabola. We can
assume that n = 0 is a solution of (3.6) because otherwise the loop is not
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executed at all. Because of this, the parabola will have real roots. The
inequality (3.6) will be fulfilled for all ns starting from 0 up to the right
root. This second root is

3 1

With other words (3.6) holds for 0 < n < (, which is equivalent to 0 <
n < |{]. All together the body of the loop will be executed || + 1 times.
Explicitly written this number is

1 1
\‘z\/4io(io+1)+8)‘o+9—io—zJ . (3.7)

At this point, it might be a good idea to test this explicit formula for the
number of executions on an example. Let us assume again that iy = —3
und jo = 10. If we plug in these values into (3.7) we get

B\/4(_3)(_2)+8.10+9+3—%J = E\/WJrgJ =791 =7.

This result is correct.
Let us try a more complicated problem:

fork=1tom
ik j« K%
while 1 <j do
i—it+Tje—j—1
od
od

How often is the body of the inner loop executed?

We denote by W(ig,jo) the number of executions of the body of the while
loop if at its beginning the variables have the values i = iy and j = j,.
Above we already established a closed formula for W(io,jo): W(io,jo) =
[3V/40(o+ 1)+ 8jo+ 9 — 1o — 3.
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n VK]

iMZJ=ZZ1:ZZ(1§k§n/\1gigm_q):
k=1 k=1 i=1 ki
= (1<k<nA1<¥#<Kk) = (1<i?<k<n)=
y .
lvn] n lvn] LY Wl
Y S 1=y et = Wl - D
i=1 k=i2 i=1 i=0
I (S (VAT ER)

3
Figure 3.2: How to compute the sum of |v/k].

The total number is simply

> WK =) B\/4k(k+1)+8k2+9—k—1J

2
k=1 =1

:ﬂ;W(H;_k%)_k_;J
B ko (1)
:i {k(\@—nﬁ/—g—ljuow])J

6 2

_y (k(\/§—1)+0(1)> :\/§2_1m2+0(m)z0.366-m2 (3.8)

Instead of establishing an exact formula for this summation, we just com-
pute an estimate. For this end we use Taylor’s theorem:

1
V1 +x:1+§x+0(x2)

If use the value m = 1000 in our approximatively correct formula, we get
366025. The exact value is 365687.

3.12 Searching an unordered array

We start with an example. Let us assume we have an array a[l]...a[n]
with pairwise distinct numbers. We want to write a program that finds out
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whether a given number is contained in the array. An obvious solution in
the programming language C might look as follows:

int n;
int a[1000000];

What is the running time of this program?

It is quite obvious that in this case the answer depends on various factors.
One of them is whether v is contained in the array or not.

Let us first consider an unsuccessful search: The for-loop will be executed
n times and after that O is returned.

In the case of a successful search, on the other hand, there is some 1 with
ali] = v. To be able to analyse this case, we need to know something about
which 1 happens to have this property. In general, we can try to make a
statistical assumption about the input. In the following we will assume that
all elements in the array are in a random order. Then for each 1 between 1
and n the probability that a; = v is exactly 1/n.

Let us denote the running time of the program by L(i), if a[il = v. The
average running time is then

All that is left is to find a closed formula for L(i). The for-loop and the
if-statement are executed exactly i times. If [ (i) is the number of machine
instructions, we need to look at the machine programe (Figure 3.3). Let Z
be the average number of executions of the for-loop. We get

The running time of the program happens to be 24 + 8Z machine instruc-
tions according to figure 3.3. This results in 244+4(n+1) = 4n+28 machine
instructions on average, if the size of the array is n.

Is it necessary to look at a recurrence relation to solve this problem? At
first glance no, but this assumption is not completely correct.

The situation is just so simple that you can see the solution at once. Just
for fun it is also possible to solve it systematically with recurrence relations.
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1 sw -4(r29),r30 1 sgti r1,r3,#0 Z 1w r1,(r31) L8:

1 add r30,r0,r29 1 beqz r1,L3 Z seq rl,rl,r4 1 1w r2,0(x29)

1 sw -8(r29),r31 1 1w r4,(r30) Z bnez r1,L8 1 1w r3,4(x29)

1 subui r29,r29,#24 1 1hi r1,((_a)>>16)&0xffff Z addi r1,r0,#1 1 1w r4,8(r29)

1 sw 0(r29),r2 1 addui ri,r1,(_a)&0xffff Z—1 addi r31,r3i,#4 1 1w r31,-8(x30)
1 sw 4(r29),r3 1 1w r2,(r1) Z—1 sle r1,r31,r2 1 add r29,r0,r30
1 sw 8(r29),r4d 1 addi r3i,r2,#4 Z—1 bnez r1,L5 1 jr r3i1

1 1hi r1,((_n)>>16)&0xffff 1 sl1li r1,r3,#0x2 Z—1 nop 1 1w r30,-4(x30)
1 addui ri,r1,(_n)&Oxffff 1 add r2,r1,r2 L3:

1 1w r3,(r1) L5: 1 addi r1,r0,#0

Figure 3.3: Search program

In order to do so, we have to reduce the case of n elements to the case of
n — 1 elements. This is not complicated: Z; = 1, because if we search for
just one key and you find it then you use exactly one comparison. If n > 1,
we get Z, =1- :—1 +(1— %)(1 + Z,._1) because with a probability of % we
can find v in the first place of the array and with a probability of 1 — :—1
we have to search it in the remaining n — 1 places. The latter task needs
another Z, ; comparisons on average. The recurrence looks as follows:

where Z; = 1. This is a linear recurrence relation of first order that can be
solved with a summation factor. On page ?? we can find the solution as a
formula. In this case we get

n—1
1 1 1 1
Z, = 1 - (r=——)(1=——=)- (1=
2 (1=37) (=532) (=573) (=)
—1

n—1

i i+1i+2  n—1
— 1 — 1
+].Z]j+1j+2j+3 o +j

j
2 1
n + 2 2

MP‘

1

The overall result is correct. Were we allowed to use this formula at all?
Yes, because all pre-conditions are valid in particular Z, = 0.

Let us now improve the search algorithm in order to see what impact our
improvements have. In a first step we access the array by a pointer instead
of an index. Moreover, let us count the array elements backwards in order
to have a more efficient comparisons with zero. The resulting program is
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1 sw -4(x29),r30 1 1hi r1,((_n)>>16)&0xffff Z seq rl,r1,r3 1 addi r1,r0,#0
1 add r30,r0,r29 1 addui ri,r1,(_n)&0xffff Z bnez ri,L8 L8:

1 sw -8(r29),r31 1 1w r31,(r1) Z addi r1,r0,#1 1 1w r2,0(x29)

1 subui r29,r29,#16 1 sgti r1,r31,#0 Z—1 addi r31,r31,#1 1 1w r3,4(x29)

1 sw 0(r29),r2 1 beqz r1,L3 Z—1 sgti r1,r31,#0 1 1w r31,-8(x30)
1 sw 4(r29),r3 1 1w r3,(r30) Z—1 bnez r1,L9 1 add r29,r0,r30
1 1hi r1,((_a)>>16)&0xffff 1 addi r2,r2,#4 Z—1 addi r2,r2,#4 1 jr 31

1 addui ri,r1,(_a)&0xffff L9: 1 addi r2,r2,#-4 1 1w r30,-4(x30)
1 1w r2,(r1) Z 1w r1,(r2) L3:

Figure 3.4: Another search program

int search2(int v) {
int 2;
int x p = &al0];
for(z=n; 1>0; 1—) {
if (x++p == v) return 1;
}

return 0;

}

The corresponding DLX assembler program can be found in figure 3.4.

This time we get 24+ 8Z machine instructions, which is 4n+ 24 on average.
This “improvement” is not very good because we save only 4 instructions.

It seems that it is not easy to improve this program significantly. There is,
however, one trick left that helps a lot: we avoid counting. In order to do
so, we store v at the end of the array and consequently we don’t have to
check anymore whether we reached the end of the array:

int search8(int v) {

int 7;
int x p = &al0];
aln+ 1] = v;

while(xp # v) p++;
if(p == &aln + 1]) return 0;
return 1;

This time it turns out that 35 + 4Z machine instructions are executed.
On average this makes 2n + 37 instructions. For big n this is much faster
as the previous solutions, but for small n it might be slower. If you are
only interested in successful searches, then this more clever search will be
superior for n > 5.
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sw -4(r29),r30
add r30,r0,r29

sw -4(r29),r30
add r30,r0,r29

sw -8(xr29),r31
subui r29,r29,#16
sw 0(r29),r2

1w r31,(x30)

1
1
1
1
1
1

1w ri,(r1)
1hi 12, ((_a+4)>>16)k0xffff

addui r2,r2,(_a+4)&0xffff
s1li r1,r1,#0x2

add ri,ri1,r2

sw (r1),r31

addi r2,r2,#-4

addi r2,r2,#4

L9:

L9:

P—1

1w r2,(r31)

addi r2,r2,#-4

1hi r1,((_n)>>16)&0xffff
addui ri,r1, (_n)&O0xffff
1w r1,(r1)

s11i r1,r1,#0x2

addui r3,r3, (_a+4)&0xffff

1
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1w r2,0(x29)
1w r3,4(r29)
1w r4,8(r29)
1w r31,-8(x30)
add r29,r0,r30

1w r30,-4(x30)

1 1 1

1 1 1

1 sw -8(r29),r31 1 addui r2,r2,(_a+4)&0xffff P—1 sgt r1,r2,r3 1

1 subui r29,r29,#24 1 slli ri,r1,#0x2 P—1 bnez r1,L9 1

1 sw 0(r29),r2 1 add r1,r1,r2 P—1 addi r31,r31,#4 1

1 sw 4(r29),r3 1 1hi r4,#1 1 addi r31,r31,#-4 1 jr r31
1 sw 8(r29),r4d 1 addui r4,r4,#34464 1 seq r2,r2,r3 1

1 1w r3,(r30) 1 sw (r1),rd 1 bnez r2,L6

1 1hi r1,((_n)>>16)R0xf£EE 1 addi r31,r2,#-4 1 addi r1,r0,#0

1 addui ri,rl,(_n)&0xffff 1 addi r31,r31,#4 L6:

addi r1,r0,#1

L6:

1w r2,0(r29)
1w r3,4(x29)
1w r31,-8(x30)

1w r30,-4(x30)

1hi r1,((_n)>>16)&0xffff
addui r1,r1, (_n)&O0xffff
1w ri,(r1)

1 1hi r2,((_a+4)>>16)&0xffff

1 1w r1,(x2)
1 sne rl,r1,r31
1 bnez r1,L9
1 addi r2,r2,#4

add r1,r1,r3
seq r2,r2,r1
bnez r2,L6
addi r1,r0,#0

1

1

1

1 add r29,r0,r30
1

1 jr r31

1

1

1

1

1

1

1 sw 4(r29),r3
1

1

1 nop
1

1
1
1
1
1
1 1hi r3,((_a+4)>>16)&0xffff
1
1
1
1
1

Figure 3.5: Intelligent search. The branch to label L6 is never taken in a
successful search.

