
Analysis

of

Algorithms

Peter Rossmanith

Institute for Theoreti
al Computer S
ien
e

RWTH Aa
hen

Le
ture Notes and Exer
ises, Winter 2020

ommit 68160

f5587d66a2f6672b0f16d1eff7ed83190

Author: Peter Rossmanith <rossmani�
s.rwth-aa
hen.de>

Date: Wed Feb 3 11:00:38 2021 +0100

Contents

1 Analysis of Qui
ksort 1

1.1 The number of partitioning phases 4

1.2 The Number of Comparisons while Partitioning 10

1.3 The number of swaps in the do-loop 10

1.4 The number of insertion phases 11

1.5 Number of swaps during insertion-sort 12

1.6 Con
lusion . 14

2 The Kir
hho� laws 21

3 Re
urren
e relations 27

3.1 Classi�
ation of re
urren
e relations 28

3.2 Creating a table . 29

3.3 Guessing a solution andproving it by indu
tion 29

3.4 Looking up the solution . 30

3.5 Mathemati
a, Maple, Maxima, et
. 31

3.6 Hidden produ
ts and sums 33

3.7 Linear re
urren
e relations with
onstant
oeÆ
ients 34

3.8 Summation fa
tor . 35

3.9 The Repertoire Method . 37

3.10 Order Redu
tion . 40

iii

iv

3.11 Extra
ting re
urren
e relations from algorithms 42

3.12 Sear
hing an unordered array 45

3.13 Ordered arrays and binary sear
h trees 49

4 Generating fun
tions 59

4.1 Counting Data Stru
tures with Generating Fun
tions . . . 65

4.2 Bivariate Generating Fun
tions 68

4.3 Exponential Generating Fun
tions 68

4.4 The Symboli
 Method . 69

4.5 Average Sta
k Height . 74

5 Asymptoti
 Estimations 79

5.1 Euler's summation formula 80

5.2 Singularity Analysis . 81

5.3 Meromorphi
 fun
tions . 84

5.4 Algebrai
 Singularities . 89

5.5 The Saddle Point Method 93

5.6 The Restri
ted Saddle Point Method 100

A Solutions to Sele
ted Exer
ises 105

B MIPS Cheat Sheet 127

C Tests 129

Chapter 1

Analysis of Qui
ksort

We start our journey into the Analysis of Algorithms with an example.

It
onsists of a well-known and very eÆ
ient sorting algorithm. We will

see that even a very
ompli
ated algorithm
an su

essfully be analyzed

mathemati
ally.

This �rst analysis of an algorithm
ontains almost every single important

ingredient that may o

ur in typi
al situations that we may en
ounter when

we design our own algorithms and try to analyze them. While we just take a

glan
e on these various aspe
ts in this introdu
tory
hapter, we will revisit

them later on and learn about them in more detail:

1. Before starting to analyze the running time of some algorithm, we

have to understand it
ompletly and in every detail; otherwise a pre-

ise analysis is impossible. After having learnt about the purpose

of every single instru
tion, we have to �nd an intuitive des
ription

of the number of times this instru
tion is exe
uted. If a blo
k of

instru
tion is not interrupted by a bran
h statement, all instru
tion

in the blo
k
an be analyzed together. Apart from this very simple

rule we will later en
ounter several other method on how to redu
e

the number of instru
tions that have to be analyzed individually.

2. If we want to
arry out an Average
ase analysis, i.e., analyse an

algorithm's expe
ted behavior, we need a statisti
al model for the

inputs to model an appropriate probability distribution.

1

2 CHAPTER 1. ANALYSIS OF QUICKSORT

3. With the help of the|up to now|rather vague intuivitve des
rip-

tion, we have to �nd a
losed formula for the number of exe
utions

of ea
h instru
tion. Here we have to take the probability distribution

into a

ount when
ounting the expe
ted rather than the worst
ase

number. Often it is impossible to �nd a exa
t
losed formula or it

requires too high an e�ort. In that
ase we have to be
ontent with

losed, but only approximate, formula.

4. At the end we just have to add the individual times for ea
h instru
-

tion to get the overall expe
ted running time in relation to the input

length.

The famous Qui
ksort algorithm is well suited as an introdu
tory example

be
ause it is not too trivial and well known. We will
on
entrate on a

pra
ti
al, highly optimized version rather than on a simpli�ed one, whi
h

you will often �nd in beginners' textbooks.

1

One drawba
k of naked qui
ksort is its bad performan
e on very small ar-

rays, on whi
h it is beaten by mu
h simpler algorithms. Hen
e, we use a

qui
ksort variant that partitions (and then re
ursively sorts) an array only

if its length is bigger than a
onstant M. At the end we
an use one run

of straight-insertion sort to �nish the job by
leaning up the remaining

unsorted short subarrays. Another optimization addresses spa
e
onsump-

tion rathen than running time: After partitioning we sort the smaller of

the two subarrays �rst. This well-known tri
k keeps the re
ursion depth

small be
ause the array size is at least halved in ea
h re
ursive
all. For

eÆ
ien
y reason the re
ursive
alls are simulated by dire
t
alls and the

usage of our own sta
k. Figure 1.1
ontains a
omplete program written in

the language C that implements all ideas mentioned in this paragraph.

We assume that the input
onsists of N di�erent numbers and want to

analyze, how often ea
h instru
tion in the program is exe
uted on average,

if every permutation of the given numbers o

urs with the same probability.

This is a standard assumption for sorting problems. Initially, the input is

lo
ated in the array a [1℄,. . . ,a [N ℄ and the sorted sequen
e is to be found

in the same spot upon program termination.

1

In this s
ript we follow
losely the analysis of Qui
ksort by Knuth [4℄, whi
h is de�-

nitely not a beginner's textbook.

3

void qui
ksort(void)

f

int i ; j ; l ; r ; k ; t ;

l = 1; r = N ;

if(N >M)

while(1) f

i = l - 1; j = r ; k = a [j ℄;

do f

do f i++; g while(a [i ℄ < k);

do f j--; g while(k < a [j ℄);

t = a [i ℄; a [i ℄ = a [j ℄; a [j ℄ = t ;

g while(i < j);

a [j ℄ = a [i ℄; a [i ℄ = a [r ℄; a [r ℄ = t ;

if(r - i � i - l) f

if(i - l >M) f push(i + 1; r); r = i - 1; g

else if(r - i >M) l = i + 1;

else if(sta
k is empty) break;

else pop(l ; r);

g

else f

if(r - i >M) f push(l ; i - 1); l = i + 1; g

else if(i - l >M) r = i - 1;

else if(sta
k is empty) break;

else pop(l ; r);

g

g

for(i = 2; i � N ; i++)

if(a [i - 1℄ > a [i ℄) f

k = a [i ℄; j = i ;

do f a [j ℄ = a [j - 1℄; j--; g while(a [j - 1℄ > k);

a [j ℄ = k ;

g

g

Figure 1.1: C-program for Qui
ksort

4 CHAPTER 1. ANALYSIS OF QUICKSORT

You
an �nd the whole program a se
ond time in Figure 1.2, but in a

di�erent layout that reminds of a
ow
hart. Instru
tions that are not

separated by bran
hes or target of bran
hes are grouped into blo
ks. The

program
ow is indi
ated by arrows between the blo
ks. Next to ea
h

blo
k you
an �nd a symboli
 name for the number of times this blo
k is

exe
uted in the form of a variable or a short expression that may involve

several variables.

Let us start by
onsidering the variable A. This variable o

urres next to

several blo
k, whi
h implies that number of exe
ution for those blo
ks are

identi
al.

Why
an we use the same variable for the two blo
ks i = l - 1; j = r ; k =

a [j ℄ and a [j ℄ = a [r ℄. . . ? The answer is quite simple: The
ow into a set

of blo
ks M must be exa
tly identi
al to the
ow out of M. The
ow is

the program
ow, i.e., the
ow into a blo
k is the number of times the

blo
k is entered and the
ow out is the number of times the blo
k is left.

This situation is quite similar to solenoidal ve
tor �elds in physi
s (e.g.,

the magneti
 �eld) or the ele
tri
al
ow in a resistor network.

If the blo
k i = l-1; j = r ; k = a [j ℄ is exe
uted A times, then it will be left

A times. There is only one outgoing arrow from this blo
k. Let us denote

the set of blo
ks between i = l-1; j = r ; k = a [j ℄ and a [j ℄ = a [r ℄. . . byM.

ThenM will be left A times, too, whi
h is again possible only by one arrow

that leads to the blo
k a [j ℄ = a [r ℄; a [i ℄ = a [j ℄; a [j ℄ = t . We
an
on
lude

that this blo
k is exe
uted exa
tly A times, too. This line of reasoning

has been relatively easy. We
an dis
over other relationship like this in a

similar way, e.g., that I

0

+ I

00

= 1 or A

0

+ A

00

= A - 1. In this way we

greatly redu
e the number of independent variables whose value has to be

analyzed.

We will address redu
ing the number of variables using the
ow relations

in a systemati
 way in Chapter 2.

1.1 The number of partitioning phases

Let us return to the analysis of A. What is the intuition behind this num-

ber? The while-loop in Figure 1.1 is exe
uted exa
tly A times. Ea
h

1.1. THE NUMBER OF PARTITIONING PHASES 5

l = 1; r = N ;

N > M

i = l � 1; j = r; k = a[j℄;

i = i+ 1;

a[i℄ < k

j = j � 1;

k < a[j℄

t = a[i℄; a[i℄ = a[j℄; a[j℄ = t;

i < j

a[j℄ = a[r℄; a[r℄ = a[i℄; a[j℄ = t;

r � j � j � l j � l > M

push(j + 1; r);

r = j � 1;

r � j > M l = j + 1

sta
k is empty

break;

pop(l; r);

r � j > M

push(l; j � 1);

l = j + 1;

j � l > Mr = j � 1

sta
k is empty

break;

pop(l; r);

i = 2

a[i� 1℄ > a[i℄

k = a[i℄; j = i; a[j℄ = a[j � 1℄; j = j � 1;

a[j � 1℄ > ka[j℄ = k;

i = i+ 1;i � N

A

i = i+ 1;C

0

a[i℄ < kC

0

j = j � 1;C

00

k < a[j℄C

00

A

A

B +A

B +A

j � l > M

A

00

+ I

00

r � j > M

A

0

+ I

0

push(j + 1; r);

r = j � 1;

S

00

push(l; j � 1);

l = j + 1;

S

0

pop(l; r);

�

S

00

pop(l; r);

�

S

0

l = j + 1

A

00

� S

00

�

�

S

00

r = j � 1

A

0

� S

0

�

�

S

0

r � j > M

A

00

+ I

00

� S

00

j � l > M

A

0

+ I

0

� S

0

sta
k is empty

�

S

00

+ I

00

sta
k is empty

�

S

0

+ I

0

break; I

00

break;I

0

1

N � 1

N � 1

N � 1

D

D

E

E

C = C

0

+ C

00

number of
om-

parisons

C = C

0

+ C

00

number of
om-

parisons

number of swapsnumber of swaps

A = A

0

+ A

00

+ 1 number

of partitioning stages

A = A

0

+ A

00

+ 1 number

of partitioning stages

S = S

0

+ S

00

=

�

S

0

+

�

S

00

number of pushs

S = S

0

+ S

00

=

�

S

0

+

�

S

00

number of pushs

Figure 1.2: Program
ow
hart for the Qui
ksort program

6 CHAPTER 1. ANALYSIS OF QUICKSORT

exe
ution
orresponds to a partitioning of a subarray. Hen
e, we inter-

pret A as the number of partitioning phases. This intuitive des
ription is

enormeously helpful. From this point on, we do not have to look at the C-

program anymore, when analysing A. We just have to look at the abstra
t

Qui
ksort algorithm. Even if we
hange the C-program the analysis of A

will remain sound|it is the number of partitioning phases that is
learly

independent of the
on
rete implementation.

Let A

N

be the expe
ted number of partitioning phases if we sort N keys by

Qui
ksort. If N > M, the input is partitioned on
e and three subarrays are

established. The middle one
onsists only of the pivot element and will be

left untou
hed. The �rst and last subarray will be re
ursively sorted. This

leads to additional A

k

and A

N-1-k

partitioning phases if the �rst and last

subarray have the length k and N- 1- k. The number k is between 0 and

N - 1. It is easy to see that the probability for ea
h of those possibilities

is exa
tly 1=N: We assumed, after all, that every permutation o

urs with

the same probability. These ideas lead to the following relation:

A

N

= 1+

1

N

N-1

X

k=0

(A

k

+A

N-1-k

)

= 1+

2

N

N-1

X

k=0

A

k

; forN > M

If N �M, on the other hand, then
learly A

N

= 0.

In the following we will en
ounter many more re
urren
e relations that look

familiar to this one. We
an write all of them as

X

N

=

2

N

N-1

X

k=0

X

k

+ f

N

; forN > M

with di�erent fun
tions f

k

. In the
ase of A

N

we have f

k

= 1.

It is not very hard to solve re
urren
es of this form. The �rst problem

we en
ounter is that X

N

depends on all X

0

; : : : ; X

N-1

instead on only a

small number of di�erent X

i

's. To over
ome this problem, the �rst step

is to turn the re
urren
e into one of �nite order. We
an a
hieve that by

subtra
ting X

N-1

from X

N

after having got rid of the interfering fa
tors 1=N

1.1. THE NUMBER OF PARTITIONING PHASES 7

and 1=(N- 1):

NX

N

= 2

N-1

X

k=0

X

k

+Nf

N

(N- 1)X

N-1

= 2

N-2

X

k=0

X

k

+ (N- 1)f

N-1

Subtra
tion yields

NX

N

- (N- 1)X

N-1

= 2X

N-1

+Nf

N

- (N- 1)f

N-1

or

NX

N

= (N+ 1)X

N-1

+Nf

N

- (N- 1)f

N-1

; forN > M+ 1:

This is a linear re
urren
e of �rst order. Su
h re
urren
es
an routinely be

solved by a te
hnique
alled summation fa
tor, as we will see later. Here

this te
hnique asks us to multiply the equations by 1=N(N+ 1):

X

N

N+ 1

=

X

N-1

N

+

Nf

N

- (N- 1)f

N-1

N(N+ 1)

Using the substitutions

Y

N

=

X

N

N+ 1

and g

N

=

Nf

N

- (N- 1)f

N-1

N(N+ 1)

yields the very simple equation

Y

N

= Y

N-1

+ g

N

; for N > M+ 1:

We
an easily solve the re
urren
e, but have to be
areful that it holds only

for N > M + 1. It is a
ommon mistake not to tra
k exa
tly under whi
h

onditions derived equations are valid.