3.13 Searching an ordered array and binary
search trees

Let us consider the problem of searching an ordered array. We assume as
usual that the array a[ll],...,a[n] contains n different numbers, but this
time they are ordered. How long does it take on average to find one of these
numbers if we search for each of them with the same probability? (Again
this is a successful search.) We can also ask ourselves the question how long
it takes to find out that some number is not contained in the array. Which
probability distribution is the right one for this unsuccessful search? If
the algorithm is based only on comparisons, then its running time depends
on the place where the number that we are searching for belongs to. In
principal there are n + 1 places, i.e., before the first array element, behind
the last array element, or in one of the n — 1 gaps in between.

Again, the first algorithm we consider searches the array from left to right.
As soon as we see an array element that is bigger than the key we are
searching, we can abort the program. Let us assume we can put a pseudo
number H behind the end of the array. This H should be bigger than all
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numbers that occur in the array.

int search4(int v)

{
int * p;
aln+1] = H;
p=a;
do { p++; } while(xp < v);
if(xp == v) return 1;
else return 0;
}

The running time of this program depends on how often the instruction
p+-+ is carried out. If the search in unsuccessful we increase p until it points
to a[K] where K is the smallest index with a[K] > v. In the beginning p
points to a[0]. In the case of an unsuccessful search the pointer is increased
exactly K times. K is a random variable with the distribution

1
Pr[K =k] = 1fo:r1§k§n+1.

n+
Let us call the average number of times the instruction p++ is carried out
P, if the array has n elements. With other words P, is simply the expected
value of K:

n+1

Po=EK =) k-Pr(K=k)= (n+2)(n+1)
P

2(n+1)

n
_q14
T3

How big is P,, in the case of an unsuccessful search? If the search is success-
ful then a[K] = v for exactly one 1 < K < n. In that case Pr[K = k] = 1/n.
Consequently, we get

s m+1)n 1

Po=EKl =) k-PrlIk=kK="————=>+
k=1

N
NE

2n
We can expect that the successful and unsuccessful case are similar with
regard to the running time.

Let us now count the number of executed machine instructions of the cor-
responding machine program in Figure 3.6.

The running time is 27 +4P,, on average, i.e., 2Zn+31 for a successful search
and 2n + 29 for an unsuccessful search.
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1 sw -4(r29),r30 1 1w r1,(r1) L9: 1 1w r2,0(x29)

1 add r30,r0,r29 1 1hi r2,((_a*+4)>>16)&0xffff P—1 1w r2,(r31) 1 1w r3,4(r29)

1 sw -8(r29),r31 1 addui r2,r2,(_a+4)&0xffff P—1 sgt r1,r2,r3 1 1w r4,8(x29)

1 subui r29,r29,#24 1 slli ri,r1,#0x2 P—1 bnez r1,L9 1 1w r31,-8(x30)
1 sw 0(r29),r2 1 add r1,r1,r2 P—1 addi r31,r31,#4 1 add r29,r0,r30
1 sw 4(r29),r3 1 1hi r4,#1 1 addi r31,r31,#-4 1 jr r31

1 sw 8(r29),r4d 1 addui r4,r4,#34464 1 seq r2,r2,r3 1 1w r30,-4(x30)
1 1w r3,(r30) 1 sw (r1),rd 1 bnez r2,L6

1 1hi r1,((_n)>>16)R0xf£EE 1 addi r31,r2,#-4 1 addi r1,r0,#0

1 addui ri,rl,(_n)&0xffff 1 addi r31,r31,#4 L6:

Figure 3.6: Linear search in an ordered array.

In the following we will analyse algorithms that are based on comparisons
with the help of the theory of binary search trees. This theory helps us to
analyse the average number of comparisons that some class of algorithms
execute.

Not suprisingly a binary search tree is a binary tree. It consists either of
only one node that we call the root or a root that has two children that
are themselves binary trees. We will distinguish between internal and
external nodes: An internal node is a node that has itself two children,
an external node in contrary has no children. External nodes are usually
called leaves.

The comparisons performed by an algorithm lead in a natural way to a
binary search tree: The root of a tree will be labeled with the first com-
parison the algorithm makes. The left child of the root will be the binary
search tree of the following part of the algorithm that is executed if the
result of the first comparisons was smaller. Similarly the right child of the
root is the binary search tree for the result bigger. Let us assume for the
moment that we are analysing a search algorithm and if the outcome of
a comparison is equal then the algorithm will stop the search because the
desired element has been found. With other words we assume that every
comparison is against the key we are searching for.

As usual we draw binary search trees as a binary tree but we will draw
internal nodes as circles and external nodes as squares. You can find the
depiction of a search tree for an algorithm for linear search in an ordered
array in Figure 3.7. The size of the array is in this case 10.

In the following we will recursively define some important parameters of a
binary search tree T: The size |T|, which is exactly the number of internal
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Figure 3.7: A search tree for a linear search in an ordered array of length 10.

nodes, the internal path length 7t(T) and the external path length &(t).

If T consists only of a root we define |[T| =0, 7(T) =0, &(T) = 0. In the case
that T consists of a root that has the binary search trees T; and T, as its
children, then we will define |T| = [Ty|+|T|+ 1, t(T) = n(Ty) +7(T) +|T|—1
and &(T) = &(Th) + &(T2) + [T+ 1.

Informally, the internal path length is the sum of all levels of all internal
nodes and the external path length is the sum of all levels of all external
nodes. The level of a node is its distance to the root, where the root itself
is on Level 0.

One beautiful fact about these definitions is that if we know 7t(T) and
&E(T) we can easily compute the average number of comparisons that an
algorithm performs.

Theorem 5. Let T be the comparison tree of an algorithm and let every
element be chosen with uniform probability in the case of a successful search
or each position between elements including the outer left and outer right
position with uniform probabilty in the case of an unsuccessful search, then
the average number of comparisons is

T
Ct = % + 1 in the successful case,

C = &) in the unsuccessful case.
IT| + 1
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Moreover the following correspondance holds between the internal and ex-
ternal path length:
&(T) = 7(T) + 2[T|

There is also the following correspondance between C* and C™:

- L
C—%C+U<1|ﬂ+ﬁ>

The number of external nodes is always [T| + 1.

Let us use these formulas for a linear search in an array of n elements. As
search trees we get caterpillars [, as you can see in figure 3.7. The internal
path length is

! nn-—1)

ni(Ls) = Z k=—5—,

k=0
because on each level between 0 and n — 1 there is exactly one internal
node. The external path length is then

nn+3)

Ev(Ln) = 7T(I—n) +2n = >

The average number of comparisons in the case of an unsuccessful search
is

T[(Ln) n—1 Tl-l—]
| [ I L
L 7 2

and the number of comparisons in the case of an unsuccessful search should
be, according to our formula,
&Ly mn+3) n n

Li+1 2+ 2 nyt

Obviously this is not correct.

Where is the mistake? The error lies in the way the program proceeds
if the key that we search is bigger than a[n] i.e. the last element in the
array. After the program verified that a[n] < v a consequent comparison
is no longer necessary. Still the program carries out another comparison
with a[n+1]. This is not a comparison according to our definition because
there 1s only one possible answer and the comparison s redundant.
The theory of comparison trees works only if the probability of reaching
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every external node in an unsuccessful search is the same. This might not
be true if there are redundant comparisons.

The last comparison cannot be spotted in the search tree we drew: The
search tree contains only m internal nodes labeled with the comparisms
all] : v,...,a[n] : v. If the algorithm visits the last external node in the
tree it performs another redundant comparison and that happens with a
probability of 1/(n + 1) in an unsuccessful search. The actual number of
comparisons taken on average in an unsuccessful search is consequently

E(Ly) 1 n

L
L+l ny1 210

and this coincides with the result we got when we analysed this program
traditionally without the help of comparison trees.

No problem would have occured if the program were written in the following
form

int searchb(int v)

{
int © = 0;
do { 1++; } while(z < n && alz] > v);
if(z==n+1) return T;
else return 0;

}

Here indeed only n/2+4n/(n+1) comparisms are done on average in an un-
successful search. This program however is much slower. What we should
learn from this: The formulas for the average number of comparisons are
only correct if all preconditions are met. We have to check them carefully
and have to take any exceptions into consideration.

Binary search

If the array is ordered, binary search will be the method of choice: We will
compare v with the key that is approximately in the middle of the array.
Doing so reduces the problem to searching the key in an array of only half
the size. The following algorithm does exactly that:
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int binsearch(int v)

{
int [, 7, m;
I=1, r=mn;
while(l < r) {

m=(r+1)/2
if( v == a[m]) return 1;
if(lv<alm])r=m-—1; elsel=m+1;
}
return 0;

}

This algorithm works as follows. It uses two variables 1 and r to remember
the subarray in which we still have to search. Here | is the leftmost and r
the rightmost element of this subarray. The algorithm compares the key to
the key in the middle. If it is the correct one, the algorithm immediately
terminates. Otherwise the right or left border of the subarray that still
might contain v will be adjusted and we continue the search.

If we designate by B,, how often the instruction m = (r+1)/2 is performed
then B, is exactly the number of comparisons v : ali]. Let us first consider
the unsuccessful search because it is easier to analyse and also let us start
with the worst case.

Let N =r—1+1 be the size of the active subarray. Let Cy be the number
of times the instruction m = (r+1)/2 is still executed if now r—1+1 = N.
With these definitions in mind we get C; = 1 because N = 1 implies that
r = 1 and after executing m = (7 + [)/2 the algorithm either terminates,
or 1 is increased, or | is decreased. After that the while-loop immediately
terminates.

If N> 1then m = (r+1)/2 is executed at least once and after that either
ri=(r+1)/2] —1orl:=|(r+1)/2] 4+ 1 will be executed. In both cases
this implies N := |[N/2]; as we expected the size of the active subarray is
cut roughly in half with each iteration.

How does the binary search tree for this algorithm look like? Figure 3.8
shows the search tree for n = 10. In general it will be an almost complete
binary tree in which only nodes on the last level might be missing.

If the search tree has exactly 2* external nodes then all of them are located
on level k and the external path length is exactly k2*. Let us now look at
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Figure 3.8: A search tree for binary search in an ordered array of size 10.

the general case. If we have n internal nodes we have exactly n+1 external
nodes and 2(n +1—21°eM+D]) of them are located on level |log(n+1)]+1.
The remaining nodes i.e. exactly 2ll°8m+1+1 _n 1 of them are located
on level |log(n + 1)]. If we denote the search tree for binary search in an
array with n elements by B, we consequently get

E(Bn) = M+ 1)(|log(n + 1) + 2) — 2lcenti+T
From this it is easy to compute the internal path length:
T((Bn) = E,(Bn) —2n = (n + ])Uog(n + 1)J o 2{10g(n+1)J+1 + 2.

As always it is a good idea to test this formula on a small example. Let us
again choose n = 10 because we already have the corresponding search tree
in figure 3.8. We get &(B1o) = 11:-5—16 = 39 and 7t(B1o) = 11:3—16+2 = 19.
Both results can be easily checked with the help of the binary search tree
in figure 3.8.

Exercises

3.1 Solve the following recurrence relation and find a nice way to write down the
solution.

Co = 2

cg = 4
logcn—

Cn — Cnézn !

3.2 Drill Sergeant Even is in a bad mood and lets his new recruits march in a row
of two along the yard. He flips his lid whenever the number of recruits is odd and
then drives them along DEATH LANE. When this happens to a recruit he gets
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sick with a probability of 1/2 and cannot partake in the exercise anymore. This
spectacle is repeated until the number of recruits becomes even.

How many runs through DEATH LANE take place on average?

3.3 Solve the following recurrence! Let ap =0, a; = 3, and an =4an 1 —4an 2
forn>1.

3.4 Solve the following recurrence relation. Let Es sei by = b; = b3 = 1 and
b, =3by_7 —4b,,_2 + 12b,,_3 for n > 3.

3.5 Compare the solution 2(nH;,)+2(H,)—2(n) = 2nH, +2H,,—2n form page 39
to the general solution from the first chapter by setting M = 0.

3.6 Given an array a of length n, an algorithm compares all pairs (ali], alj]) for
all i <j < n, and then calls itself recursively on all proper prefixes of a.

How often does the algorithm compare two pairs? Use the repertoire method!
3.7 Improve the estimate of (??). The goal is to get an additive error term of
O(1/n) or better. How far away is your new estimate for ajo from the true value?
3.8 Use a summation factor on (3.4) and find the solution of the recurrence (3.3)
not in closed form, but as a summation.

3.9 Solve the recurrence

ap = 8000
a; = ]/2
Qni2 + Qny1 —nfay = n!

by order reduction.
3.10 Compute the number of times the body of the while-loop is performed, if
initially 0 < 1 holds.

while i <= j
1 := 1i+j
if i > j then j:=j+10 ;

3.11 Solve the last exercise with the assumption that i < 0.

3.12 Analyse the running time of a successful search for the program in Figure 3.3
if every element in the array occurs twice and again every permutation has the
same probability.

3.13 Compare all three search algorithms according to successful searches.

3.14 Consider the following algorithm that searches an element x in a sorted
array a of length n = km + 1:

i:=1 ;

while al[il<=x
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if al[il=x then return i ;
i:=i+m ;
if i>n return 0 ;
for j=i-1 downto max(1,i-(m-1))
if a[jl=x then return j ;
return O ;

a) Draw the search tree and compute the internal and external path length for

n=10and m = 3.

b) Determine C* and C~ for arbitrary m, k.

c) What is, for given n, the best choice for m w.r.t. the running time?

3.15 Verify that the claim N := [N/2| on page 55 is correct.
3.16 We want to compare the following two programs for a search in a sorted

array:

int binsearch (double v)
{
int I,r,m;
I=1; r=N,
while (I <r) {
m=(r+1)/2;
if (v=alm]) return 1;
if (v<a[m]) r=m—1; else I=m+1;
}

return 0;

}

int binsearch2(double v)
{
int |,r,m;
I=1; r=N;
while (r—I1>1) {
m=(r+1)/2;
if (v<a[m]) r=m—1; else I=m;
}
if (a[l] =v) return 1;
if (a[r] =v) return 1,
return 0;

Analyse how many if-instructions are executed by the programs in case of a suc-

cessful or unsuccessful search for v. Find an exact solution for the first program

and an estimate of the form f(n) 4+ O(1) for the second one. Make the usual

assumptions about v.



Chapter 4

Generating functions

We are often interested in a series (go, g1, g2, . . .), Where the coefficients g,
indicate the usage of a ressource or another combinatorial parameter. The
series is often implicitely represented, e.g., given by a recursion equation.
We call

G(Z) = Z gnln
n=0

the generating function (GF) of the series (g,)$°,. One fundamental task
in the analysis of algorithms is to find an explicit expression for g, or a
good approximation of it. Generating functions are the most important
tool for this purpose that we will get to know.

Very often an important step in the analysis of an algorithm is to extract
the n-th coefficient of a generating function G(z). Theoretically, we could
develop G(z) into a Taylor series,

G(z) = G(0) +2G'(0) + %ZG”(O) + ’;—3'@’”(0) T

where

21G() = o o)
: z=0

from which we can read of g,, directly. By [z"]G(z) we denote the coefficient
of z" in the power series G(z).

To go over the Taylor series is usually too stony and normally there are
better methods to extract the nth coefficient. A table with important
known generation functions can be very useful, because we can look them

59
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Series an OGF
1,0,0,0,0,0,0,...  (n=0) 1
0,1,0,0,0,0,0,... (n=1) z

1
IRTR IR TR IR T IOURR
1—z
2 3 4 5 n 1
0,a,a%,a’,a’,a’,... a
1—az
1,2,3,4,5,6,7,8 n+1 1
)£y Dy Ty 2y 0y 740y (1—2)2
T T T T T T
HRORORGEY 14
k k+1 k+2 k+3 k+n 1
Uk Uk Uk ) K (1— )
111 1 .
1)LZ>_,7_'7- E e
111 1
O,],z,g,z,. E(n>0) In —
311 25 1 1
OJ)E)Z’Ea Hn 1—2111 —

Table 4.1: Important generating functions and their series.
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up quickly possibly after manipulating them first. Table 4.1 contains the
most important generating functions and the corresponding series.

With the help of tables 4.1 and 4.2 and other tables from textbooks many
functions can be expanded into a power series. All you have to do is to
rewrite the generating functions in such a way that they correspond to an
entry in one of the tables.

Let us apply what we have seen so far to a simple recurrence relation, the
recurrence for Fibonacci numbers:

FOZO, F :1, Fo.=F_1+F.forn>1

The first step to deal with such a recurrence relation is to find a single
formular which defines F, for all n. Getting rid of case distinctions makes
life easier. In the following we will use the following convention:

1 if Condition is true

(Condition) = { 0 otherwise

The recurrence relation F, =F, 1+ F, ; holdsonly forn > 1, forn=1 it
is wrong because F; = 1, but Fy + F_; = 0 (we assume F, = 0 for n < 0).
Luckily, however, F, = F,,_;+F, , holds true for n = 0. The following, still
quite simple formula holds true for all n € Z:

Fn - Fn—] + Fn—Z + (TL - 1) (41)

We will focus now on the generation function

G(z) = i Fn.z™.
n=0

In order to get a closed formula for G(z) we multiply both sides of (4.1)
with z" and sum over n from 0 to oo:

Z F.z" = Z Fraz™ + Z Fropz™ + Z(n =1)z" (4.2)
n=0 n=0 n=0 n=0

The last sum is simply z and the other sums can be rewritten to get

G(z) = zG(z) + 2*G(z) + z. (4.3)
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A(z) = Z anz" B(z) = Z bnz"
n=0 n=0
=) aniz" (Right shift)
Alz) — - ,
# = Z Q2™ (Left shift)
Allz) = Z(n + Dangz" (Derivative)
n=0
J A(t)dt = Z %zﬂ (Integral)
0 n=1
Z Ata,z" (Scale)
n=0
A(z) +B(z) = ) (an+bn)z" (Addition)
n=0

(Difference)

>
n=0
A(z) = i <Z agb, k) z"  (Convolution)
n=0
i <i ak> z" (Partial sum)

Table 4.2: Some operations for generating functions. We define a,, =b,, =0
for n < 0.
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We can directly get this equation faster from (4.1) if we use the rules from
table 4.2. The first two terms of the right side of F,_; and F,_, are the
same series as F,, but shifted by one, respectively two positions to the
right and therefore their generating functions are zG(z) and z>G(z). The
generation function of (0,1,0,0,0,0,...) is z because it is simply the series
(1,0,0,0,0,0,...) shifted one position to the right. The last series can be
found in table 4.1. The generation function of the right hand side is now
simply the sum of the three functions (Addition rule). In this way we obtain
an algebraic equation for G(z). Sometimes instead of an algebraic equation
we might get a differential, integral, or integro-differential equation.