Y

N

= Y

M+1

+ g

M+2

+ g

M+3

+ � � � + g

N

= Y

M+1

+

N

X

k=M+2

g

k

and, after substituting ba
k into the variable X

N

, we get the solution

X

N

=

N+ 1

M+ 2

X

M+1

+ (N+ 1)

N

X

k=M+2

kf

k

- (k- 1)f

k-1

k(k+ 1)

:

8 CHAPTER 1. ANALYSIS OF QUICKSORT

Let us return to the analysis of A

N

. Here f

k

= 1 and A

M+1

= 1. Repla
ing

X

N

and f

k

a

ordingly leads to

A

N

=

N+ 1

M+ 2

+ (N+ 1)

N

X

k=M+2

1

k(k+ 1)

=

N+ 1

M+ 2

+ (N+ 1)

�

N

N+ 1

-

M+ 1

M+ 2

�

=

2N-M

M+ 2

:

We �nally arrived at a
losed formula for A

N

. Do not forget that we proved

this formula only for N > M + 1. We also know that A

N

= 0 for N �M.

Finally, A

M+1

= 1, whi
h we had to establish earlier in the analysis of A

N

.

We
an write down a
losed formula for A

N

that is valid for all values of N

by using a
ase distin
tion:

A

N

=

8

>

>

>

<

>

>

>

:

0 if N �M,

1 if N = M+ 1,

2N-M

M+ 2

if N > M+ 1.

Fortunately, however, (2N - M)=(M + 2) = 1 if N = M + 1 and we
an

merge the last two
ases into one. Our �nal formula, whi
h hardly
an be

simpli�ed more, is

A

N

=

8

>

<

>

:

0 if N �M,

2N-M

M+ 2

if N > M.

Let us
he
k the validity of this formula on some spe
ial
ases. What

happens if N = M + 2? Of
ourse, Qui
ksort partitions the array on
e.

There are M + 2 di�erent possibilies for
hoosing the pivot element and

ea
h
hoi
e bears a probability of exa
tly 1=(M + 2). There are exa
tly

two possible
hoi
es for the pivot that for
e the algorithm to
arry out a

se
ond partitioning. This happens only if the pivot element is either the

smallest or the biggest key be
ause then one of the subarrays has size M.

Hen
e, with a probability of M=(M+ 2) the algorithm partitions on
e and

with a probability of 2=(M+ 2) twi
e. The expe
ted value is therefore

A

M+2

=

M

M+ 2

+ 2

2

M+ 2

=

M+ 4

M+ 2

= 1+

4

M+ 2

:

1.1. THE NUMBER OF PARTITIONING PHASES 9

Let us see, to what our
losed formula for A

M+2

evaluates:

A

M+2

=

2(M+ 2) -M

M+ 2

=

M+ 4

M+ 2

= 1+

4

M+ 2

Of
ourse, they
oin
ide. It is advisable to test the out
ome of a
ompli
ated

analysis that �nally yields a
losed formula on some easy spe
ial
ases

be
ause you
an have made a mistake.

One �nal remark on the analysis of A

N

regards the �nal summation we had

to
arry out. When solving re
urren
e relations|espe
ially when we sim-

plify them in a sequen
e of steps|very often we end up with a summation.

For this reason, solving summations by providing an exa
t or approximate

losed form turns out to be very important in the analysis of algorithms.

Here the summation was quite easy to solve. It is a teles
opi
 sum be
ause

N

X

k=M+2

1

k(k+ 1)

=

N

X

k=M+2

�

1

k

-

1

k+ 1

�

and
onsequently almost all terms
an
el ea
h other. With the advent

of
omputer algebra systems, however, learning te
hniques how to solve

summations be
ome less important nowadays. This summation
an be

easily solved for us by a system like maxima:

Maxima 5.23.2 http://maxima.sour
eforge.net

using Lisp SBCL 1.0.38-3.el6

Distributed under the GNU Publi
 Li
ense. See the file COPYING.

Dedi
ated to the memory of William S
helter.

The fun
tion bug_report() provides bug reporting information.

(%i1) nusum(1/(k*(k+1)), k, M+2, N);

N - M - 1

(%o1) ---------------

(M + 2) (N + 1)

If the summation has no
losed form we will see how to approximate its

value with very small additional error terms.

10 CHAPTER 1. ANALYSIS OF QUICKSORT

1.2 The Number of Comparisons while Par-

titioning

If we partition a subarray of size N, the indexes i and j point initially to

the begin and end of the subarray. When the
riterion i < j is no longer

true, the indexes have
rossed over and the partitioning phase is ended.

Whenever i is in
reased of j de
reased, exa
tly one
omparison is
arried

out. In the end i = j + 1 holds (i.e., j - i = -1) and in the beginning

j - i = N - 1. Hen
e, the di�eren
e between j and i de
reases with ea
h

omparison from N+1 to -1 and the total number of
omparisons it N+1.

This is the number of
omparisons in one partitioning phase. The total

expe
ted number of
omparisons in all partitioning phases
an be stated

by the re
urren
e relation

C

N

= N+ 1+

2

N

N-1

X

k=0

C

k

;

whi
h is again of the general form with f

k

= k+ 1 and C

M+1

= M+ 2.

It is now easy to get a
losed formula for its solution using harmoni
 num-

bers H

n

= 1+ 1=2+ 1=3+ � � � + 1=n.

C

N

= N+ 1+ (N+ 1)

N

X

k=M+2

k(k+ 1) - (k- 1)k

k(k+ 1)

=

= N+ 1+ 2(N+ 1)

N

X

k=M+2

1

k+ 1

= N+ 1+ 2(N+ 1)(H

N+1

-H

M+2

)

Very often only the number of
omparisons is analyzed in textbooks and

usually M = 1 and all
omparisons o

ur while partitioning. If M = 1 this

yields 2(H

N+1

- 8=6)(N+ 1) = 2H

N+1

N-

8

3

N+ o(N).

1.3 The number of swaps in the do-loop

Let B

N

+ 1 the number of swap operations in the do-loop. For eÆ
ien
y

reasons|it saves one if-
ommand|the algorithm performs one last swap

1.4. THE NUMBER OF INSERTION PHASES 11

that is not ne
essary and has to be swapped ba
k.

2

It makes sense to de�ne

B

N

as the number of real swaps (that are not taken ba
k) a

ording to our

philosophy that variables that we analyze have a ni
e intuitive meaning.

If we partition the array in two subarrays of sizes k and N - 1 - k, then

the expe
ted number of swaps that have o

urred between them is k(N-

1- k)=(N- 1). This gives us the re
urren
e relation

B

N

=

1

N

N-1

X

k=0

�

B

k

+ B

N-1-l

+

k(N- 1- k)

N- 1

�

=

2

N

N

X

k=0

B

k

+

N- 2

6

:

Here f

k

= (N- 2)=6 and B

M+1

= (M- 1)=6. Its solution is

B

N

=

(N+ 1)(M- 1)

6(M+ 2)

+

(N+ 1)

6

N

X

k=M+2

k(k- 2) - (k- 1)(k- 3)

k(k+ 1)

=

1

6

(N+ 1)

�

2H

N+1

- 2H

M+2

+ 1-

6

M+ 2

�

+

1

2

:

1.4 The number of insertion phases

Let us pro
eed to D

N

and ponder what intuition
an be found behind this

variable. Whenever a[i - 1℄ > a[i℄, the algorithms inserts a[i℄ into the

already sorted subarray a[1 : : : i-1℄. The variable D

N

tells us exa
tly, how

often su
h an insertion takes pla
e. We should not forget that this kind of

insertions happen only in the se
ond phase of the algorithm. We get the

re
urren
e

D

N

=

2

N

N-1

X

k=0

D

k

for N > M. We
an look at what happens in the se
ond phase from the

perspe
tive of the �rst phase. The array of length N is partitioned re
ur-

sively into smaller and smaller subarrays until their sizes are at most M.

Let us
all these �nal subarrays small. At the end of the day D

N

is the

sum of all D

k

i

's if k

i

are the length of all small subarrays.

2

As a do-loop is performed at least on
e and the array might be already sorted and no

swaps should take pla
e, we
annot avoid at least one super
uous swap without guarding

it by an if-statement.

12 CHAPTER 1. ANALYSIS OF QUICKSORT

We have a simple re
urren
e for the
ase that N > M, but what happens if

N �M? Let us assume that i is the last index that belongs to the subarray

of length N where N �M. Then the insertion that we want to
ount take

pla
e i� a[i- 1℄ > a[i℄ in the for-loop.

How big is the probability that a[i - 1℄ > a[i℄? We have to
onsider that

a[1℄; : : : ; a[i - 1℄ has already been sorted by insertion sort. Before that,

a[1; : : : ; i℄ was in random order. At this point of time a[i- 1℄ > a[i℄ i� a[i℄

is not the biggest key in a[i -M + 1℄; : : : ; a[i℄. It is the biggest key only

if it is bigger than the other i - 1 keys. The probability for this event is

1- 1=i.

By a simple summation we get

D

N

=

N

X

i=2

(1- 1=i) = N-H

N

for N �M:

Let us look at some small values that we get from this formula: D

0

= 0,

D

1

= 0, D

2

= 1=2. Are these
orre
t? Yes, only if N � 2 the body of

the for-loop is exe
uted at all. If N = 2 then an insertion takes pla
e if

a[2℄ > a[1℄. This happens with probability

1

2

.

This formula is also the key to get a grip on D

M+1

, whi
h we require to get

a
losed solution of D

N

.

D

M+1

=

2

M+ 1

M

X

k=0

D

k

=

2

M+ 1

M

X

k=0

(k-H

k

) = M- 2H

M+1

+ 2

For N > M the
losed formula for D

N

is:

D

N

=

N+ 1

M+ 2

D

M+1

=

N+ 1

M+ 2

(M+ 2- 2H

M+1

) = (N+ 1)

�

1-

2H

M+1

M+ 2

�

In parti
ular we see that D

N

= �(N), if M > 1 is a
onstant. Hen
e, only

a linear number of keys is moved to
orre
t the subarrays that were left

unsorted by the �rst phase. This behavior is not surprising.

1.5 Number of swaps during insertion-sort

The se
ond phase of our highly optimized Qui
ksort algorithms is|as we

have seen|basi
ally insertion sort. Exa
tly E

N

pairs of keys, whi
h are

1.5. NUMBER OF SWAPS DURING INSERTION-SORT 13

not in the right order, are swapped. After they have been swapped they

are in the right order and stay in this relative order for all times. This

is not exa
tly how the algorithm works be
ause of eÆ
ien
y reasons the

keys are not pairwise swapped but
y
li
ly in larger blo
ks. The result is,

however, the same and we
an pretend they are swapped pairwise, whi
h

is mu
h easier to imagine (and therefore analyze).

Whenever two keys are in the wrong order, the E-blo
ks in Figure 1.2 are

exe
uted on
e. That is exa
tly the number of inversions of the permu-

tation that sorts the input. An inversion of a permutation is the number

of pairs that are out of order. Formally, if � : f1; : : : ; ng ! f1; : : : ; ng is a

permuation, then

jf fi; jg j 1 � i < j � n; �(i) > �(j) gj

is the number of inversions of �. Hen
e we have a very ni
e intuitive

des
ription of E

N

|it is simply the expe
ted number of inversions of a

random permutation.

A permuation of n keys has n(n - 1)=2 pairs and ea
h pair of keys has

the wrong order with a probability of 1=2. The probability distribution

nevertheless is quite
ompli
ated be
ause these events are
learly not in-

dependent from ea
h other. Fortunately, we only need the expe
ted value

of the number of inversions. Be
ause of linearity of the expe
ted value the

result simply is n(n- 1)=4.

Let E

N

be the number of inversions of the input array after the �rst phase of

the algorithm. Then E

N

is the number of times the E-blo
ks are exe
uted.

We get this re
urren
e for E

N

:

E

N

=

8

>

>

>

>

<

>

>

>

>

:

2

N

N-1

X

k=0

E

k

f�ur N > M

1

2

�

N

2

�

f�ur N �M

Again the form of the re
urren
e is in the familiar shape. Routinely, we

�rst �nd out what E

M+1

is:

E

M+1

=

2

M+ 1

M

X

k=0

k

2

4

=

M(M- 1)

6

14 CHAPTER 1. ANALYSIS OF QUICKSORT

For N > M we get, again following our routine,

E

N

=

N+ 1

M+ 2

E

M+1

=

N+ 1

M+ 2

M(M- 1)

6

:

1.6 Con
lusion

You
an �nd all results in the following table:

A

N

=

2N-M

M+ 2

B

N

=

1

6

(N+ 1)

�

2H

N+1

- 2H

M+2

+ 1-

6

M+ 2

�

+

1

2

C

N

= N+ 1+ 2(N+ 1)(H

N+1

-H

M+2

)

D

N

= (N+ 1)(1- 2H

M+1

=(M+ 2))

E

N

=

1

6

(N+ 1)M(M- 1)=(M+ 2)

S

N

= (N+ 1)=(2M+ 3) - 1

Figure 1.3
ontains the C-program from �gure 1.1 in the assembler language

of a MIPS-pro
essor. We
hoose this type of pro
essor for the following

reasons:

1. It is a typi
al RISC-pro
essor and representative for pro
essor used

today and at least in the near future.

2. Among existing pro
essors it has a relatively easy to learn instru
tion

set. There are no spe
ial purpose register, no register windows, or

other rather spe
ialized features. You
an easily learn all important

instru
tions within a few minutes and you
an read MIPS assembler

programs immeadiately if you have been exposed to similiar ma
hine

languages before. This pro
essor is also used in many embedded

systems and portable
omputers today, whi
h proves that it has a

realisti
, real world design.

3. We will also see later that it is not suÆ
ient to analyse a program

written in high level,
ompiled language if you are interested what

e�e
ts small
hanges in your algorithm imply. One good example are

1.6. CONCLUSION 15

qui
ksort:

1 la $7,a

lw $2,sp

li $3,1000

li $5,1

move $13,$7

la $4,s

$L23:

A sll $6,$3,2

addu $6,$7,$6

sll $10,$5,2

lw $14,0($6)

addu $10,$7,$10

addiu $8,$5,-1

j $L3

move $9,$3

$L4:

B+A+C

0

-2 addiu $10,$10,4

move $8,$6

$L3:

C

0

lw $11,0($10)

slt $12,$11,$14

bne $12,$0,$L4

addiu $6,$8,1

B+A addiu $12,$9,-1

sll $12,$12,2

addu $12,$7,$12

$L5:

C

00

lw $24,0($12)

addiu $9,$9,-1

slt $15,$14,$24

bne $15,$0,$L5

addiu $12,$12,-4

B+A sll $15,$9,2

addu $15,$7,$15

slt $12,$6,$9

sw $24,0($10)

bne $12,$0,$L4

sw $11,0($15)

A sll $14,$6,2

addu $14,$13,$14

lw $9,0($14)

sll $12,$3,2

sw $9,0($15)

addu $12,$13,$12

lw $24,0($12)

subu $10,$3,$6

subu $9,$6,$5

slt $15,$10,$9

sw $24,0($14)

bne $15,$0,$L6

sw $11,0($12)

A

00

+I

00

slt $9,$9,4

bnel $9,$0,$L7

S

00

slt $10,$10,4

addiu $9,$2,1

sll $10,$2,2

sll $9,$9,2

addu $10,$4,$10

addiu $6,$6,1

addu $9,$4,$9

sw $6,0($10)

addiu $2,$2,2

sw $3,0($9)

j $L23

move $3,$8

$L7:

A

00

+I

00

-S

00

beq $10,$0,$L23

addiu $5,$6,1

j $L25

$L6:

A+1-S

00

slt $10,$10,4

A

0

+I

0

bnel $10,$0,$L10

S

0

slt $9,$9,4

addiu $9,$2,1

sll $10,$2,2

sll $9,$9,2

addu $10,$4,$10

addu $9,$4,$9

sw $5,0($10)

addiu $2,$2,2

sw $8,0($9)

j $L23

addiu $5,$6,1

$L10:

A

0

+I

0

-S

0

beq $9,$0,$L23

move $3,$8

$L25:

�

S

0

+

�

S

00

+1 beq $2,$0,$L26

addiu $3,$2,-1

�

S

0

+

�

S

00

addiu $2,$2,-2

sll $3,$3,2

sll $5,$2,2

addu $3,$4,$3

addu $5,$4,$5

lw $3,0($3)

j $L23

lw $5,0($5)

$L26:

1 li $9,1073676288

sw $0,sp

ori $9,$9,0xffff

la $4,a+4

li $2,2

la $7,a

li $8,1001

$L16:

N-1 lw $5,4($4)

lw $3,0($4)

slt $3,$5,$3

beql $3,$0,$L28

D addiu $2,$2,1

addu $3,$2,$9

sll $3,$3,2

addu $3,$7,$3

move $6,$2

$L15:

E lw $10,-4($3)

lw $11,0($3)

slt $10,$5,$10

sw $11,4($3)

addiu $6,$6,-1

bne $10,$0,$L15

addiu $3,$3,-4

D sll $6,$6,2

addu $6,$7,$6

sw $5,0($6)

addiu $2,$2,1

$L28:

N-1 bne $2,$8,$L16

addiu $4,$4,4

1 j $31

Figure 1.3: Assembler listing of our C-program translated into MIPS ma-

hine
ode. On the left of ea
h basi
 blo
k you �nd the expe
ted number

of exe
utions expressed by the variables introdu
ed in this
hapter.

16 CHAPTER 1. ANALYSIS OF QUICKSORT

sentinel elements whose usage
an improve the performan
e of your

program, but
an also slow it down|it really depends on the details.

It you look at an assembler program you
an estimate mu
h better

how long ea
h instru
tion takes than in a high level programming

language. For the older, not as sophisti
ated pro
essors as today's,

you
ould lookup in the hardware manual how many
y
les ea
h in-

stru
tion takes. Today this is be
oming harder and harder be
ause

the exe
ution time depends on so many additional fa
tors. There are,

for example, one or more
a
hes that speed up the exe
ution of a read

instru
tion from memory tremendously if its data value
an be found

in the
a
he. To analyze the
a
he behavior is not easy (although

you
an good data from simulations). The deep pipelining of instru
-

tions, bran
h predi
tion strategies, spe
ulative
omputing, and super

s
alarity are further examples of moderns features that make the ex-

a
t estimate of the duration of a spe
i�
 ma
hing instru
tion very

hard. Nevertheless, the rule of thumb that one ma
hine instru
tion

of a RISC pro
essor takes one
y
le is still very good|that was af-

ter all one of the original design goal when RISC ar
hite
tures were

introdu
ed.

Appendix B
ontains a short des
ription of most MIPS instru
tions. You

an easily �nd more detailed
harts online.

On the other hand, most of the time we do not want to analyze an algorithm

in su
h detail. In the rare
ases that we do need su
h a pre
ise analysis,

usually the additional tedious work of looking at every ma
hine instru
tion

by itself takes a long time, but is still almost negle
table relative to the

work that the mathemati
al analysis requires. After all, without a very

pre
ise mathemati
al analysis,
ounting instru
tions makes no sense.

Very often we do not have an implementation of an algorithm, nor do we

need one for a
ruder analysis. In the
ase of Qui
ksort and other sorting

algorithm you will see very often only the analysis of one variable: The

number of
omparisons. Even this single number gives us a lot of insight.

If, for example, a
omparison is very expensive, then C is the dominating

fa
tor in the overall running time and we do not need the other variables.

In our
ase|sorting numbers|this assumption does not hold.

1.6. CONCLUSION 17

If we
ount the number of exe
utions of every single instru
tion in Fig-

ure 1.3 and add them together, we get the total expe
ted number of exe-

uted ma
hine instru
tion as a fun
tion of N and M:

I = 37A+ 11B+ 5C+ C

0

+ 8D+ 7E+ 15S+ 2S

00

+ 7N+ 14+ 2I

0

The
ontribution of every variable to the running time is a
onstant number

of ma
hine instru
tions. That is not surprising sin
e the program length

itself is �xed and every instru
tion belongs to one (or sometimes more)

of the variables. Ea
h variable is a fun
tion of N. Only B and C grow

superlinear, so only they
ontribute to the asymptoti
 running time and

will dominate the other terms for large N. In pra
ti
e, however, we
annot

be
on
erned by only big N's. With our very pre
ise analysis we
an

estimate the running time very pre
isely for every N.

There is also a se
ond reason why purely asymptoti
 analysis are dangerous|

we usually do not
learly know what for big N exa
tly means. It is the

essen
e of asymptoti
 analyses that this question has to remain unanswered.

Let us turn our attention to M. This is a parameter of the algorithm

and we
an
hoose M in su
h a way that the running time be
omes as

small as possible. It is
lear that the optimal
hoi
e of M also depends

on N, but we expe
t that this dependen
e will be noti
able only for very

small N. If, however, N is very small, then Qui
ksort is not the right

hoi
e as a sorting algorithm and you should
hoose, e.g., insertion sort

instead. Figure ?? shows the dependen
e of the running time of Qui
ksort

for N = 100 in dependen
e of M. You
an see that the primitive
hoi
e of

M = 1 is not good at all.

Exer
ises

1.1 Prove that the number of exe
utions of blo
k r = j -1 is exa
tly A

0

-S

0

-

�

S

0

.

1.2 The relationship S

0

+ S

00

=

�

S

0

+

�

S

00

annot be found by using
ow relations.

Nevertheless it is a sound and useful equation that helps redu
ing the number of

independent variables. Prove that this equation indeed holds.

Hint: Consider the depth of the sta
k.

1.3 Complete the C-program from Figure 1.1 by adding ma
ros push , pop, and

sta
k is empty . The �rst two ma
ros are suppossed to push two integers onto or

pop them from a sta
k, while the third one should test whether the sta
k is empty

18 CHAPTER 1. ANALYSIS OF QUICKSORT

(and return 0 i� it is non-empty). Then add a main routine that
alls qui
ksort

on inputs that
onsist of the numbers 1; : : : ;N randomly permuted.

Introdu
e a new variable in the program that
ounts the number of partitioning

phases. Choose a suitable value for M and establish by experiments the approxi-

mate value of A for di�erent values of N.

1.4 Let S

N

, N � 1 be a solution to the re
urren
e relation S

N

=

P

N

k=1

S

k

=k. All

solutions form a subve
tor spa
e of R

N

, the spa
e of real sequen
es. What is the

dimension of this subve
tor spa
e and how does a general solution look like?

1.5 Find a
losed solution for

P

N

k=M+2

k(k-2)-(k-1)(k-3)

k(k+1)

by using maxima (or a

similar system) and by doing the summation by hand.

1.6 Analyse the remaining variable S

N

. First �nd an intuitive des
ription behind

S

N

. Then
onstru
t a re
urren
e relation for S

N

and solve it.

1.7 We have seen that I

0

+ I

00

= 1 and that I

0

; I

00

2 f0; 1g. We do not have to

analyze their behavior in greater detail be
ause the number of ma
hine instru
tion

that belong to I

0

and I

00

is the same, so only their sum matters. If we use a highly

optimizing
ompiler, however, it is possible that there is one ma
hine instru
tion

more in the I

00

-bran
h than in the I

0

-bran
h. If we strive for ludi
rous pre
ision

in our analyses we
annot ignore this single instru
tion.

So please analyze the expe
ted value of I

0

. What do think it will be? Did you

guess
orre
tly?

1.8 Howmany ma
hine instru
tions are exe
uted on average in Figure mips-qui
k1

if the program is used to sort N pairwise distin
t keys in random order?

1.9 The assembler listing in Figure 1.3
ontains a bran
h instru
tion in the basi

blo
k starting at label $L3. The purpose of this exer
ise is to analyze the penalties

for wrong bran
h predi
tions on this instru
tion.

A
ommonly used bran
h predi
tion strategy is the following: The pro
essor has

two states for bran
h instru
tions, whi
h we
all YES and NO. In the state YES,

the pro
essor predi
ts that the bran
h is taken and in the state NO that it is not

taken. The state is
hanged when two predi
tion in a row are wrong.

Analyze how often the bran
h predi
tion is
orre
t. Assume that the initial state

is YES. Do you expe
t that the predi
tion is good or bad for this instru
tion?

Do a similar analysis for the instru
tion bne $12,$0,$L4 in the blo
k after la-

bel $L5.

1.10 Extend the C-program for Qui
ksort with instru
tion that
ount A, B, C,

D, E, and S.

Run this program on
e for every Permutation of the numbers 1; : : : ; 10 and �nd

out what A

10

; : : : ; S

10

are. Use M = 3.

Compare the
ounted results with the predi
tions of our formul�.

1.11 Write a C-program for Mergesort and analyse in the same depth as we did

for Qui
ksort.

1.6. CONCLUSION 19

1.12 Consider the following algorithm to �nd a maximal key in an array
on-

taining natural numbers. We assume all numbers are pairwise distin
t and every

permutation o

urs with uniform probability.

int maxElem(int a [℄; int N) f

int i ;max = -1;

for(i = 0; i < N ; i++)

if(a [i ℄ > max)

max = a [i ℄;

return max ;

g

How often are the instru
tions a [i ℄ > max and max = a [i ℄ exe
uted on average?

1.13 The next program is presented in x86 assembler language: Again the array

ds [0℄. . . ds[2 � N - 2℄
ontains N pairwise distin
e natural numbers. Ea
h per-

mutation o

urs with the same probability. How often is ea
h instru
tion of this

program exe
uted on average?

maxElem: mov ax, 0xFFFF A ax -1;

xor dx, dx A dx 0;

next:
mp dx, N B i < N ?

jae done B jump if above or equal (i � N)

mov bx, ds:[2*dx℄ C bx a[dx℄

mp bx, max C bx > max ?

jna skip C jump if not above (bx � N)

mov ax, bx D ax bx

skip: add dx, 0x0002 E ax ax+ 1;

jmp next E jump

done: push ax F push the maximum on the sta
k

1.14 Student party! DJ O*D*D is present and brought with him in�nitely many

songs in the three genres Ro
k, Gabba, and Blues. Tonight he will play n songs,

so there are theoreti
ally 3

n

di�erent
ombinations of genres possible. He has,

howver, to obey some strange rules:

1. After a ro
k song, he
annot play Gabba be
ause readjusting the equalizer

takes too mu
h time.

2. You
annot play two Gabba songs in sequen
e be
ause it
auses visitors to

die of a

elerated stupi�
ation.

3. If he plays a Blues song, he has to sti
k to Blues for the remaining time

be
ause everybody is feeling blue.

Set up a re
urren
e for the number of genre
ombination and solve it.

20 CHAPTER 1. ANALYSIS OF QUICKSORT

1.15 We have an array a of lengthN. It
ontainsN numbers drawn independently

and uniformly at random from f1; : : : ;Ng. How often is ea
h instru
tion of the

following program exe
uted on average?

ount = 0;

i = 1;

while(i � N)

if(a [i ℄%2 == 1)

ount++;

i++;

return
ount ;

1.16 Let w 2 fa; bg

n

a word that has been
hosen uniformly at random. How

often is the body of thewhile-loop exe
uted on average in the following algorithm?

The fun
tion is palindrome tests whether a word in a palindrome, i.e., the same

when read ba
kwards.

i = 2;

while(i � n)

if(is palindrome(w [1℄; :::;w [i ℄))

return true ;

i++;

return false ;

1.17 Two natural numbers m 6= n are friendly, if the sum of all proper divisors

of m is n|and vi
e versa. A son and his father wrote these two programs that

ompute friendly numbers. What are the running times of both programs?