If we solve (4.3) for G(z), then we obtain a solution of the algebraic equation
and therefore a closed formula for G(z):

z
Glz) = 1—z—22
What remains to do is to expand G(z) into a power series. To do so we
rewrite G(z) in such a way that we can find it in table 4.1. Hew we can use
a partial fraction decomposition of the rational function 1/(1 —z —z?). To

do so we need the roots of z* + z — 1, which are

1T V51 1T —/5-1
— = and x = ———.
[0) 2 [0 2
That means we can write
1 A B

1—z—22 1 —c|>z7L 1— ¢z
where we still have to find out what the parameters A and B are.
Setting z = 0 yields T = A+ B, so B = 1 — A. Setting z = 1 yields
—1=A/(1=$)+(1-A)/(1=$). From 1/(1-¢) = —p and 1/(1-§) =~
we get 1 = A + b — PA = § + V/5A because of ¢ — d = /5. This gives
us A = ¢/V/5.

From Table 4.1 we learn that

Z onzt and

o0
I
n=

Altogether we get

1—z—22

G(z) = _z - Azi ozt + Bzi oz,
n=0 n=0
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from which we simply can read of the coeflizient of z":

1 n, an

Of course, we could get the same result using classical methods as we are
dealing with a homogeneous linear recurrence relation with constant coef-

2"G(z) = A¢™ ' + B =

ficients. It is good to see, however, that the generating function machinery
flawlessly works on such a simple example.

We are not going to prove the correctness of all formulae in Tables 4.1
and 4.2. The proofs are quite similar and not hard. As an example we
show the validity of the last two entries of table 4.1.

First, we have to deal with the series
1111
727571757---
The generating function of this series can be found with the help of the

0,1

integration rule in Table 4.2 as

le“:J Ld’c,
—=n 1—1t

0

since 1/(1 —z) is the GF of (1,1,1,1,...). We can solve this integral with
the formula

f'llit) .
Jf(—t)dt =1In(f(t)) +C

=1 1
——dt=1 .
L1—td n1—z

and get the GF

Next, we look at the series of Harmonic numbers
Ho, Hi, Hy, H3, Hy, ...

Expanding H, into a sum yields

o n

1 n

> (24)=

n=0 \k=I
This expression is a special case of a partial sum with a, = 1/k for k > 0

and ay = 0. The generating function for 1/n is In(1/(1 —z)) and using the
formula for a partial sum yields
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4.1 Counting Data Structures with Generat-
ing Functions

We can count the number of objects of given sizes with the help of gener-
ating functions. As a first example we will apply this technique to binary
trees.

A binary tree is a recursive data structure. It is either just a root or a root
with a two children (the left and the right child), which are themselves
binary trees. We call leafs also ezternal nodes and non-leafs internal
nodes. We are interested in the number of binary trees with a given number
of internal nodes.

We define the generating function

o0
— n
= E thz”,
n=0

where t, is the number of binary trees with n internal nodes.

For t,, we can write down the recurrence

Z itk + (m=0).
k=0

After multiplying the equation by z" and summing over n we get

) n—1

T(Z) = Z <Z tktn—l—k> z" + 1
n=0 k=0

= ZZ (Z tktnk> z"+1

n=0 k=0

= zT(2)* +1

There is a simple shortcut that directly leads to this relationship: Let T
be the set of all binary trees. Informally T = E + ITT using a little bit of
abstraction, where E denotes an external and I an internal node. Switching
to generating functions we get E(z) = z° =1 and 1(z) = z' = z because I,
resp. E, contain exactly one tree with one, resp. two, internal nodes. Then

T(z) =E(z) +1(2) + T(2)T(z) =1+ zT(2)%
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All left to do is to expand T(z) into a power series in order to read off
t, = [2"]T(2).

We solve for T(z), which is easy in this case as it is a simple quadratic
equation. This gives us a closes formula for T(Z):

T(z) = Zz \/1 —4z

There are two solutions to the quadratic equation, but there is only one
solution to the original recurrence relation and, of course, there is only one
number of binary trees of a certain size.

So how is it possible that we have two solutions for the generating function?
Easy: One solution is the correct one and can be expanded into a power
series. The other solution cannot be expanded into a power series and in
this sense does not really exist. After all, we are looking for a power series
and in terms of power series there is really only one solution for T(z).

We will easily see, which solution is the correct one. Let us first expand
V1 —4z into a power series, which can be done at once using Newton’s
formula.

Zz 2z n

T(z) = \/ﬁ =5+ Iy Z <1/2) (—4)"z"

Now we see that the solution with “minus” is the correct one, because then
the pole at z = 0 is cancelled.

T 1/2 I ==V Rt on
Tlz)=- Zzz<n>( —4) = 2n0<n+1)( Nz
We can now read off the coefficients:

ta = E"IT(z) = — <n1 f]) gy

It cannot hurt to check the formula on a small example. Let n = 3.

1/ B

We could simplify the result in order to get a better readable formula, but
let us first study a different approach to solve this recurrence, which avoids
some of the small problems we faced in the derivation above.
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The most annoying step was solving the quadratic equation. Although
quadratic equations are easy to solve, you can nervous thinking about
polynomial equations of higher order, which will occur when we look at
ternary or other trees. The next theorem relates the coefficients of power
series that are “inverse” to each other and opens a path to avoid solving
polynomial equations in some cases. In fact it has many more applications.

Theorem 6. (Lagrange inversion)
Let G(z) be a GF such that z = f(G(z)) with f(0) = 0 and f'(0) # 0. Then

216(z) = L] <%> .

We cannot apply Lagrange inversion directly to T(z) because the resulting
f(z) does not fulfill the necessary preconditions. We can, however, let
H(z) = zT(z) and apply Lagrange inversion to H(z). The corresponding
functional equation for H(z) is

H(z) = z+ H(2)?,

which can easily be solved for z, but presents a quadratic equation when
solving for H(z). We can write z = f(H(z)) for f(t) =t —t2. With f(0) =0
and f(0) = 1 the condition for the theorem on Lagrange inversion are
fulfilled and the theorem yields us

1 1 "
() = 1w (1)
n 1T—u
A formula from Table 4.1 matches the right hand side:
1 B = (k+n—1 g
(1T—u)n k

k=0

ZH(z) = © (2“ - 2) .

n\n—1

This yields

For T(z) we have to shift the sequence and get

1 (2n>
t,=— .
n+1\n

Let us check this formula again for n = 3:

1/6
W l(0) s
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4.2 Bivariate Generating Functions

Up to now we considered generating function with one variable z that
represents a series. We can generalize this concept to functions with more
than one variable. Such a function represents a multi-dimensional series.
For two variables we call such a function a bivariate generating function
(BGF).

Let us run through a simple example of using BGF’s for which we already
know the result. How many binary strings are there that contain exactly
m ones and have length n?

The set of all binary strings can be recursively defined as follows:
B={e}JUOBUI1B
We define the BGF
B(u,z) = Z bnau™z",

where b,,, is the number of different bitstrings of length n that contain
exactly m ones. We get the equation

B(u,z) =1+ zB(u,z) + uzB(u, z).

We solve for B(u,z) and expand the result into a power series:

1 00 o n n
B(u, =) 2"(1+u)" = "t
R i Zoz( ) n_(%(k)z
We can read off b, = [u Z]B(U,Z)_(:l)

4.3 Exponential Generating Functions

For a series gy, g1, 92, 93, - . . we define the ezponential generating function
(EGF)

1 z?
G(z )—901,+912,+923,+923, Zgnn,
The nth coeffizient in the EGF G(z) of (g,)22, is then

gn = n![z"]G(z).
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Sometimes we reach our goal using an EGF easier than with a GF and
sometimes it is the other way around. The difference lies in the way GF's
and EGF's transform and are formed from a series. Table 4.3 contains
EGFs for several series and Table 4.4 transformation rules. These two
tables correspond to tables 4.1 and 4.2 for GF's.

4.4 The Symbolic Method

In this subsection we are going to learn more systematically how to count
objects with the help of generating functions without going throug recur-
rence relations. We put an emphasis on recursive objects.

To construct a set of objects we alle the following operations wher M is
the new set and M; are M, sets that are already defined.

1. atomic object: M ={x}

2. pairs of objects: M = M; x M,

3. union of object sets: M = M; U M;

4. finite series of objects: M = M; UM; X MjUM; X My X MyU---
The size of an object is the sum of the sizes of all atoms of which it consists.

A precise definition uses the recursive construction of an object. We denote
the size of an object x by |x|.

x| = f(x) (atomic object)
16 y)l = x| + Iyl (pairs of objects)
(1, %2, « oy xm) | = Pl + -+ 4 [x (finite series)

The size of an atomic object can be defined arbitrarily. In the following
we are interested in the number of object of a certain size in a given set of
objects.

Let M(z) = ) ., mnz" be the generating function for m,, where m,, is the
number of objects in M with size n:

mn:|{x€/\/l‘|x|:mn}|
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Series an EGF
1,0,0,0,0,0,0,... (m=0) 1
0,1,0,0,0,0,0,... (n=1) z
LT, ] e

1,c,c2, ¢3¢t cdel, ... ot e*
0,1,2,3,4,5,6,... n ze”
0 1 2 n 267_
m/’\m/) \m/)’ """ m m!
1

1,0,1,0,1,0,1,... T4+ (=" cosh(z):z(ez%—e’z)

. 1 _
0,1,0,1,0,1,0,... 1T—(=1n" smh(z)zz(ez—e )
NERERE 1 e -1
’2°3’4’°5°6’ 7’ n+1 z

1

o, 11,213,415 6!, ... n!

Y ) ) ) Y ) ) —I_Z

Table 4.3: Important EGFs and their series.
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oo Zn
B(z) =) b
n=0 :

n=0
e n
z
A/(Z) = An41 E
n=0
o0 Zn
zA(z) = na, 1—
n!
n=0

z — n+ Tn!
A(Az) = i 7\“an2
n=0 TL'

(right shift)

(left shift)

(index multiplication)

(index division)

(scaling)

(addition)

(difference)

(binomial convolution)

—

binomial sum)

Table 4.4: Some operations with EGFs. Again we define a, = b,, =0 for

n<o0.
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Let M;(z) and M;(z) be the corresponding generating functions for the
sets M; and M. Let x denote an atomic object and f be the function that
maps atomic object to there sizes. Then the following formulas show how
to construct M(z):

M=M;UM; — M(z) = M;(z) + M;y(z) falls MiN M, =0
M = M] X Mz — M(Z) = M](Z)Mz(z)
T gk _ My(2)
M—kU1M1—>M( ) =T

Binary trees, for example, can be defined as
B=[] JUO x B x B,

where [ | =0 and | O] =1. This leads directly to a functional equation
for B(z):

B(z) =1+ zB(z)?
It is the same equation we have gotten by using recurrences and we already

solved it.