Son

#in
lude hiostreami

int e [150000℄;

int e
hteil(int a) f

int n = 0;

for(int i = 1; i + i � a ; i++)

if(a%i == 0) n += i ;

e [a ℄ = n ;

return n ;

g

main() f

for(int i = 0; i < 150000; i++) f

int a = e
hteil(i);

if(a � i)
ontinue;

if(e [a ℄ == i) std ::
out << i

<< } } << e
hteil(i) << }n n};

g

g

Father

#in
lude hstdio:hi

#de�ne N 1000000

int teilersumme [N ℄;

int main() f

int i ;

for(i = 1; i < N ; i++) f

int p = i ;

while(p < N) f

teilersumme [p℄ += i ;

p += i ;

g

g

for(i = 1; i < N ; i++) f

int a = teilersumme [i ℄ - i ;

if(a < i && i == teilersumme [a ℄ - a)

printf (}%d %dn n}; a ; i);

g

return 0;

g

Chapter 2

The Kir
hho� laws

When we analysed qui
ksort, we learned several methods who to redu
e

the numbers of variables that have to be analysed. A general te
hnique

to do so, whi
h we will develop formally now, uses Kir
hho�'s laws from

Ele
tri
al Engineering. We begin by looking at a dire
ted graph whose

notes are the instru
tions of our program.

There is an edge between two nodes if and only if the se
ond instru
tion

follows dire
tly behind the �rst one. In the
ase of a bran
h instru
tion

more than one edge will emerge from a note. It is also possible that there

is more than one edge that leads into a note be
ause this note
ould be the

goal of several bran
h instru
tions.

We also assume that there is a spe
ial note whi
h we will
all START and

another one whi
h is denoted by STOP. The program
ow starts at the

START note and ends at the STOP note. Let us assume, the graph has

exa
tly n notes in
luding START and STOP and m edges. We denote the

edges by e

i

by i = 1; : : : ;m.

For symmetry reasons we add another edge
alled e

0

that goes from STOP

to START. With E

i

we denote the number of times that e

i

is used in a

program run. We set E

0

= 1 as if the program will return to its start after

terminating. All together we have m di�erent variables E

i

. It will turn out

that there are not all independent of ea
h other but are subje
t to several

equations. These equations are derived from Kir
hho�'s law:

Theorem 1. (Kir
hho�'s Law)

Let I be the set of all i for whi
h the edge e

i

ends in some node X and let

21

22 CHAPTER 2. THE KIRCHHOFF LAWS

START

STOP

A

B

C D

E

e

1

e

2

e

3

e

4

e

5

e

6

e

7

e

8

e

9

e

0

START

STOP

A

B

C D

E

e

1

e

2

e

3

e

4

e

5

e

6

e

7

e

8

e

9

e

0

Figure 2.1: Example of a
ow diagram with and without a spanning tree.

O be the set of all i for whi
h e

i

emerges from X. Then the sums

X

i2I

E

i

=

X

i2O

E

i

are identi
al and the
orresponding number expresses how often the stru
-

tion X is exe
uted all together.

In the following we will develop a method whi
h lets us
hoose a subset of

the set of independent variables E

i

su
h that we
an derive the value of all

other variables from them.

The �rst step is to
hoose a spanning tree for the undire
ted graph. In

this step we ignore that edges are dire
ted. Figure ??
ontains a simple

example and a spanning tree depi
ted by drawing its edges thi
ker. The

spanning tree
onsists of the edges e

1

, e

2

, e

3

, e

4

, e

5

, and e

7

.

If we add any other edge to this spanning tree, then we get a unique
y
le.

We denote these
y
les as fundamental
y
les. In our example the edges

e

0

, e

6

, and e

8

reate su
h fundamental
y
les. We provide ea
h edge of a

fundamental
y
le with a label: \+", if the dire
tion of this edge is the

same as the dire
tion of the unique edge in the
y
le whi
h does not belong

to the spanning tree. Otherwise, we use the label \-".

23

In our example we have the following fundamental
y
les:

C

0

= e

0

+ e

1

+ e

2

+ e

3

+ e

5

+ e

7

C

6

= e

6

- e

5

- e

3

+ e

4

C

8

= e

8

+ e

3

+ e

5

C

9

= e

9

+ e

2

+ e

3

An interesting fa
t whi
h is what makes this de�nition interesting for the

analysis of algorithm, is that every fundamental
y
le delivers a solution

of Kir
hho�'s laws: We set all E

i

= 0 for whi
h e

i

is not part of the

fundamental
y
le. If on the other hand e

i

belongs to the fundamental

y
le, then we set E

i

= 1 or E

i

= -1, a

ording to the label of e

i

in the

fundamental
y
le.

In our example the four
orresponding solutions look as follows:

1. E

0

= 1, E

1

= 1, E

2

= 1, E

3

= 1, E

4

= 0, E

5

= 1, E

6

= 0, E

7

= 1, E

8

= 0,

E

9

= 0

2. E

0

= 0, E

1

= 0, E

2

= 0, E

3

= -1, E

4

= 1, E

5

= -1, E

6

= 1, E

7

= 0,

E

8

= 0, E

9

= 0

3. E

0

= 0, E

1

= 0, E

2

= 0, E

3

= 1, E

4

= 0, E

5

= 1, E

6

= 0, E

7

= 0, E

8

= 1,

E

9

= 0

4. E

0

= 0, E

1

= 0, E

2

= 1, E

3

= 1, E

4

= 0, E

5

= 0, E

6

= 0, E

7

= 0, E

8

= 0,

E

9

= 1

So far we have four di�erent solutions. The underlying equations are linear.

Therefore, linear
ombinations of their solutions are again solutions. Using

ve
tor notation we
an write the linear
ombinations of our four solutions

as follows:

24 CHAPTER 2. THE KIRCHHOFF LAWS

~

E =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

E

0

E

1

E

2

E

3

E

4

E

5

E

6

E

7

E

8

E

9

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= �

1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1

1

1

1

0

1

0

1

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

+ �

2

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0

0

0

-1

1

-1

1

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

+ �

3

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0

0

0

1

0

1

0

0

1

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

+ �

4

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0

0

1

1

0

0

0

0

0

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 0 0 0

1 0 0 0

1 0 0 1

1 -1 1 1

0 1 0 0

1 -1 1 0

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

�

�

1

�

2

�

3

�

4

1

C

C

C

A

(2.1)

For every
ombination of �

1

; �

2

; �

3

; �

4

2 R we get one solution of Kir
hho�'s

laws and every solution
an be derived in this way.

At this point we
an also noti
e that E

0

= E

1

= E

7

and E

4

= E

6

, be
ause

the rows of the matrix are identi
al for them.

At this point it is easy to
hoose three linearly independent E

i

and analyse

only them. Then all other E

i

an be expressed by them. In our example

we
hoose E

0

be
ause we already know that E

0

= 1. We have to
hoose

three more. Let us assume, we
hoose A = E

2

, C = E

3

and D = E

4

. For

this
hoi
e we get the following equation:

0

B

B

B

�

1

A

C

D

1

C

C

C

A

=

0

B

B

B

�

1 0 0 0

1 0 0 1

1 -1 1 1

0 1 0 0

1

C

C

C

A

0

B

B

B

�

�

1

�

2

�

3

�

4

1

C

C

C

A

25

This is a linear system of equations that
an be solved with the usual

methods. Here we get the result �

1

= 1, �

2

= D, �

3

= -A + C + D, and

�

4

= A- 1. If we insert these in (2.1) then we get the solution of all other

E

i

:

~

E =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

E

0

E

1

E

2

E

3

E

4

E

5

E

6

E

7

E

8

E

9

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 0 0 0

1 0 0 0

1 0 0 1

1 -1 1 1

0 1 0 0

1 -1 1 0

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

�

1

D

C+D-A

A- 1

1

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1

1

A

C

D

1+ C-A

D

1

C+D-A

A- 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

All these
omputations
an be done by
omputer algebra systems like Math-

emati
a, Maple or Ma
syma. In general the matrizes
an be
ome quite big.

We
hose A, C, and D as the variables that we wanted to analyse. Whi
h of

the variables are
hosen for this purpose depends on the
on
rete problem.

It remains to get C and E: In this
ase we
an express them as B = E

3

+E

4

=

C+D and E = E

5

+ E

6

= 1+ C+D-A.

You
an �nd a deeper exposition to this te
hnique Knuth [3, Se
tion

2.3.4.1℄.

Exer
ises

2.1 If a
ow diagram
onsists of n nodes and m edges, how many fundamental

y
les do we get?

2.2 Prove or disprove: In every
ow diagram you
an �nd a spanning tree su
h

that all fundamental
y
les
ontain only edges that are labeled with plus.

2.3 In dieser Aufgabe betra
hten wir den Algorithmus von Prim, mit dessen

Let us look at the algorithms of Prim that is used to
ompute minimal span-

ning trees in a
onne
ted weighted Graph.The input
onsists of an undire
ted

graph G = (V; E), and a weight fun
tion w : E ! R, and a starting node r.

26 CHAPTER 2. THE KIRCHHOFF LAWS

1 for ea
h u 2 V do

2 key[u℄ 1

3 �[u℄ NIL

4 key[r℄ 0

5 M V

6 while (M 6= ;) do

7 u min-from(M)

8 for ea
h v 2 neighbors(u) do

9 if (v 2M) ^ (w(u; v) < key[v℄) then

10 �[v℄ u

11 key[v℄ w(u; v)

Draw a
ow diagram for this algorithms that
ontains all blo
ks. Constru
t a

spanning tree and a
orresponding fundamental
y
les. Choose a minimal set of

blogs whose running time
an be analysed, and explain how you
an derive all

other variables from them.

Chapter 3

Re
urren
e relations

If you analyse the running time or some other parameter of an algorithm,

you want to �nd a
losed mathemati
al formula that des
ribes the param-

eter you are analysing. More often than not you will not be able to �nd

su
h a formula right away, but only some related formula that des
ribes

the parameter you are insterested in in an indire
t way. When we analysed

qui
ksort as an example we
ould des
ribe an interesting parameter X

N

by

formulas that looked like

X

N

=

2

N

N-1

X

k=0

X

k

+ f

N

:

An equation that
ontains not only the variables X

N

but also variables X

k

with k < N are
alled re
urren
es.

To solve a re
urren
e relation means to �nd a
losed formula for X

N

.

In general no
losed formula for the solution of a re
urren
e relation needs

to exist|in pra
ti
e, on the other hand, the analysis of algorithms very

often leads to re
urren
e relations that indeed have a
losed solution, or,

whose solution
an be at least very well approximated by some ni
e
losed

formula. There are also some
lasses of re
urren
e relations that
an be

solved by some easy �xed algorithm. Mu
h of the material in this
hapter

an be found in three books [1, 2, 3℄, in parti
ular in the se
ond one by

Greene and Knuth.

27

28 CHAPTER 3. RECURRENCE RELATIONS

3.1 Classi�
ation of re
urren
e relations

The most general re
urren
e relation, whi
h we
onsider, has the general

form

a

n

= f(a

n-1

; a

n-2

; : : : ; a

0

) for n � t: (3.1)

We
onsider a

n

only for n � 0 and de�ne a

-1

= a

-2

= a

-3

= � � � = 0.

Be
ause (3.1) holds only for n � t, we
an
ompute any a

n

if a

0

; a

1

; : : : ; a

t-1

are already known. In general the solution of the re
urren
e relations will

depend on these starting values. If the re
urren
e relation originates from

the analysis of an algorithm, then the starting values a

0

; a

1

; : : : ; a

t-1

are

usually �xed by the algorithm.

The re
urren
e relation for the number of
omparisons during partitioning

for the Qui
ksort algorithm was

C

N

= N+ 1+

2

N

N-1

X

k=0

C

k

for N > M

with the starting
onditions C

0

= C

1

= C

2

= : : : = C

M

= 0.

We
an derive these starting
onditions easily from the algorithm: IfN �M

then no partitioning takes pla
e.

In general we
lassify re
urren
e relations as follows:

a

n

= f(a

n-1

; a

n-2

; : : : ; a

n-t

) Re
urren
e relation of t-th order

a

n

=

n-1

X

k=0

x(k; n)a

k

homogeneous, linear re
urren
e relation

a

n

=

n-1

X

k=0

x(k; n)a

k

+ f(n) linear re
urren
e relation

a

n

= x

1

a

n-1

+ x

2

a

n-2

+ � � �+ x

t

a

n-t

linear with
onstant
oeÆ
ients

In this
hapter we will look at various methods to solve typi
al re
urren
e

relations that originate from the analysis of algorithms.

3.2. CREATING A TABLE 29

3.2 Creating a table

Usually a �rst step that we should always take is to
ompute some values

of the solution of the re
urren
e relation and put them into a small table.

Let us look for example at the re
urren
e relation

a

n

= a

n-1

+ 2a

n-2

for n > 1 and a

0

= a

1

= 1:

We
an
ompute a

2

= a

1

+ 2a

0

= 3, a

3

= a

2

+ 2a

1

= 5, a

4

= a

3

+ 2a

2

= 11,

a

5

= 21, a

6

= 43. and get the following table:

n 0 1 2 3 4 5 6

a

n

1 1 3 5 11 21 43

By looking at the table we get a �rst impression how the solution looks

like and we
an reuse the table later to see whether our
losed formula is

orre
t. If the �rst values of the table
oin
ide with the values predi
ted

from our solution we
an be reassured that we have not made any mistakes

when �nding the
losed formula.

3.3 Guessing a solution and

proving it by indu
tion

With the help of some solutions from our short table we
an try to guess

a
losed formula. Let us look for example at the table above for a

n

. If we

look at it it seems that the sequen
e
onsists of numbers that almost double

in ea
h step. It seems that there are not exa
tly doubling, but sometimes

they are twi
e the prede
essor plus one and sometimes minus one. If this

is true, a good idea might be to look at the sum of two
onsequent values

of a

n

. We get 2, 4, 8, 16, 32, 64.

This suggests that the solution should be approximately 2

n+1

=3. So let us

look at a table of 2

n+1

=3:

n 0 1 2 3 4 5 6

1

3

2

n+1

2

3

1

1

3

2

2

3

5

1

3

10

2

3

21

1

3

42

2

3

30 CHAPTER 3. RECURRENCE RELATIONS

Indeed it seems that the values in this table are almost the solution but

they are alternatingly

1

3

too small or too big. This suggest a
losed formula

as follows:

a

n

=

1

3

2

n+1

+

1

3

(-1)

n

Let us verify this formula on some values. If n = 0 we get

1

3

2+

1

3

(-1)

0

= 1,

for n = 1 we get

1

3

4+

1

3

(-1)

1

= 1, and �nally for n = 5 we get

1

3

64+

1

3

(-1)

5

=

63

3

= 21.

It seems that our guess was
orre
t but we still have to prove its
orre
tness.

Usually indu
tion is the best method to prove su
h a
laim. We already

showed that the
losed formula is
orre
t for n = 0 and n = 1. So let us

assume now that n > 1.

From the indu
tion hypothesis we get

a

n

= a

n-1

+ 2a

n-2

=

1

3

2

n

+

1

3

(-1)

n-1

+

2

3

2

n-1

+

2

3

(-1)

n-2

=

1

3

2

n+1

+

1

3

(-1)

n-2

and this
oin
ides with our
losed formula for a

n

be
ause (-1)

n-2

= (-1)

n

.

This proves without doubt that indeed a

n

=

1

3

2

n+1

+

1

3

(-1)

n

.

3.4 Looking up the solution

There is a very interesting book that
ontains most known integer sequen
es

in lexi
ographi
al order. Of
ourse, only the beginning of ea
h sequen
e is

listed together with a short des
ription and pointers to pla
es this series

was used. You
an �nd our series 1; 1; 3; 5; 11; 21; 43; : : : in this book. There

it has the name \A(N) = A(N - 1) + A(N - 2)" and there are pointers

to two papers in the journal Eureka, the Journal of the Ar
himedeans

(Cambridge University Mathemati
al So
iety) and Nouvelles Correspon-

dan
e Math�ematique. You
an �nd more about this series in those two

publi
ations.

Meanwhile in the mordern world of the WWW there is an alternative that

you
an �nd under the URL

https://oeis.org

3.5. MATHEMATICA, MAPLE, MAXIMA, ETC. 31

At this webpage you
an enter the beginning of your series and the answer

to the input 1; 1; 3; 5; 11; 21; 43 is depi
ted in Figure 3.1. The web page also

reveals a name of our series: Ja
obstahl sequen
e. Moreover you �nd more

pointers to literature and also a
losed formula for the term a

n

.

3.5 Mathemati
a, Maple, Maxima, et
.

There are some
omputer algebra systems that are able to solve simple re-

urren
e relations dire
tly. For the system Mathemati
a the
orresponding

fun
tion is named RSolve. We
an use Mathemati
a to solve our example

problem:

Mathemati
a �nds the same solution as we did. The other well-known

algebra system Maple
an solve the re
urren
e, too:

> rsolve(fa(n) = a(n-1)+2*a(n-2), a(0..1)=1g, a(n));

n n

1/3 (-1) + 2/3 2

>

The free
omputer algebra system maxima is also able to solve su
h a

simple re
urren
e:

Maxima 5.23.2 http://maxima.sour
eforge.net

using Lisp SBCL 1.0.38-3.el6

Distributed under the GNU Publi
 Li
ense. See the file COPYING.

Dedi
ated to the memory of William S
helter.

The fun
tion bug_report() provides bug reporting information.

32 CHAPTER 3. RECURRENCE RELATIONS

login

This site is supported by donations to The OEIS Foundation.

Annual appeal: Please make
a donation to keep the OEIS
running! Over 6000 articles
have referenced us, often
saying "we discovered this
result with the help of the

OEIS".

Other
ways

to
donate

Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A001045 Jacobsthal sequence (or Jacobsthal numbers): a(n) = a(n-1) + 2*a(n-2), with
a(0) = 0, a(1) = 1.
(Formerly M2482 N0983)

575

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381,
174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485,

178956971, 357913941, 715827883, 1431655765, 2863311531, 5726623061 (list; table; graph; refs; listen;

history; text; internal format)

OFFSET 0,4

COMMENTS Number of ways to tile a 3 X (n-1) rectangle with 1 X 1 and 2 X 2 square tiles.
Also, number of ways to tile a 2 X (n-1) rectangle with 1 X 2 dominoes and 2 X 2

squares. - Toby Gottfried, Nov 02 2008
Also a(n) counts each of the following four things: n-ary quasigroups of order 3

with automorphism group of order 3, n-ary quasigroups of order 3 with
automorphism group of order 6, (n-1)-ary quasigroups of order 3 with
automorphism group of order 2 and (n-2)-ary quasigroups of order 3. See the
McKay-Wanless (2008) paper. - Ian Wanless, Apr 28 2008

Also the number of ways to tie a necktie using n + 2 turns. So three turns make an
"oriental", four make a "four in hand" and for 5 turns there are 3 methods:
"Kelvin", "Nicky" and "Pratt". The formula also arises from a special random
walk on a triangular grid with side conditions (see Fink and Mao, 1999). -
arne.ring(AT)epost.de, Mar 18 2001

Also the number of compositions of n + 1 ending with an odd part (a(2) = 3 because
3, 21, 111 are the only compositions of 3 ending with an odd part). Also the
number of compositions of n + 2 ending with an even part (a(2) = 3 because 4,
22, 112 are the only compositions of 4 ending with an even part). - Emeric
Deutsch, May 08 2001

Arises in study of sorting by merge insertions and in analysis of a method for
computing GCDs - see Knuth reference.

Number of perfect matchings of a 2 X n grid upon replacing unit squares with
tetrahedra (C_4 to K_4):

o----o----o----o...
| \/ | \/ | \/ |
| /\ | /\ | /\ |
o----o----o----o... - Roberto E. Martinez II, Jan 07 2002
Also the numerators of the reduced fractions in the alternating sum 1/2 - 1/4 + 1/8

- 1/16 + 1/32 - 1/64 + ... - Joshua Zucker, Feb 07 2002
Also, if A(n), B(n), C(n) are the angles of the n-orthic triangle of ABC then A(1)

= Pi - 2A, A(n) = s(n)*Pi + (-2)^n*A where s(n) = (-1)^(n-1) * a(n) [1-orthic
triangle = the orthic triangle of ABC, n-orthic triangle = the orthic triangle
of the (n-1)-orthic triangle]. - Antreas P. Hatzipolakis
(xpolakis(AT)otenet.gr), Jun 05 2002

Also the number of words of length n+1 in the two letters s and t that reduce to
the identity 1 by using the relations sss = 1, tt = 1 and stst = 1. The
generators s and t and the three stated relations generate the group S3. - John

A001045 - OEIS https://oeis.org/A001045

1 of 10 11/20/2017 10:15 AM

Figure 3.1: Erste Seite der Antwort der On-Line En
y
lopedia of Integer

Sequen
es auf die Eingabe 1,1,3,5,11,21,43.

3.6. HIDDEN PRODUCTS AND SUMS 33

(%i1) load("solve_re
");

(%o1) /usr/share/maxima/5.23.2/share/
ontrib/solve_re
/solve_re
.ma

(%i2) solve_re
(a[n℄-a[n-1℄-2*a[n-2℄, a[n℄, a[0℄=1, a[1℄=1);

n + 1 n

2 (- 1)

(%o2) a = ------ + ------

n 3 3

3.6 Hidden produ
ts and sums

The most simple re
urren
e relations are of the form

a

n

= x

n

a

n-1

and b

n

= b

n-1

+ y

n

:

Both forms are related to ea
h other. If you substitute �a

n

= log(a

n

) then

the left re
urren
e relation turns into a re
urren
e relation of the right hand

type. We will
all these two types of re
urren
e relations hidden produ
ts

and hidden sums.

The re
urren
e relation on the left hand side
an be solved by repeatedly

inserting the right hand side. The pro
edure leads to a produ
t:

a

n

= x

n

a

n-1

= x

n

x

n-1

a

n-2

= � � � = x

n

x

n-1

x

n-2

x

n-3

� � � x

2

x

1

a

0

= a

0

n

Y

k=1

x

n

:

In the same way iteratively inserting leads to a sum for the re
urren
e

relation on the right hand side.

Theorem 2. The solutions of the re
urren
e relations

a

n

= x

n

a

n-1

and b

n

= b

n-1

+ y

n

are

a

n

= a

0

n

Y

k=1

x

n

and b

n

= b

0

+

n

X

k=1

y

n

:

34 CHAPTER 3. RECURRENCE RELATIONS

3.7 Linear re
urren
e relations with
onstant

oeÆ
ients

A very simple re
urren
e form are homogeneous linear re
urren
e relations

with
onstant
oeÆ
ients. In the most general form they look like

a

n

=

1

a

n-1

+

2

a

n-2

+ � � � +

t

a

n-t

for n � t (3.2)

Here we have a re
urren
e relation of t-th order. The
oeÆ
ients

i

2 R

are the
oeÆ
ients of the re
urren
e relations and do not depend on n

(therefore
onstant
oeÆ
ients.)

Linear re
urren
e relations with
onstant
oeÆ
ients
an always be solved

and additionally they
an be solved with a �xed algorithm. In the fol-

lowing we will develop su
h a general algorithm that solves these kind of

re
urren
es.

Let us �rst assume that there exists a solution of the form a

n

= �

n

where

� 2 C. If we insert this solution into the re
urren
e and set n = t then we

get

�

t

=

1

�

t-1

+

2

�

t-2

+ � � � +

t-1

�+

t

:

Su
h a solution implies that � is a root
hara
teristi
 polynomial.

�(z) = z

t

-

1

z

t-1

-

2

z

t-2

- � � � -

t-1

z-

t

:

On the other hand it is also
lear that a

n

= �

n

is indeed a solution to (3.2)

if � is a root of the
hara
teristi
 polynomial.

If � happens to be a root of � with multipli
ity k then additionally a

n

=

n

j

�

n

for 0 � j < k are solutions to the re
urren
e relations. We
an
he
k

this fa
t by inserting the solution into the re
urren
e:

n

j

�

n

=

t

X

r=1

r

(n- r)

j

�

n-r

;

whi
h is equivalent to

n

j

�

t

-

t

X

r=1

r

(n- r)

j

�

t-r

= 0:

The left hand side of the above equation is a linear
ombination of �(�),

�

0

(�), �

00

(�), . . . , �

(j)

(�). The �rst k derivatives of � are 0 at � be
ause �

is a root of � with multipli
ity k.

3.8. SUMMATION FACTOR 35

Theorem 3. The homogeneous linear re
urren
e relation with
onstant

oeÆ
ients

a

n

=

1

a

n-1

+

2

a

n-2

+ � � � +

t

a

n-t

for n � t

has the solutions a

n

= n

j

�

n

for all roots � of the
hara
teristi
 polynomial

�(z) = z

t

-

1

z

t-1

-

2

z

t-2

- � � � -

t-1

z-

t

;

and for all j = 0; 1; : : : ; k- 1 where k is the multipli
ity of the root �. All

these solutions are linearly independent. They form a basis of the ve
tor

spa
e of all solutions.

Be
ause the re
urren
e relation is linear and homogeneous multitudes of

a solution and sums of solutions are again solutions of the re
urren
e. In

that way we have
onstru
ted exa
tly t linearly independent solutions and

we noted that they are a basis of the ve
tor spa
e of all solutions.

If we have t initial
onditions, for example the values of a

0

, a

1

,. . . , a

t-1

,

then we get exa
tly one solution by a linear
ombination of the solutions

in our basis. To �nd the right linear
ombination we just have to solve a

linear system of equations.

Let us look at

a

n

= a

n-1

+ 2a

n-2

f�ur n > 1 und a

0

= a

1

= 1:

The
hara
teristi
 polynomial is q(z) = z

2

- z- 2. We
an see immediately

that -1 is a root. Using polynomial division of q(z) by z + 1 we get the

result z- 2 and a se
ond root is 2. All solutions are therefore of the form

a

n

= �2

n

+ �(-1)

n

:

To establish the values of the
onstants � and � we have to use the initial

onditions. If we insert the initial
onditions into the re
urren
e relation

we get 1 = � + � and 1 = 2� - �. Solving this system of equations yields

� =

1

3

and � =

2

3

.

3.8 Summation fa
tor

We
an always
onvert a linear re
urren
e relation of �rst order into a sum.

We used this te
hnique already when solving the re
urren
e relations for

36 CHAPTER 3. RECURRENCE RELATIONS

Qui
ksort. After we turned them into a �rst order re
urren
e relation they

took the following form:

NX

N

= (N+ 1)X

N-1

+Nf

N

- (N- 1)f

N-1

; for N > M+ 1

We multiplied this equation with 1=N(N + 1) and �nally got after a sub-

stitution the very simple equation of the form

Y

N

= Y

N-1

+ g

N

:

In the following we will develop a te
hnique that allows us to do a similar

transformation with all linear re
urren
e relations of �rst order.

Theorem 4. The linear re
urren
e relation of �rst order

a

n

= x

n

a

n-1

+ y

n

for n > 0

and a

0

= 0 has the solution

a

n

= y

n

+

n-1

X

j=1

y

j

x

j+1

x

j+2

: : : x

n

:

We prove this theorem by dividing the re
urren
e relation by x

n

x

n-1

x

n-2

: : : x

1

,

whi
h gives us

a

n

x

n

x

n-1

x

n-2

: : : x

1

=

a

n-1

x

n-1

x

n-2

x

n-3

: : : x

1

+

y

n

x

n

x

n-1

x

n-2

: : : x

1

:

If we substitute b

n

= a

n

=(x

n

x

n-1

x

n-2

: : : x

1

) we get the simpler re
urren
e

relation

b

n

= b

n-1

+

y

n

x

n

x

n-1

x

n-2

: : : x

1

that we
an easily solve by a summation. In this method we
all the

produ
t 1=x

n

x

n-1

x

n-2

: : : x

1

a summation fa
tor. It gives this method its

name. Very often the summation fa
tor is quite simple be
ause a lot of

an
ellation goes on.

Let us try to apply the te
hnique of summation fa
tors on the re

uren
e

relation

a

n

= 2a

n-1

+ n for n > 0

3.9. THE REPERTOIRE METHOD 37

and a

0

= 0. In this
ase x

n

= 2 and y

n

= n. Therefore the solution is

a

n

= n+

n-1

X

j=1

j � 2

n-j

= 2

n+1

- 2- n:

Indeed Mathemati
a
an solve this re
urren
e relation, too:

In[4℄:= RSolve[fa[0℄==0, a[n℄==2a[n-1℄+ng, a[n℄, n℄

1 + n

Out[4℄= ffa[n℄ -> -2 + 2 - ngg

3.9 The Repertoire Method

We
an use the repertoire method mainly for linear re
urren
e relations.