Ordered, rooted trees with an arbitrary number of children can be defined
as

T = I:I U x U Tk)
k=1
which immeadiate yields the following equation:

zT(z)

T(z) =1+ T T(2)

If we solve this equation for T(z) we get:

T(z)=1-— g + %\/2(2—4).

This function, however, cannot be expanded into a power series. We cannot
even say what T(0) is. It does not seem to be a real number. We know,
on the other hand, that if T(z) = > >° t,z" then T(0) = to, the number
of trees of size 0. We defined sizes of atomic objects just as in the case of
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binary trees: An internal node has size one and an external node size zero.
So there is exactly one tree of size zero and that means T(0) = 1. How is
this contradiction possible?

Let us count again. According to our definition there is exactly on tree of
size zero, but how many trees of size one are there? Well, such a tree must
have exactly one internal node, which has to be the root. It can have one,
two, three, or any other number of children that are then external nodes.
All these trees have size one, but there are infinitely many. So t; would not
be a natural number. Obviously, the symbolic does not work for infinitely
big sets of objects that have a fixed number nor should it work. We can
express only finite numbers with generating functions.

Let us form the question in a different way that makes more sense: How
many rooted, oriented trees are there with n nodes, counting both internal
and external ones?

Now we get the functional equation

2T (z)
1-T(z)’

which looks as follows if solved for T(z):

T(z) :%i%\H —4z

We can easily expand this one into a power series:

T(z) =z+

1112 o
T(z)_§+§§<n)(—4) z
For n > 0 we get
271z = = (/) -

Testing the closed formula with small numbers shows that indeed there are
exactly 14 trees of size 5, which can be verified by hand. Even simpler to
check is the fact that there are indeed only two trees with exactly three
nodes.

Up to now we assumed that the same atomic objects are not distinguishable.
For example, the set objects defined in the following contains exactly one
object of size n for each n > 0 (and no object of size 0):

A={x}U{x}x A
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The set A simply consists of all n-tupels (x,x,x,...,x) and for each size
there is exactly one of them.

If we distinguished atoms from each other, we would get n! different n-
tupels.

Let us call objects as defined up to now wunlabeled objects and objects,
where atoms are distinguished from each other, labeled objects.

For these labeled objects EGF's are the tool of choice because there are by
a factor of n! more labeled than unlabeled objects if they consists of atomic
objects of size 1. If the atomic objects are bigger the factor is different, but
in general there are much more labeled than unlabeled objects and EGFs
are better at very big numbers.

Now let M (z) be the EGF
N(z) = i m z
— Tln!)

where m, denotes the number of different labeled objects of size n in the

set M.

M =0 — M(z)

M ={x} — M(z)

M = M; UM, — NM(z)
M = My x My — N(z)

0
ZIX\
M (z) + My(z) falls My N M, =10
M, (2)My(2)

* M, (z)
_ k _ 1
M_k| 1|M1 _’M(Z)W—m](z)

z

The EGF’s behave for labeled object in the same way as OGF’s behave for
unlabeled objects.

4.5 Average Stack Height

Let us look at a larger, non-trivial example. Assume we have an algorithm
that solves a problem of size n recursively by a divide-and-conquer ap-
proach. If n =1 it is solved directly and otherwise the problem is split into
two parts of sizes m and n—m, where m,n—m > 0. The first subproblem
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of size m is solved at once recursively and the other is pushed onto a stack
for later. After both subproblems are solved, the solutions can be combined
into a solution of the original problem.

We are interested in the amount of memory used for the stack. To be
more precise: the average size of the stack over the running time of the
algorithm. A modern runtime system releases memory if the stack shrinks.

Furthermore, we assume that every recursive call structure possible occurs
with the same probability. Such a call structure corresponds to exactly one
recursive tree of calls, which is a binary tree.

An inner node of this binary tree corresponds to a subproblem of size at
least two, while a leaf corresponds to a subproblem of size one. Hence, the
tree has n — 1 internal and n external nodes. The memory usage of the
stack used for the subproblem at a node is the distance to the root or the
path length of this node. The average stack usage is therefore

E(t) +m(t)  2m(t) +2n
n—1  2n—1

for a tree t with n internal nodes.

Therefore it is sufficient to answer this question: How big is 7t(t) on average
for all binary trees t with n internal nodes?

For this end we compute

pn—ZT[ )(It] =n),

teT

where 7 is the set of all binary trees. To get the average external path
length of all binary trees all we have to do is divide p,, by the number of

binary trees. The latter number is already known to us. It is b, = n%] (ZTT:)

Let us compute p,. Let P(z) be the corresponding OGF

anz = ZTC )z,

teT
We will also need the number b,, of binary trees of size n and the corre-

sponding OGF B(z):
1—v1—-4z

Blz) = 2z
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It t € ty xty, then t(t) = 7t(ty)+7(ty)+[t|—1. We split P(z) correspondingly
into

P(z) = Z mi(ty) ¥+ Z i(ty)2t 4 Z tzf — Z 2 =

t=ty Xt €T t=t; xt, €T t=t; Xt €T t=t; Xt €T

—A+B+C—D,

where

A= Y mty) B= )  m(ty)z"

t=t; Xt €T t=ty xt €T
C= E It|zt D= E 2.
t=t; Xt €T t=ty xt€T

Let us have a closer look at A, B, C, and D. an. The easiest is by far D,
which turns out to be nothing else but B(z) — 1.

A — Z 7T(t1 )Z\t\ _ Z 7T(t1 )Z\t1\+\tz\+1 _

t=t; xt2€T t=ty Xt €T
=z Z 7i(ty)zY! Z 2t = ZZ ()2 Z 2 = 2P(2)B(z)
t€eT t €T teT teT

We can handle B in the same way. Because of symmetry between t; and
t, we get A = B. The power series C looks like a first direvative and after
some small manipolations we see that it is closely related to B(z)'.

C= Z Itz =z Z t|zt1 = z( Z z‘t‘)/ =zB(z)".

t=ty Xt €T t=ty xty €T t=ty Xt €T

Altogether the result is

P(z) =1+ 2zP(z)B(z) + zB(z)" — B(z)
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or, if we solve for P(z),

1—-1/z  1/z—-3

P —
N i s
N\ — /—1/2 nn 1 > .
— (1—;);_0( ! )(—4)7, +(2—3>nz_04z
1\ — /2n 0 1 i .
= ()X () (E3) 2
n=0 n=0
— ZTL n — 2(TL+1) n - n.n - n+l_n
= Z(n)z —Z( ] )z —SZ4Z +Z4+z
n=0 n=0 n=0 n=0
_ Z4nzn_z3n+] 2n o0
n+1 \n
n=0 n=0
Exercises

4.1 Find the generating functions of the following series:

L oan=2"+3" 2. by=n+12"" 3 cy=a"(f)
4 do=(Mm-1) 5 ex=(Mn+1)?

4.2 Find the generating function for the series defined by the follwing recurrence:
fn="Fn1+2fn 2+ 33+ ---+nfoforn>0und fy =1.

4.3 Expand the following generating functions into a power series. What is a
closed formula for their nth coefficient?

1. A(z) =3

2. B(z) =1/y/1—2z/2
3. Clz)=(14+2)/(1—2)

4.4 Express (/%) as an expression that contains only integers in its binomial
coefficients.

4.5 Answer the following question with the help of Lagrange inversion: How
many different expressions can be generated in exactly n steps with the following
contextfree grammar? (if, then, else, fi, true, and false are the terminal symbols)

S — if Sthen Selse S fi |
if Sthen S fi |
true |
false
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4.6 Let us call a sequence of push- and pop-operations, in short T and |, valid, if
it contains the same number of T's and |’s and no prefix in the sequence contains
less 1's than |’s. For example, (1,7, 1, 1,T, 1) is valid, (T,1,T,7) and (1, 1,1, ) are
not valid. The number of |’s in a sequence is the length of the sequence.

What is the number of valid sequences of length n?

4.7 A peak in a valid sequence (see the last exercise) is a pair of neighboring
elements (T, ]).

Find the bivariate generating function for the number of valid sequences of length
n with exactly m peaks. Use the symbolic method.

Hint: It might be a good idea to distinguish the cases exzactly on peak and at
least two peaks at first.

4.8 What is the bivariate generating function for the number of binary trees with
n internal and m external nodes. Find an interesting fact about changing the roles
of n and m.

4.9 Using the closed formula for p,, compute the average stack height. Use an

asymptotic estimate for (2:11) with the help of Stirling’s formula. Present your

result as precisely as possible.
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Asymptotic Estimations

Often, an approximative solution is sufficient, which is only asympotically
valid, if it differs only a little from the real solution. Sometimes it is not
possible at all to get the exact solution in a closed form and sometimes, even
though it might be possible, but the resulting formula is very complicated.
A formula being only asymptocically valid, but simpler, can be more useful.
An example for this case was the median intern path length of a binary tree
with n intern nodes. The exact and asymptotic solution that we worked

out were
3n+1

41’1
n+1

<2“) T 30+ OV

n

At last, there is a third possibility: Sometimes, one can compute a good
approximation with little effort but only find out the exact solution with
very high effort. If the approximative solution is sufficient, then it is not
worth the effort.

In addition to O-notation we also use the symbols ~ and <. The definition
of < comes later, and ~ is used in two ways.

We write
f(n) ~g(n) & f(n)=g(n)+o(g(n)).

For example, In(n 4+ 1/n) ~ In(n) for n — oo, where we can leave out the
latter part if it is known from the context. A further example is e ~ 1+ x
for x — 0.

The second possibility to use ~ are asymptotic expansions. In this case,
the right side of the relation is a series.

79
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o
\i

Figure 5.1: Approximating a sum by an integral.

We write
f(n)~ Y gn) & f(n)~ > gn)forall me N. (5.1)
k=0 k=0

An asymptotic expansion offers a whole sequence of approximations to f(n)
getting more and more precise.

The easiest way to get to asymptotic expansions is to expand it into a
power series. In these cases, we can even use the symbol = instead of ~. In
general, however, we cannot replace ~ by = in an asymptotic expansion.

5.1 Euler’s summation formula

Euler’s summation formula is based on replacing a sum by an integral.

Theorem 7. (Euler’s summation formula)
If [T If(x)| dx exists for T <1< 2m, then

Bax
2K)!

£l (n) + R,

Y f(k) = Jn f(x) dx + %f(n) +C+ )
— ! k=1

k=1

where R, = O (ﬂl [£2m) (x)]| dx) and By, = n![z"]z/(e*—1) are the Bernoulli-
numbers:

3
(@)
N

=
A=
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If {9 = o(f(+1) holds for all i, then Euler’s summation formula gives us
an asymptotic expansion. We present two examples.

The harmonic numbers are defined by the sum
1
H, = =
D %
k=1

So we set f(x) = 1/x and must now compute the i-th derivative of f(x). In
this case this is very simple and we get

f(x) = 1(=1)x""T,
The conditions of Euler’s summation formula are fulfilled and we get
i] J“ dx 1 = By —(2k—1)!
1 x  2n — (2k)!  n2%

11
<1 I ST
nn Y T T

The unknown constant is called vy and cannot be represented in an easy
way by other known mathematical constants.

As the next example we choose n!. Since n! is defined by the use of a
product instead of a sum, we apply Euler’s summation formula to In(n!)

instead.
n n 1 > BZk (Zk—Z)'
In(n!) = ; In(k) ~ J] In(x) dx + z Inn+Ino+ ; (2k)! n2k—1
(n+1)1 n—n+lno+ L +
7 O In T 36003

From this we obtain the approximation for n!. It turns out that o = v/2m.

A~ 27m<3>n 14 1 n T 139 L
) e 12n  288n?2 51840n3

5.2 Singularity Analysis

Euler’s summation formula was an application of calculus of real numbers.
The methods of the real calculus are, however, too limited. Now we turn
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n\n" 1 1
[— e o o -3 L K )
n! 21 ( e) <1 + n + 28812 +0(n )> (Stirling’s formula)

1 1
H, = lnn—i-}/—f-ﬁ—ﬁ

with v ~ 0.57721566490153286060651209

+0(n™) (Harmonic numbers),

Table 5.1: Some important asymptotic approximations

the complex calculus. In the following we are interested primarily in ap-
proximations of the coefficients of an OGF or EGF.

Our first theorem will be the easiest to use but also deliver the most inexact
approximations Firstly, we deal only with the ezponential grwoth of these
coefficients.

To this end, we define for a sequence a, and a positive real number K

a, =< K' < limsup|a,)'/™ = K.

n—oo

We can also define a,, < K" as follows: For each € > 0, no matter how
small, |a,| > (K— €)™ holds for infinitely many n, and |a,| < (K+ €)™ holds
for all n expect finitely many exceptions.

We can also say that a,, = 8(n)K" for all n, where 6(n) is a subexponential
function (which grows slower than any exponential function).

o0
n=0

A function f is analytic in z, if f(z) = >_
Here, z; is some complex number and the neighborhood lies in the complex
plane.

f,z" in a neighborhood of z,.

The function z — 1/z is analytic in the entire plane expect in the origin.
A point in which a function stops being analytical is called a singularity
of this function. The function z — 1/z therefore has the singularity 0.

We call a singularity dominant if it is a singularity with a minimal absolute
value. A theorem going back to Pringsheim is often helpful for us. It
says that the dominant singularity of a power series with non-negative
coefficients always is a positive real number. This helps us to find the
dominant singularity quickly.

Theorem 8. The dominant singularities of a GF f(z) determine their ex-
ponential growth: Let f(z) be a GF and z; be a dominant singularity with



5.2. SINGULARITY ANALYSIS 83

Figure 5.2: The absolute value of the function S(z) = 1/(2 — e*). The
dominant singularity at In2 can be seen in the middle. Next to it are the
next two singularities at In 2 + 27ri.

R = |z9|. Then

Let us look at the EGF S(z) and the OGF U(z) as examples, represented
as

1 1—z—/(1-32)(1+2)
e and U(z) = s

S(z) =

in closed form. The function S(z) has singularities for all z with e* = 2,
which means z = In(2) + 2kri for all k € Z. The dominant singularity is

In2 and we get
-] n
Nz"S(z) =n!{— ) .
n![z"]S(z) n<1n2>

In U(z) we find the singularities at each z, for which the expression under
the root becomes 0; these are % and —1. At 0, U(z) has no singularity,
because lim, ,, U(z) = ;. The dominant singularity is { and therefore

z"U(z) < 3™
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5.3 Meromorphic functions

The exponential growth can be easily determined for arbitrary GFs. The
next formula gives us a more precise approximation. It works, however,
only for a subclass of all functions — for the meromorphic functions that
we define now.

A function f(z) is meromorphic in zy, if there are functions g(z) and h(z),

such that (2)

for z € U —{z¢}, where U is a neighborhood of z; (of course, h = 0 is not
allowed) and g(z) and h(z) are analytic in z,.

It is easy to see that f(z) is meromorphic in z, iff there is a series expansion
of the form

fz) = ) an(z—z)" =

n=—%k
a_x a—(k-1) a— — n
= + ot +Y anlz—zo)" =
(z—zo)* * (z—zo)*! z—zg nZ_O (2= zo)
P(z) -
———— 4+ ) an(z—z))" =

in a neighborhood of z,. Here k is some positive integer and we can assume
that a_y # 0. The polynomial P(z) is

K1
Plz) =) anlz—z)"
n=0

We call this the Laurent series of f(z) in z,.

We say that f(z) has a pole of order v wn zy if f(z)(zo — z)" is analytic in
zy, but f(z) is not. In the Laurent series above f(z) has a pole of order k
in zyo. A function f is meromorphic in a domain U if f is meromorphic in
every zo € U. It should be obvious by now that
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has no pole in z; (in fact it does not have a singularity in zo). If f is mero-
morphic in a domain U we can in principle “cancel” all poles by adding
a simple functions. What remains is an analytic function in U. In that
case the coefficients [z"|f(z) depend mainly on the behavior of the sim-
ple functions that canceled the poles because the remaining function has
asymptotically small coefficients (its exponential growth is zero!). We can
use this fact in the following theorem:

Theorem 9. Let f(z) be meromorphic for |z| < R. Inside this circle let f(z)
have poles oy, «,...,&n. Moreover, let f(z) be analytic in the origin and
in z with |z| = R. Then there are polynomials Py(z),...,Pn(z) such that
2"f(z) = ) Pi(n)og™ + O(R™).
j=1

The degree of Pj(z) is one less than the order of the pole «;.

We can easily find out how these polynomials look like. et us look again
at S(z) = 1/(2 — e*) as an example. If we choose R = 6, then there is only
one singularity at In2 inside the circle |z| = R. The pole In2 has order 1.
Let us see how S(z) behaves asymptotically for z — In 2.

We have e* ~2 —21n(2) + 2z for z — In 2 and therefore

111 1 o i 1\,
2—e¢ 22—z 2m21-(1/lm2)z 2m24=\ln2) *°

The polynomial P;(z) is 1/(21n2). In general you specify all P;(z) in this
way.

The solution to our candidate problem is

1/ 1

n+1
z"S(z) = 7 <E> +0(67 ™).

Let us look at another example demonstrating that we can arrive at a very
good approximation with relative easy, while it seems to be impossible hard
to get an exact solution.

A well known example from probability are the seamen who choose their
hammocks randomly. In this story there are n seamen who return drunk
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to their ship from shore leave. They choose a random hammock and go
to sleep. It is easy to see that the expected number of seamen who sleep
in their own hammocks is exactly 1 because for each one the probability
is 1/n. How big, however, is the probability that no seaman sleeps in his
own hammock?

We call a permutation without a fixpoint a derangement. The seaman
probability is closely related to the problem of counting the number D,, of
derangements of set of size n. Since a permutation is not an derangements
if it contains between one and n fixpoints and there are exactly (})Dy «
permutations with ezactly k fixpoints, we can easily find a recurrence for

D.:
Do=nl—) Cl) D, .

k=1

We rewrite it into this simpler form:

nl = ; <n>D
2 (>

Being marked objects we opt for using an EGF to solve this equation. The
right hand side looks like a binomial sum and we get

1

We can read off interesting properties right away. First, there is only one
singularity at 1. Hence, n![z"]D(z) < n! and D, < n! or, stated in a
different way, the factor between D,, and n! is subexponential. This might
be a surprise to you because it implies that relatively many permutations
must be derangements. The probability that all seamen sleep in other’s
hammocks must be quite high.

But how high is the probability exactly? Let us proceed in our analysis.
The function e is analytic in the whole complex plane and has its sole
singularity in co. Such a function is also called an entire function. This
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means that D(z) is meromorphic and has a pole of first order at 1. This
means that we can write

n![z"|D(z) = Pi(n)a} + O(R™) =C- 1"+ O(R™)

allowing us to choose R arbitrarily big. The constant C is the polynomial
of zeroth order and we can establish the value of C by estimating D(z) for
z—1:

e 1 &
~—Zznforz—>1
1—2z e~

The final result turns out to be

!
D, = % +0(n!eh)

for every € > 0. The error term approaches zero very fast and we can
expect that the approximation is good even for relatively small n. There
is, however, no guarantee for that. This hidden constant in the O-notation
could be gigantic and as it depends on € there is always a tradeoff: If we
choose a very small € the constant will be big.

Table 5.2 shows that the approximation is quite excellent.

Let us look at another example, the generating function

L(z) = i L.z" = L__Z),
n=0

er” z

where L, is the length of the nth run of a random series of numbers (chosen,
say, from the unit interval). It is easy to see that [1 =1+ % + % + % 4=
e—1.