This method shows that solving re
urren
e relations is more art than s
i-

en
e. To master the repertoire method we need a lot of intuition. When

analysing algorithms, usually we know how the solution will roughly look

like. In general when applying the repertoire method we start from a re-

urren
e relation of the form

a

n

= x

1;n

a

n-1

+ x

2;n

a

n-2

+ x

3;n

a

n-3

+ : : :+ x

t;n

a

n-t

+ f

n

:

At this point we imagine some solution of the equation and �nd out for

whi
h f

n

we get this solution. We do the same for many di�erent potential

solutions and ea
h time we get a di�erent f

n

. Be
ause linear
ombinations

of solutions are again solutions of a re
urren
e relation we
an get the

solution of the original re
urren
e relation by forming a linear
ombination

of our potential solutions su
h that the
orresponding linear
ombination

of the di�erent f

n

's yields the original f

n

of the orginial re
urren
e relation.

We demonstrate the repertoire method on Qui
ksort (with M = 0):

a

n

= f

n

+

2

n

n-1

X

k=0

a

k

We start with a potential solution a

n

= 1 and get

f

n

= a

n

-

2

n

n-1

X

k=0

a

k

= 1-

2

n

n-1

X

k=0

1 = -1:

38 CHAPTER 3. RECURRENCE RELATIONS

This means that our guessed solution a

n

= 1 is indeed
orre
t if f

n

= -1.

But the real f

n

is di�erent. We pro
eed by trying other potential solutions,

omputing the
orresponding f

n

and see what linear
ombinations of these

f

n

's we
an get.

For our Qui
ksort equation we will
hoose the following repertoire:

a

n

f

n

= a

n

-

2

n

n-1

X

k=0

a

k

a

0

1 -1 1

H

n

2-H

n

0

nH

n

1

2

(n- 1) +H

n

0

Let us assume we want to analyse the number of
omparisons. In that
ase

f

n

= n+ 1. Not suprisingly we don't have a solution for this spe
i�
 f

n

in

our repertoire. On the other hand, we
an get n+ 1 as a linear
ombation

of the three f

n

's whi
h are
ontained in our repertoire:

n+ 1 = 2

�

1

2

(n- 1) +H

n

�

+ 2 (2-H

n

) + 2 (-1)

Consequently, we
an get a solution for the re
urren
e relation with f

n

=

n+ 1 as

a

n

= 2 (nH

n

) + 2 (H

n

) + 2 (1) = 2(n+ 1)H

n

+ 2:

While we have a solution now, unfortunately, the starting
ondition a

0

= 0

is not ful�lled. Instead we get a

0

= 2. To remedy this situation we need

a bigger repertoire so that the linear
ombinations do not yield only the

orre
t f

n

but also the
orre
t starting
ondition. For this end we add

another fun
tion to our repertoire:

a

n

f

n

= a

n

-

2

n

n-1

X

k=0

a

k

a

0

1 -1 1

H

n

2-H

n

0

nH

n

1

2

(n- 1) +H

n

0

n 1 0

Now we
an express n+ 1 as a linear
ombination of 2-H

n

,

1

2

(n- 1)+H

n

and 1 and get a solution with the
orre
t starting
ondition be
ause in all

3.9. THE REPERTOIRE METHOD 39

these
ases a

0

= 0 holds:

n+ 1 = 2

�

1

2

(n- 1) +H

n

�

+ 2 (2-H

n

) - 2 (1)

and the solution is

2(nH

n

) + 2(H

n

) - 2(n) = 2nH

n

+ 2H

n

- 2n:

The general pro
edure when using the repertoire method is as follows: we

start with a re
urren
e relation of the form

a

n

=

t

X

i=1

x

i;n

a

n-t

+ f(n):

The
oeÆ
ients x

i;n

may depend on n.

Step 1: We
hoose a repertoire b

n

,

n

, d

n

,. . . of di�erent series and
ompute

for ea
h of them f

b

(n) = b

n

-

P

t

i=1

x

i;n

b

n-t

. In this way b

n

is a
losed

solution of the re
urren
e relation

b

n

=

t

X

i=1

x

i;n

b

n-1

+ f

b

(n) for n � t

Step 2: If we
an express f(n) as a linear
ombination of f

b

(n), f

(n),. . . ,

let us say as

f(n) = �f

b

(n) +
f

(n) + Æf

d

(n) + � � �

then we get

a

n

= �b

n

+

n

+ Æd

n

+ � � �

and he have a solution of the re
urren
e relation with some spe
i�
 starting

onditions.

Step 3: If we want to �nd a solution for a

n

for di�erent starting
onditions,

whi
h is usually the
ase, then we have to use a di�erent linear
ombination.

For this end the repertoire must be big enough in order to have as many

linearly independent solutions for a

n

su
h that we
an enfor
e the
orre
t

starting
onditions by some linear
ombination of the solutions.

40 CHAPTER 3. RECURRENCE RELATIONS

3.10 Order Redu
tion

Sometimes we
an redu
e a re
urren
e relation of higher order to several

re
urren
e relations of smaller order. For this end we de�ne the so-
alled

shift operator E, whi
h maps sequen
es to sequen
es. This operator is

de�ned via

Ef

n

= f

n+1

;

whi
h means that this operator shifts all elements in a sequen
e by one

position to the beginning. We
an interpret the expression Ef

n

in two

di�erent ways: If we interpret f

n

as a sequen
e, then Ef

n

= f

n+1

is simply

the shifted sequen
e. A se
ond possibility is to interpret f

n

as an operator,

too, whi
h gives us f

n

g

n

if applied to the sequen
e g

n

. Then Ef

n

= f

n+1

E.

To work with linear operators
an be
ounterintuitive in the beginning.

While the asso
iative law is still valid (for example E(f

n

g

n

) = (Ef

n

)g

n

),

whi
h means that we don't have to
are about the setting of parenthesis,

the
ommutative law
ertainly is invalid. For example En = (n + 1)E (n

is interpreted here as a series whose n's element is n). Similarly En

2

=

(n

2

- 2n+ 1)E.

It is always possible to write a linear re
urren
e relation of t's order as

follows:

p(E)a

n

= f(n);

where p is a polynomial of degree t whose
oeÆ
ients are themselves se-

quen
es be
ause

a

n

= x

1;n

a

n-1

+ x

2;n

a

n-2

+ � � � + x

t;n

a

n-t

+ f(n);

whi
h is equivalent to

(E

t

- x

1;n

E

t-1

- x

2;n

E

t-2

- x

3;n

E

t-3

- � � � - x

t;n

E

0

)a

n-t

= f(n):

While it is always possible to fa
tor polynomials whose
oeÆ
ients are

omplex numbers, for polynomials whose
oeÆ
ients are sequen
es, this

is not always the
ase. If we are lu
ky, however, we
an write p(E) =

q(E)r(E). In that way, it is sometimes possible to fa
tor a polynomial

p(E). If we indeed su

eed in fa
toring the polynomial, we still have to

solve q(E)r(E)a

n

= f(n). We start with the substitution b

n

= r(E)a

n

and

�rst solve the re
urren
e relation

q(E)b

n

= f(n);

3.10. ORDER REDUCTION 41

whi
h is a re
urren
e relation of lower order than the original one. In that

way, we
an get a
losed formular for b

n

. In the next step we solve the

re
urren
e

r(E)a

n

= b

n

;

whi
h is again a re
urren
e relation of lower order and after solving it we

get the solution for a

n

.

In general we use the following re
ipe:

First you write a linear re
urren
e relation in operator form as

p(E)a

n

= f(n)

and try to fa
tor it as p(E) = q(E)r(E). In the next step you solve

q(E)b

n

= f(n) and r(E)a

n

= b

n

:

The re
urren
e relation is in that way redu
ed to two re
urren
e relations

of smaller order.

As an example, let us again look at the re
urren
e relation

a

n+2

- (n+ 2)a

n+1

+ na

n

= n: (3.3)

In operator notation this re
urren
e relation looks as follows:

(E

2

- (n+ 2)E+ n)a

n

= n

We
an indeed fa
tor this polynomial be
ause (E- 1)(E- n) = E

2

- (n +

2)E+n. Please note that En = (n+ 1)E. The re
urren
e relation has now

the form

(E- 1)(E- n)a

n

= n

and we start by solving (E - 1)b

n

= n or, equivalently b

n+1

= b

n

+ n:

This is a hidden sum and we get the solution with the help of Theorem 2

resulting in

b

n

=

n

X

k=0

(n- 1) =

n(n- 1)

2

+ b

0

=

n(n- 1)

2

+ a

1

:

In the �nal step we have to solve (E-n)a

n

= b

n

= n(n- 1)=2+a

1

, whi
h

is a re
urren
e relation that
an also be written as

a

n+1

= na

n

+

n(n- 1)

2

+ a

1

: (3.4)

42 CHAPTER 3. RECURRENCE RELATIONS

This is a linear re
urren
e of �rst order. Solving it yields

a

n

=

(n- 1)!

2

n-1

X

k=1

k

2

- k+ 2a

1

k!

!

+ a

1

(n- 1)!: (3.5)

As usual the result is in the form of a summation. Let us take a
loser look

at the interesting part inside the big parentheses:

n-1

X

k=1

k(k- 1) + 2a

1

k!

=

n-1

X

k=2

1

(k- 2)!

+

1

X

k=1

2a

1

k!

=

n-3

X

k=0

1

k!

+ 2a

1

n-1

X

k=1

1

k!

=

n-3

X

k=0

1

k!

+ 2a

1

�

n-1

X

k=0

1

k!

- 1

�

= e-

1

X

k=n-2

1

k!

+ 2a

1

�

e-

1

X

k=n

1

k!

- 1

�

= e-O(1=(n-2)!)+2a

1

(e-O(1=n!)-1) = 2a

1

(e-1)+e+O(1=(n-2)!)

Inserting the result into (3.5) gives us an asymptoti
 estimate of a

n

:

a

n

=

(n- 1)!

2

�

2a

1

(e- 1) + e+O(1=(n- 2)!)

�

+ a

1

(n- 1)!

= (n- 1)!(a

1

e+ e=2) +O(n)

Let us
hoose a

1

as the starting
ondition. Then a

10

= 1479610 and the

estimate is 1479615:164 : : :, whi
h is about 5 too high, but still very
lose.

3.11 Extra
ting re
urren
e relations from al-

gorithms

Let us look at the following while-loop:

while i � j do

i i+ 1; j j- i

od

We
an ask the question: How often will the body of this loop be exe
uted?

Obviously, the answer to this question depends on the values the variables

i and j
ontain at the beginning. Let us
all these values i

0

, j

0

and fur-

thermore, denote by i

n

, j

n

the values of the variables i and j after the n's

iteration of the loop.

3.11. EXTRACTING RECURRENCE RELATIONS FROMALGORITHMS43

Let us start by
onstru
ting a small table for a small example. For this

purpose, let us
hoose i

0

= -3 and j

0

= 10.

n 0 1 2 3 4 5 6 7

i

n

-3 -2 -1 0 1 2 3 4

j

n

10 12 13 13 12 10 7 3

Be
ause i

7

> j

7

, the loop will not be exe
uted for the 8's time.

It is now easy to write down a re
urren
e relation for i

n

and j

n

:

i

n

= i

n-1

+ 1 and j

n

= j

n-1

- i

n-1

- 1

These two re
urren
e relations are interleaved but only the se
ond with

the �rst. We
an solve the re
urren
e relation for i

n

immediately and the

result is simply i

n

= i

0

+ n. This
losed form
an be inserted into the

se
ond re
urren
e relation

j

n

= j

n-1

- (i

0

+ n- 1) - 1 = j

n-1

- i

0

- n:

Again, this is a hidden sum and the solution is

j

n

= j

0

-

n

X

k=1

(i

0

+ k) = j

0

- ni

0

-

n(n+ 1)

2

:

The body of the loop is exe
uted as long as i � j holds. The (n + 1)st

exe
ution takes pla
e if and only if the nth exe
ution took pla
e and ad-

ditionally j

n

- i

n

� 0. If i

0

> j

0

, then the loop will not be exe
uted at

all.

Let us take a
loser look at the
ondition j

n

- i

n

� 0:

j

n

- i

n

= -

n(n+ 1)

2

-ni

0

+ j

0

- i

0

-n = -

1

2

n

2

-

1

2

(3+ 2i

0

)n+ j

0

- i

0

� 0

If we multiply this inequality by -2, we get the following one, whi
h looks

a little bit ni
er:

n

2

+ (3+ 2i

0

)n- 2(j

0

- i

0

) � 0: (3.6)

The equation x

2

+ (3+ 2i

0

)x- 2(j

0

- i

0

) = y des
ribes a parabola. We
an

assume that n = 0 is a solution of (3.6) be
ause otherwise the loop is not

44 CHAPTER 3. RECURRENCE RELATIONS

exe
uted at all. Be
ause of this, the parabola will have real roots. The

inequality (3.6) will be ful�lled for all ns starting from 0 up to the right

root. This se
ond root is

� = -i

0

-

3

2

+

1

2

p

4i

0

(i

0

+ 1) + 8j

0

+ 9:

With other words (3.6) holds for 0 � n � �, whi
h is equivalent to 0 �

n � b�
. All together the body of the loop will be exe
uted b�
+ 1 times.

Expli
itly written this number is

�

1

2

p

4i

0

(i

0

+ 1) + 8j

0

+ 9- i

0

-

1

2

�

: (3.7)

At this point, it might be a good idea to test this expli
it formula for the

number of exe
utions on an example. Let us assume again that i

0

= -3

und j

0

= 10. If we plug in these values into (3.7) we get

j

1

2

p

4(-3)(-2) + 8 � 10+ 9+ 3-

1

2

k

=

j

1

2

p

117+

5

2

k

= b7:91
 = 7:

This result is
orre
t.

Let us try a more
ompli
ated problem:

for k = 1 to m

i k; j k

2

;

while i � j do

i i+ 1; j j- i

od

od

How often is the body of the inner loop exe
uted?

We denote by W(i

0

; j

0

) the number of exe
utions of the body of the while

loop if at its beginning the variables have the values i = i

0

and j = j

0

.

Above we already established a
losed formula for W(i

0

; j

0

): W(i

0

; j

0

) =

b

1

2

p

4i

0

(i

0

+ 1) + 8j

0

+ 9- i

0

-

1

2

.