Where are the singularities of L(z)? We find the dominant singularity at
zp = 1 on the positive real axis and the next two singularities form a
conjugate complex pair z; and z; in the right upper and lower quadrant.
As we are looking for a z with e*' = z we have simultaneously to fulfil the
equations e¥~' cosy = x and e*'siny =y for the real and imaginary part.
Figure 5.3 shows the sheaf of singularities. We establish the order of the
pole at zo = 1: It turns out that
1—z . —1

lim . = lim —
z—1er 1l —z  zo1er 1 —1
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n D, n! n!/Dy,
2 1 2 2.000000000000000
3 2 6 3.000000000000000
4 9 24 2.666666666666667
5 44 120  2.727272727272727
6 265 720 2.716981132075472
7 1854 5040 2.718446601941748
8 14 833 40320 2.718263331760264
9 133496 362880 2.718283693893450
10 1334961 3628800 2.718281657666404
11 14684570 39916800 2.718281842777827
12 176214841 479001600 2.718281827351874
13 2290792932 6227020800 2.718281828538486
14 32071101049 87178291200 2.718281828453728
15 481066515 734 1307674368000 2.718281828459379
16 7697064251745 20922789888000 2.718281828459026
17 130850092279 664 355687428096 000 2.718281828459046
18 2355301661033953 6402373705728000 2.718281828459045
19 44750731559645106 121645100408832000 2.718281828459045

Table 5.2: n!/e is a very good approximation for D,,. The exact value of e
to 15 decimal digits is 2.718281828459045.
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Figure 5.3: The absolute value of z(1—z)/(e*'—z). In the middle you find
the sole zero at z = 0. Next to it lies the dominant singularity at z =1,
surrounded by a sheaf of conjugated complex singularities.

does not exist, but

1— 22541 222 2
lim— % (z—1) =lim =20 _lim 275 i — 2
-1 ezl —z 21z — ez™] 211 — ez—] 21 —ez~]

does. Therefore zy = 1 is a first order pole.

Furthermore, L(z) +2/(z— 1) has no singularity at z = 1 and the next sin-
gularities are far away: They are |z;| = |Z;| = 8.07556... > 8 and therefore

-2
z—1

[z"|L(z) = L, = [z"] +0(8™) =2+0(8™M).

The series L, converges quickly towards 2.

5.4 Algebraic Singularities

A function f(z) has an algebraic singularity at z, if we can write f(z) as

fz) =h(2)+ Y (1 - Zio) ' g(2),

where h(z) and gj(z) are analytic zo and ¢; #{0,1,2,...}.
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Figure 5.4: The Gamma function.

Poles are special algebraic singularities.

Unfortunately we cannot find as good approximations for the case of al-
gebraic singularities as for poles. We will be content with the following
theorem by Darboux, which allows us to find asymptotic estimates with-
out too much work.

Theorem 10. Let f(z) be analytic for |z| < R and let all singularities on
|z| = R be algebraic ones. Let

k

fz) =h() + Y (1—2/0)" gi(2),

j=1

where h(z) and all gj(z) are analytic on |z| < R and let «; be the singularities
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on |z| = R. Moreover c; ¢ {0,1,2,...}.
We define a = min{fi(c;) | 1 <j < k}. Then

-1
Z g] (X] no O(R—nn—a—l))

where the sum is taken over all j with R(c;) = a.

The rough idea behind Darboux’s method is the same as for our treatment
of poles: If G(z) has an algebraic singularity « then we find a function
H(z) that has a similar algebraic singularity, but is easily expanded into a
power series. If we choose H(z) wisely, then [z"]G(z) ~ [z"]H(z) because
(z"](G(z) — H(z)) grows asymptotically slower. Unfortunately, we cannot
make the algebraic singularity appear completely in this way as was the
case for poles.

For the purpose of illustration we consider

G(z) = V(1 —2)(1 — az)

with o < 1. The singularities of G(z) are 1 and 1/x, where 1 is the dominant
one. The singularity 1 is algebraic because G(z) = (1 —z)'/?R(z) with R(z)
being analytic in 1. We are now looking for a comparison function H(z)
such that [z"](G(z) —H(z)) is small making [z"]H(z) a good approximation
of [z"]G(z). For this end H(z) should have an algebraic singularity at 1 and
behave identically to G(z) near 1. Using a Taylor approximation for R(z)
at z =1 we find a nice function that is asymptotically identical to G(z) for
z— 1t

—1) ot/ (x—1)
G )2 —1 3/20C (o (2 —1)52
(=)~ Ttz SR G A TP
We choose H(z) = (1 —2)"?y/T —« and look at G(z) — H(z) = (1 —
2)"2(v/T—az — /T —a). The second factor /1 — az — /T — « has no
singularity at 1. On the contrary: v/1 — oz —+/1—a ~0 for z — 1. That
is exactly what we expected and even

VIi—oaz—V1—«

1—2z
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has no singularity at 1. Therefore we are able to write G(z) — H(z) as

G(z) — H(z) = (1 —2)3/2\/1 0‘12_—2\/1 —

Just like G(z) the function G(z) — H(z) has still an algebraic singularity at
1, but its order dropped from 1/2 to 3/2. We will see that the coefficients of
G(z) — H(z) are asymptotically much smaller than the coefficients of G(z).
In that way [z"]H(z) becomes a good approximation of [z"]G(z).

To estimate [z"](G(z) —H(z)) we write G(z) —H(z) = A(z)B(z) with A(z) =
(1—2)*? and B(z) = (V1 — az—+/1— oc)/( z). The dominant singularity
of B(z) is 1/ and therefore [z"|B(z) =< or [z"] = O(r™) for some 1 > 1
(and r < 1/x).

The coefficients for A(z)B(z) can be expressed as a convolution:

2"(A(z)B(2)) = ) abn x
k=0

At the beginning of the sum the ay’s are relatively big and towards the
end the b, _y’s. This suggests splitting the sum into two parts. For b, we
already have the good bound b,, = O(r ™) and we can get a good bound
for a, by expanding A(z) according to Newton’s formula:

a — <3/2)(_1)n _ <n—5/2> — 0(n5?)

n n
This enables us to estimate the partial sum generously:

[m/2]

Z ayb, = O(r ™)
k=0
Z ab, = O(n %)

[n/2]

Altogether we get [z"](G(z) —H(z)) = O(r™?) + O(n>?) = O(n>?) and
therefore [z"]G(z) = [z"]H(z) + O(n~%/2). Because we can expand H(z) into
a power series we get the following result:

n-3/2

i T O

z"G(z) = V1 — oc<1T/LZ> (=" +0Mm>?) =—V1T—«
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Let n =50 and « = 1/2. The exact value of [z"]G(z) is then

_ 99827864011764212779295458819104396304431 5505545 510~
178405961588244985132285746181186892047843328 o

and

V11— 1/2(—1)5°<15/02> = —5.684655...x 107,

5.5 The Saddle Point Method

The last subsection is dedicated to generating function that have no sin-
gularities. We have not seen any method to handle such functions and to
extract their coefficient, yet.

We will get help from the famous redidue theorem of complex calculus.
From this theorem the following follows easily:

1 G(z) d
" Ity 2
where I' is a closed smoothed curve that travels around the origin counter

clockwise exactly once.

Why is this theorem correct? We will not prove it here, but let us look at
a circle around the origin:

1 27t ) ) 27t ) )
— e (MHbigedt — e*(n-i-])d)lied)ldd) —
C Zn+1 0 0

A 2mi fallsn =20
1J e"Pidp =

1 ngi |27 _
0 —e Cb:O—O sonst

As it turns out, only for n = 0 we get a value that is not zero.
Because the value of this contour integral does not depend on which curve

we choose (something we do not prove here) and the linearity of integration
the above theorem follows.

Usually these kind of theorems are used to compute integrals, but we are
using the method backwards: We estimate the integral and get an approx-
imation for the coefficients of a GF.
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To compute such an integral approximately, we will use a heuristic that
gives the method its name. We are free to choose what curve we use in the
integration and it turns out that some curves are better for us than others.
Ideally, the integrand is almost zero on almost the whole curve and is big
only on a tiny part. Then essentially we have to approximate an integral
on a very short curve, which is relatively easy.

If that is indeed possible then we can split the curve into two parts. For
one part we show that the contribution to the integral is very small. For
the second part we have to compute the value with only a small error.
Because the curve is very short, this is possible by replacing the integrand
by a simpler function whose shape is almost the same on this short curve.
A Taylor approximation, for example, can do the trick.

There is a good heuristic to find such a curve: We are taking an entire
function (with no singularities) and dividing it by z"*'. Hence, there is
only a single singularity in the origin (and one in co). As the absolute
value of a function that is analytic in a domain D cannot have a maximal
value in D there must be a saddle point between the singularities 0 and
oo. If your are at a saddle point the function will decrease in two opposite
direction usually quite steeply. So it is usually a good idea to choose a
curve that uses this steep slope to get on top of the saddle and then down
on the other side. In this way we can hope that the function is small if you
are far from the saddle point. Of course, we have to take care what the
exact shape of the remaining curve is because we have to close it somehow.

We try to do this in a way that the curve stays close to zero all the time.

Let us illustrate the method on the example of G(z) = e* because this OGF
is relatively simple and we already know the result g, = 1/n!. This enables
us to see easily how big the error of our approximation is.

If we look at the function e?/z"'! we find a saddle point at n + 1. It is

sufficient to set the derivative to zero.

Figure 5.5 depicts the absolute value of this function in the complex plane.
You can see the saddle quite prominently.

For our calculation it is better to go through n instead of n + 1 (which is
still very close to the saddle point). We will just use a circle with radius n
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Figure 5.5: The absolute value of e*/z"*! for n = 5.

as our contour.