3.12. SEARCHING AN UNORDERED ARRAY 45

n

X

k=1

b

p

k
 =

n

X

k=1

b

p

k

X

i=1

1 =

X

k

X

i

(1 � k � n^ 1 � i � b

p

k
) =

=

X

k

X

i

(1 � k � n^ 1 � i

2

� k) =

X

n

X

i

(1 � i

2

� k � n) =

=

b

p

n

X

i=1

n

X

k=i

2

1 =

b

p

n

X

i=1

(n- i

2

+ 1) = b

p

n
(n+ 1) -

i(i+

1

2

)(i+ 1)

3

�

�

�

�

b

p

n

i=0

=

= b

p

n
(n+ 1) -

b

p

n
(b

p

n
+

1

2

)(b

p

n
+ 1)

3

Figure 3.2: How to
ompute the sum of b

p

k
.

The total number is simply

m

X

k=1

W(k; k

2

) =

m

X

k=1

�

1

2

p

4k(k+ 1) + 8k

2

+ 9- k-

1

2

�

=

m

X

k=1

$

1

2

s

12k

2

�

1+

1

3k

+

4

4k

2

�

- k-

1

2

%

=

m

X

k=1

�

p

3 � k

�

1+

1

6k

+O

�

1

k

2

��

- k-

1

2

�

=

m

X

k=1

$

k(

p

3- 1) +

p

3

6

-

1

2

+O(k

-1

)

%

=

m

X

k=1

�

k(

p

3- 1) +O(1)

�

=

p

3- 1

2

m

2

+O(m) � 0:366 �m

2

(3.8)

Instead of establishing an exa
t formula for this summation, we just
om-

pute an estimate. For this end we use Taylor's theorem:

p

1+ x = 1+

1

2

x+O(x

2

)

If use the value m = 1000 in our approximatively
orre
t formula, we get

366025. The exa
t value is 365687.

3.12 Sear
hing an unordered array

We start with an example. Let us assume we have an array a[1℄ : : : a[n℄

with pairwise distin
t numbers. We want to write a program that �nds out

46 CHAPTER 3. RECURRENCE RELATIONS

whether a given number is
ontained in the array. An obvious solution in

the programming language C might look as follows:

int n ;

int a [1000000℄;

What is the running time of this program?

It is quite obvious that in this
ase the answer depends on various fa
tors.

One of them is whether v is
ontained in the array or not.

Let us �rst
onsider an unsu

essful sear
h: The for-loop will be exe
uted

n times and after that 0 is returned.

In the
ase of a su

essful sear
h, on the other hand, there is some i with

a[i℄ = v. To be able to analyse this
ase, we need to know something about

whi
h i happens to have this property. In general, we
an try to make a

statisti
al assumption about the input. In the following we will assume that

all elements in the array are in a random order. Then for ea
h i between 1

and n the probability that a

i

= v is exa
tly 1=n.

Let us denote the running time of the program by L(i), if a[i℄ = v. The

average running time is then

1

n

n

X

i=1

L(i):

All that is left is to �nd a
losed formula for L(i). The for-loop and the

if -statement are exe
uted exa
tly i times. If L(i) is the number of ma
hine

instru
tions, we need to look at the ma
hine programe (Figure 3.3). Let Z

be the average number of exe
utions of the for-loop. We get

Z =

1

n

n

X

k=1

k =

n+ 1

2

:

The running time of the program happens to be 24+ 8Z ma
hine instru
-

tions a

ording to �gure 3.3. This results in 24+4(n+1) = 4n+28ma
hine

instru
tions on average, if the size of the array is n.

Is it ne
essary to look at a re
urren
e relation to solve this problem? At

�rst glan
e no, but this assumption is not
ompletely
orre
t.

The situation is just so simple that you
an see the solution at on
e. Just

for fun it is also possible to solve it systemati
ally with re
urren
e relations.

3.12. SEARCHING AN UNORDERED ARRAY 47

1 sw -4(r29),r30

1 add r30,r0,r29

1 sw -8(r29),r31

1 subui r29,r29,#24

1 sw 0(r29),r2

1 sw 4(r29),r3

1 sw 8(r29),r4

1 lhi r1,((_n)>>16)&0xffff

1 addui r1,r1,(_n)&0xffff

1 lw r3,(r1)

1 sgti r1,r3,#0

1 beqz r1,L3

1 lw r4,(r30)

1 lhi r1,((_a)>>16)&0xffff

1 addui r1,r1,(_a)&0xffff

1 lw r2,(r1)

1 addi r31,r2,#4

1 slli r1,r3,#0x2

1 add r2,r1,r2

L5:

Z lw r1,(r31)

Z seq r1,r1,r4

Z bnez r1,L8

Z addi r1,r0,#1

Z-1 addi r31,r31,#4

Z-1 sle r1,r31,r2

Z-1 bnez r1,L5

Z-1 nop

L3:

1 addi r1,r0,#0

L8:

1 lw r2,0(r29)

1 lw r3,4(r29)

1 lw r4,8(r29)

1 lw r31,-8(r30)

1 add r29,r0,r30

1 jr r31

1 lw r30,-4(r30)

Figure 3.3: Sear
h program

In order to do so, we have to redu
e the
ase of n elements to the
ase of

n - 1 elements. This is not
ompli
ated: Z

1

= 1, be
ause if we sear
h for

just one key and you �nd it then you use exa
tly one
omparison. If n > 1,

we get Z

n

= 1 �

1

n

+ (1 -

1

n

)(1 + Z

n-1

) be
ause with a probability of

1

n

we

an �nd v in the �rst pla
e of the array and with a probability of 1 -

1

n

we have to sear
h it in the remaining n - 1 pla
es. The latter task needs

another Z

n-1

omparisons on average. The re
urren
e looks as follows:

Z

n

= 1+ (1-

1

n

)Z

n-1

where Z

1

= 1. This is a linear re
urren
e relation of �rst order that
an be

solved with a summation fa
tor. On page ?? we
an �nd the solution as a

formula. In this
ase we get

Z

n

= 1+

n-1

X

j=1

�

1-

1

j+ 1

��

1-

1

j+ 2

��

1-

1

j+ 3

�

� � �

�

1-

1

n

�

= 1+

n-1

X

j=1

j

j+ 1

j+ 1

j+ 2

j+ 2

j+ 3

� � �

n- 1

n

= 1+

n-1

X

j=1

j

n

= 1+

n- 1

2

=

n+ 1

2

:

The overall result is
orre
t. Were we allowed to use this formula at all?

Yes, be
ause all pre-
onditions are valid in parti
ular Z

0

= 0.

Let us now improve the sear
h algorithm in order to see what impa
t our

improvements have. In a �rst step we a

ess the array by a pointer instead

of an index. Moreover, let us
ount the array elements ba
kwards in order

to have a more eÆ
ient
omparisons with zero. The resulting program is

48 CHAPTER 3. RECURRENCE RELATIONS

1 sw -4(r29),r30

1 add r30,r0,r29

1 sw -8(r29),r31

1 subui r29,r29,#16

1 sw 0(r29),r2

1 sw 4(r29),r3

1 lhi r1,((_a)>>16)&0xffff

1 addui r1,r1,(_a)&0xffff

1 lw r2,(r1)

1 lhi r1,((_n)>>16)&0xffff

1 addui r1,r1,(_n)&0xffff

1 lw r31,(r1)

1 sgti r1,r31,#0

1 beqz r1,L3

1 lw r3,(r30)

1 addi r2,r2,#4

L9:

Z lw r1,(r2)

Z seq r1,r1,r3

Z bnez r1,L8

Z addi r1,r0,#1

Z-1 addi r31,r31,#1

Z-1 sgti r1,r31,#0

Z-1 bnez r1,L9

Z-1 addi r2,r2,#4

1 addi r2,r2,#-4

L3:

1 addi r1,r0,#0

L8:

1 lw r2,0(r29)

1 lw r3,4(r29)

1 lw r31,-8(r30)

1 add r29,r0,r30

1 jr r31

1 lw r30,-4(r30)

Figure 3.4: Another sear
h program

int sear
h2 (int v) f

int i ;

int � p = &a [0℄;

for(i = n ; i > 0; i--) f

if(�++p == v) return 1;

g

return 0;

g

The
orresponding DLX assembler program
an be found in �gure 3.4.

This time we get 24+8Z ma
hine instru
tions, whi
h is 4n+24 on average.

This \improvement" is not very good be
ause we save only 4 instru
tions.

It seems that it is not easy to improve this program signi�
antly. There is,

however, one tri
k left that helps a lot: we avoid
ounting. In order to do

so, we store v at the end of the array and
onsequently we don't have to

he
k anymore whether we rea
hed the end of the array:

int sear
h3 (int v) f

int i ;

int � p = &a [0℄;

a [n + 1℄ = v ;

while(�p 6= v) p++;

if(p == &a [n + 1℄) return 0;

return 1;

g

This time it turns out that 35 + 4Z ma
hine instru
tions are exe
uted.

On average this makes 2n + 37 instru
tions. For big n this is mu
h faster

as the previous solutions, but for small n it might be slower. If you are

only interested in su

essful sear
hes, then this more
lever sear
h will be

superior for n � 5.

3.13. ORDERED ARRAYS AND BINARY SEARCH TREES 49

1 sw -4(r29),r30

1 add r30,r0,r29

1 sw -8(r29),r31

1 subui r29,r29,#24

1 sw 0(r29),r2

1 sw 4(r29),r3

1 sw 8(r29),r4

1 lw r3,(r30)

1 lhi r1,((_n)>>16)&0xffff

1 addui r1,r1,(_n)&0xffff

1 lw r1,(r1)

1 lhi r2,((_a+4)>>16)&0xffff

1 addui r2,r2,(_a+4)&0xffff

1 slli r1,r1,#0x2

1 add r1,r1,r2

1 lhi r4,#1

1 addui r4,r4,#34464

1 sw (r1),r4

1 addi r31,r2,#-4

1 addi r31,r31,#4

L9:

P-1 lw r2,(r31)

P-1 sgt r1,r2,r3

P-1 bnez r1,L9

P-1 addi r31,r31,#4

1 addi r31,r31,#-4

1 seq r2,r2,r3

1 bnez r2,L6

1 addi r1,r0,#0

L6:

1 lw r2,0(r29)

1 lw r3,4(r29)

1 lw r4,8(r29)

1 lw r31,-8(r30)

1 add r29,r0,r30

1 jr r31

1 lw r30,-4(r30)

1 sw -4(r29),r30

1 add r30,r0,r29

1 sw -8(r29),r31

1 subui r29,r29,#16

1 sw 0(r29),r2

1 sw 4(r29),r3

1 lw r31,(r30)

1 lhi r1,((_n)>>16)&0xffff

1 addui r1,r1,(_n)&0xffff

1 lw r1,(r1)

1 lhi r2,((_a+4)>>16)&0xffff

1 addui r2,r2,(_a+4)&0xffff

1 slli r1,r1,#0x2

1 add r1,r1,r2

1 sw (r1),r31

1 addi r2,r2,#-4

1 addi r2,r2,#4

L9:

1 lw r1,(r2)

1 sne r1,r1,r31

1 bnez r1,L9

1 addi r2,r2,#4

1 addi r2,r2,#-4

1 lhi r1,((_n)>>16)&0xffff

1 addui r1,r1,(_n)&0xffff

1 lw r1,(r1)

1 slli r1,r1,#0x2

1 lhi r3,((_a+4)>>16)&0xffff

1 addui r3,r3,(_a+4)&0xffff

1 add r1,r1,r3

1 seq r2,r2,r1

1 bnez r2,L6

1 addi r1,r0,#0

1 addi r1,r0,#1

L6:

1 lw r2,0(r29)

1 lw r3,4(r29)

1 lw r31,-8(r30)

1 add r29,r0,r30

1 lw r30,-4(r30)

1 jr r31

1 nop

Figure 3.5: Intelligent sear
h. The bran
h to label L6 is never taken in a

su

essful sear
h.

3.13 Sear
hing an ordered array and binary

sear
h trees

Let us
onsider the problem of sear
hing an ordered array. We assume as

usual that the array a[1℄; : : : ; a[n℄
ontains n di�erent numbers, but this

time they are ordered. How long does it take on average to �nd one of these

numbers if we sear
h for ea
h of them with the same probability? (Again

this is a su

essful sear
h.) We
an also ask ourselves the question how long

it takes to �nd out that some number is not
ontained in the array. Whi
h

probability distribution is the right one for this unsu

essful sear
h? If

the algorithm is based only on
omparisons, then its running time depends

on the pla
e where the number that we are sear
hing for belongs to. In

prin
ipal there are n+ 1 pla
es, i.e., before the �rst array element, behind

the last array element, or in one of the n- 1 gaps in between.

Again, the �rst algorithm we
onsider sear
hes the array from left to right.

As soon as we see an array element that is bigger than the key we are

sear
hing, we
an abort the program. Let us assume we
an put a pseudo

number H behind the end of the array. This H should be bigger than all

50 CHAPTER 3. RECURRENCE RELATIONS

numbers that o

ur in the array.

int sear
h4 (int v)

f

int � p;

a [n + 1℄ = H ;

p = a ;

do f p++; g while(�p < v);

if(�p == v) return 1;

else return 0;

g

The running time of this program depends on how often the instru
tion

p++ is
arried out. If the sear
h in unsu

essful we in
rease p until it points

to a[K℄ where K is the smallest index with a[K℄ � v. In the beginning p

points to a[0℄. In the
ase of an unsu

essful sear
h the pointer is in
reased

exa
tly K times. K is a random variable with the distribution

Pr[K = k℄ =

1

n+ 1

for 1 � k � n+ 1:

Let us
all the average number of times the instru
tion p++ is
arried out

P

n

if the array has n elements. With other words P

n

is simply the expe
ted

value of K:

P

n

= E[K℄ =

n+1

X

k=1

k � Pr(K = k) =

(n+ 2)(n+ 1)

2(n+ 1)

= 1+

n

2

How big is P

n

in the
ase of an unsu

essful sear
h? If the sear
h is su

ess-

ful then a[K℄ = v for exa
tly one 1 � K � n. In that
ase Pr[K = k℄ = 1=n.