1 z 1 27 netd )
J ¢ dz = J S dne' =
c ¢

27 |-zt T T 2 o mrlen+
B 1 27 enei‘i’ i¢d B 1 27 enei‘b A — 1 A+B
o Z[ 0 nn-i-]e(n-i-])id) ne d) o Z-[ 0 nnenicb d) o Z’[ nn

with

5 _nel® 218 _net®
A:J © _d4d  and B:J € a4

Choosing delta in a clever should make A the dominant part of the integral
and B asymptotically neglectable, i.e., B = 0(A) and therefore A + B ~ A.
We will analyse both A and B and we start with A:

5 , .
A= J en ' b dg
-

For the exponent we get:

2

ne'® —nip ~n(1 — 5 + 0(¢?))

and therefore

5 )
A J en(1-8/2+0(0%) g ) — e"J e 21 + O(nd?))dd =
s

-

S
—e™(1+ O(n63))J e /244

—d
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To make sure that the approximation is good we need n$? = o(1) and thus
5 = o(n"3). To compute the integral we substitute ¢ = t1/2/n and get:

5 ém 2 d4/M/2
J efnd)z/zdcb — J eftz dt /z/n — \/iJ eitz dt
-5 nJ_s./n/2

—04/1/2

There is no closed solution for that integral, but the improper integral
=, et dt = /7 is well known.

2 d4/M/2 2 [® 2 [®
— J e Pdt=14/2 J e Pdt—24/2 J e Vdt =
nJ_s./n/2 nJ N Jsy/n/2

— ,/2—71 +0 <n“/2ro e_tdt) = @/2—71 +0(n7 2V ~ o
n v n n

This approximation is only true if y/n/2 = w(1) since only then we can
replace et by e~t. We have to choose § in a way such that § = w(n="?)

and get A ~ \/27/ne™.

Finally, we can turn our attention to B:

2m—0 o
|B|: j ene fnlcbdd)

219
<J ‘ enei‘b*nicb ‘ dd) —
; =

5

2718
:J encosd)dd) S 27.[encosé S 27me™ - e—néz/z — eo(n)
5

—5/12 in order to

if n6? = w(1) or & = w(n="/?). We can choose § = n
fulfill all conditions for . We get finally: A + B ~ ,/%”e“ and therefore

[ e gy 1AsB 1 et
ZTIi‘J‘CZTH]dZ_Z’TT nn 2m nn -’

This yields an approximate formula n! ~ v/ Zﬂn‘;—: for the factorial function.
Euler’s summation formula is more precise, but fails to identify Stirling’s
constant as 0 = v/2m.

A real example for the saddle point method is the generating function
I(z) = e*"¥/2 for the number of involutions — permutations 7t where 7 is
the identity. To find the saddle point we see where the derivative is zero:

(1(1) ) " (z+1)exF)2 ext7/2

gt o —(n+1) o2
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It is zero when z(z+ 1) = n+ 1, which means that the saddle point is near
/. We choose as the contour again a circle and leave its radius R for the
moment unspecified.

1 ez—i—zz/Z 1 271t eRe“‘*"-ﬁ-RzeZi‘l’/Z "
n - o id __
[2"1(z) = e L e dz =52 L RS dRe'® =
B -I JZT( eRei¢+R2€Zi<b/2_in¢ dd) . 1 (A 4 B)
~ 2mRn ~ 2mRn
where
A — r eRei¢+R2eZi¢ /2—ind do
-5
and

218 (L p2.210

i i s

B J eRe +Rce“1® /2 lnd)dd).
5

Let us consider A first:

eRePHRZI 2—ing _ SR(1+ip—¢?/2+0(6)+R? (3 +i0—¢?+0($?)~ind _

_ eR+R2/2 . e—d)z(R/Z—i—RZ)+i¢(R+R2—n)+(R+R2)0(433)

We choose R? + R = n, because then the factor in front of i vanishes.
Then R = %\/4n+ 1— 12 and we get

)
A eR+RZ/2J e—¢2(n+0(\/ﬁ))+0(¢3)d¢ —
s

= eRHRI2 r e (14 0(¢*Vn))(1+ O(nd?))dd =
-5

S
= MR/2(1 4 0(8%/n) + O(8°n)) J e ¥"dd

-5

We need the properties 5*y/n = o(1) and &n = o(1) in order to get a
good approximation for A. This means that 6 = o(n~"3) and § = o(n™/4),
where the first condition is the stronger one.

Finally we can turn our attention to the remaining integral. We substitute
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E—

[T

Figure 5.6: The absolute value of e***/2/z" for n = 5. Two possible
contours are depicted. The outer circle passes exactly through the saddle
point (at R(R+ 1) = n+1), while the inner circle uses R(R+ 1) = n, which
will be a nicer identity in the calculation that follows. You can clearly see
the singularity in the origin. Along the real axis the function eventually
grows exponentially.

t=d¢/Vn.
8 5y/m t 1 —00 00
_q)zn _ _tZ _ _tz —tZ _
e dd)—J e d—-—(J e dt—ZJ e dt)-
Js sy vnoovn U sy
1
= /n (Vmt+o(1))
This yields f;f/ﬁ dt = o(1) if 64/ = w(1), or if 6 = w(n~"?). We need

5 =o(n"3) and § = w(n'/?) at the same time, so we choose § = n~>/"?,

which lies in between. Altogether we get

A= emz/z\ﬁm +0(1))
n

and we can turn to B:
271—d
B — J eRei¢+R2e2i4> /2—ind dd
§
We would like to show that B is small. For this end it is sufficient to look
at the absolute value of the integrand:

eR cos $p+RZ cos(2¢)/2



5.5. THE SADDLE POINT METHOD 99

Rel®+RZe2i® /2_ing | = R+R?2 /z)

For |e o(e

conditions is fulfilled:

it is sufficient if one of the following

1. 1—cosdp = w(1/y/n)

2. 1—cos2d = w(1/n)

We have to show that for every ¢ with & < ¢ < 2t — 6 at least one of
the two conditions holds. For this end we check when the conditions are
violated:

1. $=0(1/yn) or ¢ =2n+ 0 (1/yn)
2.0=0(1/n)ordp=nt+0(1/n)or ¢ =21+ O (1/n)

Both conditions together leave only the possibility ¢ = O (1/n) and ¢ =
21t+ O (1/n). Because of nv < ¢ < 2m—n7 these cannot be true either.

Altogether we get
A+B~, /gemz/z,
R? R?

1 2

:n—%(4n+1 —2vV4n + 1 +1) =

ALB~ Een/z+ﬁ/2f1/4
V n

en/2+/1/2-1/4

2\/tnR™

which can be simplified:

M| 3

and therefore

we get

[z2"1(z) =

(A+B)~
Finally we simplify R™:

R — enln(%\/4n+1f%) n(In+n(van(1-1/van+0(1/n)))) _

=€
— 2/ e 1/VIH0(1/n) | /212
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The final result is

en/2+V/n/2-1/4 e/ 2+Vn/2-1/4 e/ 2+y/n-1/4

"I - - —
2")1(z) 2/mmRn 2 /mnv2e—v/2 2. /mm - nv/2

and
nn en/2+\/ﬂf1/4 nn/Ze\/ﬂf1/4
I, =nlz"I(z) ~ V2rim— =
en 2y/mn - n/2 V2 en/2

If we let n =50, then I,,/n! is 9.17 x 107! and our estimate is 8.82 x 1073,

5.6 The Restricted Saddle Point Method

To go through the whole process of the saddle point method is usually
possible without problems, but can be very long. With less effort we can get
an upper bound that is in general worse, but often sufficiently good. The
idea of this simplified method is simple: We replace a complicated integral,
which runs along a circle and the function is most of the time small, but
larger in certain areas, by a simple integral of a constant function on the
same contour. If the constant is bigger than the maximal absolute value
of the integrand along the contour, it is clear that the upper bound of the
absolute value times the length of the contour is an upper bound to the
value of the original integral.

Figure 5.7 illustrates the idea. Ideally the maximum absolute function
value occurs exactly in the saddle point. The second part of the following
theorem is based on sufficient conditions guaranteeing exactly this, while
the first part is universally true.

Theorem 11. Let f(z) be analytic in the origin, the coefficients [z"]f(z)
are non-negative, and let R be the radius of convergence of the power series
for f. Furthermore, we assume that f(0) # O and there are infinitely many
n with [z"]f(z) # 0.

1. [z"]f(z) < inf f(r)/r™

T 0<r<R

2. If lim, ,g_ f(r) = +o0, then the equation (f’({) = nf(({) has a unique
solution ¢(n) in (0,R) and [z"] < f({(n)) {(n)™.
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Proof. The first part tells us essentially that we find the maximum of
|f(z)/z"| on the circle on the real axis. We assumed that ann coefficients
are non-negative and therefore

max [f(z)| < maXZ folz™ = f(r).

|z|=r |z|=r

We can perform the following calculation:

1 f(z 1 f(r
fn < 2—7'[1 Ler 21(1—3 dl‘ < m Iél‘if If(z)| = %
For the second part we have to show that f(r)/r™ has a minimum at ((n)
and that that this minimum is unique. If r — 0+ or r — R—, then
f(r)/m™™ — 4o0o. Therefore, there must exist at least one minimum in
(0,R). This minimum must be unique if the function is concave in the
whole interval. If we look at the second derivative

27 (r) — 2nrf'(v) + n(n+ 1)f(r T & .
(T) r(nlz ( )f(r) :rn+ZZ(n+1 —m)(n—m)f,rm,
m=0

we can easily see that it is positive in r € (0,R): Both f, and (n+ 1 —
m)(n — m) are non-negative and for infinitely many m they are positive.

Finally it is evident that this unique minimum must be at ((n) because
this is the only place where the second derivative of f(r)/r"™ vanishes. [

Exercises

5.1 Sort the three sequences with these EGF's by their asymptotic growth: A(z) =
1/v/1—2/2,B(z) = (1+2)/(1 —2) and C(z) = —7.

5.2 What is the exponential growth of the sequence with this generating function:

22— 1122+ 392 —45
25 — 424 — 2423 + 16022 — 304z + 192

5.3 You are a gardener and always looking for a bargain. As you know, the
normal price for ordered rooted trees is 3 euros per internal node and 1 euro per
leaf. Now the local plant nursery makes you the following offer: All trees that
normally cost n euros a piece for only 2™ euros altogether! As a collector you
are mostly interested in exclusive and therefore expensive trees. Fortunately, you