Consequently, we get

P

n

= E[K℄ =

n+1

X

k=1

k � Pr[K = k℄ =

(n+ 1)n

2n

=

1

2

+

n

2

:

We
an expe
t that the su

essful and unsu

essful
ase are similar with

regard to the running time.

Let us now
ount the number of exe
uted ma
hine instru
tions of the
or-

responding ma
hine program in Figure 3.6.

The running time is 27+4P

n

on average, i.e., 2n+31 for a su

essful sear
h

and 2n+ 29 for an unsu

essful sear
h.

3.13. ORDERED ARRAYS AND BINARY SEARCH TREES 51

1 sw -4(r29),r30

1 add r30,r0,r29

1 sw -8(r29),r31

1 subui r29,r29,#24

1 sw 0(r29),r2

1 sw 4(r29),r3

1 sw 8(r29),r4

1 lw r3,(r30)

1 lhi r1,((_n)>>16)&0xffff

1 addui r1,r1,(_n)&0xffff

1 lw r1,(r1)

1 lhi r2,((_a+4)>>16)&0xffff

1 addui r2,r2,(_a+4)&0xffff

1 slli r1,r1,#0x2

1 add r1,r1,r2

1 lhi r4,#1

1 addui r4,r4,#34464

1 sw (r1),r4

1 addi r31,r2,#-4

1 addi r31,r31,#4

L9:

P-1 lw r2,(r31)

P-1 sgt r1,r2,r3

P-1 bnez r1,L9

P-1 addi r31,r31,#4

1 addi r31,r31,#-4

1 seq r2,r2,r3

1 bnez r2,L6

1 addi r1,r0,#0

L6:

1 lw r2,0(r29)

1 lw r3,4(r29)

1 lw r4,8(r29)

1 lw r31,-8(r30)

1 add r29,r0,r30

1 jr r31

1 lw r30,-4(r30)

Figure 3.6: Linear sear
h in an ordered array.

In the following we will analyse algorithms that are based on
omparisons

with the help of the theory of binary sear
h trees. This theory helps us to

analyse the average number of
omparisons that some
lass of algorithms

exe
ute.

Not suprisingly a binary sear
h tree is a binary tree. It
onsists either of

only one node that we
all the root or a root that has two
hildren that

are themselves binary trees. We will distinguish between internal and

external nodes: An internal node is a node that has itself two
hildren,

an external node in
ontrary has no
hildren. External nodes are usually

alled leaves.

The
omparisons performed by an algorithm lead in a natural way to a

binary sear
h tree: The root of a tree will be labeled with the �rst
om-

parison the algorithm makes. The left
hild of the root will be the binary

sear
h tree of the following part of the algorithm that is exe
uted if the

result of the �rst
omparisons was smaller. Similarly the right
hild of the

root is the binary sear
h tree for the result bigger. Let us assume for the

moment that we are analysing a sear
h algorithm and if the out
ome of

a
omparison is equal then the algorithm will stop the sear
h be
ause the

desired element has been found. With other words we assume that every

omparison is against the key we are sear
hing for.

As usual we draw binary sear
h trees as a binary tree but we will draw

internal nodes as
ir
les and external nodes as squares. You
an �nd the

depi
tion of a sear
h tree for an algorithm for linear sear
h in an ordered

array in Figure 3.7. The size of the array is in this
ase 10.

In the following we will re
ursively de�ne some important parameters of a

binary sear
h tree T : The size jT j, whi
h is exa
tly the number of internal

52 CHAPTER 3. RECURRENCE RELATIONS

Figure 3.7: A sear
h tree for a linear sear
h in an ordered array of length 10.

nodes, the internal path length �(T) and the external path length �(t).

If T
onsists only of a root we de�ne jT j = 0, �(T) = 0, �(T) = 0. In the
ase

that T
onsists of a root that has the binary sear
h trees T

1

and T

2

as its

hildren, then we will de�ne jT j = jT

1

j+ jT

2

j+1, �(T) = �(T

1

)+�(T

2

)+ jT j-1

and �(T) = �(T

1

) + �(T

2

) + jT j + 1.

Informally, the internal path length is the sum of all levels of all internal

nodes and the external path length is the sum of all levels of all external

nodes. The level of a node is its distan
e to the root, where the root itself

is on Level 0.

One beautiful fa
t about these de�nitions is that if we know �(T) and

�(T) we
an easily
ompute the average number of
omparisons that an

algorithm performs.

Theorem 5. Let T be the
omparison tree of an algorithm and let every

element be
hosen with uniform probability in the
ase of a su

essful sear
h

or ea
h position between elements in
luding the outer left and outer right

position with uniform probabilty in the
ase of an unsu

essful sear
h, then

the average number of
omparisons is

C

+

=

�(T)

jT j

+ 1 in the su

essful
ase;

C

-

=

�(T)

jT j+ 1

in the unsu

essful
ase:

3.13. ORDERED ARRAYS AND BINARY SEARCH TREES 53

Moreover the following
orrespondan
e holds between the internal and ex-

ternal path length:

�(T) = �(T) + 2jT j

There is also the following
orrespondan
e between C

+

and C

-

:

C

-

= (C

+

+ 1)

�

1-

1

jT j+ 1

)

�

The number of external nodes is always jT j + 1.

Let us use these formulas for a linear sear
h in an array of n elements. As

sear
h trees we get
aterpillars L

n

as you
an see in �gure 3.7. The internal

path length is

�(L

n

) =

n-1

X

k=0

k =

n(n- 1)

2

;

be
ause on ea
h level between 0 and n - 1 there is exa
tly one internal

node. The external path length is then

�(L

n

) = �(L

n

) + 2n =

n(n+ 3)

2

:

The average number of
omparisons in the
ase of an unsu

essful sear
h

is

�(L

n

)

jL

n

j

+ 1 =

n- 1

2

+ 1 =

n+ 1

2

and the number of
omparisons in the
ase of an unsu

essful sear
h should

be, a

ording to our formula,

�(L

n

)

jL

n

j+ 1

=

n(n+ 3)

2(n+ 1)

=

n

2

+

n

n+ 1

:

Obviously this is not
orre
t.

Where is the mistake? The error lies in the way the program pro
eeds

if the key that we sear
h is bigger than a[n℄ i.e. the last element in the

array. After the program veri�ed that a[n℄ < v a
onsequent
omparison

is no longer ne
essary. Still the program
arries out another
omparison

with a[n+1℄. This is not a
omparison a

ording to our de�nition be
ause

there is only one possible answer and the
omparison is redundant.

The theory of
omparison trees works only if the probability of rea
hing

54 CHAPTER 3. RECURRENCE RELATIONS

every external node in an unsu

essful sear
h is the same. This might not

be true if there are redundant
omparisons.

The last
omparison
annot be spotted in the sear
h tree we drew: The

sear
h tree
ontains only n internal nodes labeled with the
omparisms

a[1℄ : v; : : : ; a[n℄ : v. If the algorithm visits the last external node in the

tree it performs another redundant
omparison and that happens with a

probability of 1=(n + 1) in an unsu

essful sear
h. The a
tual number of

omparisons taken on average in an unsu

essful sear
h is
onsequently

�(L

n

)

jL

n

j+ 1

+

1

n+ 1

=

n

2

+ 1;

and this
oin
ides with the result we got when we analysed this program

traditionally without the help of
omparison trees.

No problem would have o

ured if the program were written in the following

form

int sear
h5 (int v)

f

int i = 0;

do f i++; g while(i � n && a [i ℄ > v);

if(i == n + 1) return 1;

else return 0;

g

Here indeed only n=2+n=(n+1)
omparisms are done on average in an un-

su

essful sear
h. This program however is mu
h slower. What we should

learn from this: The formulas for the average number of
omparisons are

only
orre
t if all pre
onditions are met. We have to
he
k them
arefully

and have to take any ex
eptions into
onsideration.

Binary sear
h

If the array is ordered, binary sear
h will be the method of
hoi
e: We will

ompare v with the key that is approximately in the middle of the array.

Doing so redu
es the problem to sear
hing the key in an array of only half

the size. The following algorithm does exa
tly that:

3.13. ORDERED ARRAYS AND BINARY SEARCH TREES 55

int binsear
h(int v)

f

int l ; r ;m ;

l = 1; r = n ;

while(l � r) f

m = (r + l)=2;

if(v == a [m ℄) return 1;

if(v < a [m ℄) r = m - 1; else l = m + 1;

g

return 0;

g

This algorithm works as follows. It uses two variables l and r to remember

the subarray in whi
h we still have to sear
h. Here l is the leftmost and r

the rightmost element of this subarray. The algorithm
ompares the key to

the key in the middle. If it is the
orre
t one, the algorithm immediately

terminates. Otherwise the right or left border of the subarray that still

might
ontain v will be adjusted and we
ontinue the sear
h.

If we designate by B

n

how often the instru
tion m = (r+ l)=2 is performed

then B

n

is exa
tly the number of
omparisons v : a[i℄. Let us �rst
onsider

the unsu

essful sear
h be
ause it is easier to analyse and also let us start

with the worst
ase.

Let N = r- l+ 1 be the size of the a
tive subarray. Let C

N

be the number

of times the instru
tion m = (r + l)=2 is still exe
uted if now r- l+1 = N.

With these de�nitions in mind we get C

1

= 1 be
ause N = 1 implies that

r = l and after exe
uting m = (r + l)=2 the algorithm either terminates,

or r is in
reased, or l is de
reased. After that the while-loop immediately

terminates.

If N > 1 then m = (r + l)=2 is exe
uted at least on
e and after that either

r := b(r + l)=2
- 1 or l := b(r + l)=2
+ 1 will be exe
uted. In both
ases

this implies N := bN=2
; as we expe
ted the size of the a
tive subarray is

ut roughly in half with ea
h iteration.

How does the binary sear
h tree for this algorithm look like? Figure 3.8

shows the sear
h tree for n = 10. In general it will be an almost
omplete

binary tree in whi
h only nodes on the last level might be missing.

If the sear
h tree has exa
tly 2

k

external nodes then all of them are lo
ated

on level k and the external path length is exa
tly k2

k

. Let us now look at

56 CHAPTER 3. RECURRENCE RELATIONS

Figure 3.8: A sear
h tree for binary sear
h in an ordered array of size 10.

the general
ase. If we have n internal nodes we have exa
tly n+1 external

nodes and 2(n+1-2

blog(n+1)

) of them are lo
ated on level blog(n+1)
+1.

The remaining nodes i.e. exa
tly 2

blog(n+1)
+1

- n - 1 of them are lo
ated

on level blog(n + 1)
. If we denote the sear
h tree for binary sear
h in an

array with n elements by B

n

we
onsequently get

�(B

n

) = (n+ 1)(blog(n+ 1)
+ 2) - 2

blog(n+1)
+1

:

From this it is easy to
ompute the internal path length:

�(B

n

) = �(B

n

) - 2n = (n+ 1)blog(n+ 1)
- 2

blog(n+1)
+1

+ 2:

As always it is a good idea to test this formula on a small example. Let us

again
hoose n = 10 be
ause we already have the
orresponding sear
h tree

in �gure 3.8. We get �(B

10

) = 11�5-16 = 39 and �(B

10

) = 11�3-16+2 = 19.

Both results
an be easily
he
ked with the help of the binary sear
h tree

in �gure 3.8.

Exer
ises

3.1 Solve the following re
urren
e relation and �nd a ni
e way to write down the

solution.

0

= 2

1

= 4

n

=

log

n-1

n-2

3.2 Drill Sergeant Even is in a bad mood and lets his new re
ruits mar
h in a row

of two along the yard. He
ips his lid whenever the number of re
ruits is odd and

then drives them along DEATH LANE. When this happens to a re
ruit he gets

3.13. ORDERED ARRAYS AND BINARY SEARCH TREES 57

si
k with a probability of 1=2 and
annot partake in the exer
ise anymore. This

spe
ta
le is repeated until the number of re
ruits be
omes even.

How many runs through DEATH LANE take pla
e on average?

3.3 Solve the following re
urren
e! Let a

0

= 0, a

1

= 3, and a

n

= 4a

n-1

- 4a

n-2

for n > 1.

3.4 Solve the following re
urren
e relation. Let Es sei b

1

= b

2

= b

3

= 1 and

b

n

= 3b

n-1

- 4b

n-2

+ 12b

n-3

for n > 3.

3.5 Compare the solution 2(nH

n

)+2(H

n

)-2(n) = 2nH

n

+2H

n

-2n form page 39

to the general solution from the �rst
hapter by setting M = 0.

3.6 Given an array a of length n, an algorithm
ompares all pairs (a[i℄; a[j℄) for

all i < j � n, and then
alls itself re
ursively on all proper pre�xes of a.

How often does the algorithm
ompare two pairs? Use the repertoire method!

3.7 Improve the estimate of (??). The goal is to get an additive error term of

O(1=n) or better. How far away is your new estimate for a

10

from the true value?

3.8 Use a summation fa
tor on (3.4) and �nd the solution of the re
urren
e (3.3)

not in
losed form, but as a summation.

3.9 Solve the re
urren
e

a

0

= 8000

a

1

= 1=2

a

n+2

+ a

n+1

- n

2

a

n

= n!

by order redu
tion.

3.10 Compute the number of times the body of the while-loop is performed, if

initially 0 < i holds.

while i <= j

i := i+j ;

if i > j then j:=j+10 ;

3.11 Solve the last exer
ise with the assumption that i � 0.

3.12 Analyse the running time of a su

essful sear
h for the program in Figure 3.3

if every element in the array o

urs twi
e and again every permutation has the

same probability.

3.13 Compare all three sear
h algorithms a

ording to su

essful sear
hes.

3.14 Consider the following algorithm that sear
hes an element x in a sorted

array a of length n = km+ 1:

i:= 1 ;

while a[i℄<=x

58 CHAPTER 3. RECURRENCE RELATIONS

if a[i℄=x then return i ;

i:=i+m ;

if i>n return 0 ;

for j=i-1 downto max(1,i-(m-1))

if a[j℄=x then return j ;

return 0 ;

a) Draw the sear
h tree and
ompute the internal and external path length for

n = 10 and m = 3.

b) Determine C

+

and C

-

for arbitrary m, k.

) What is, for given n, the best
hoi
e for m w.r.t. the running time?

3.15 Verify that the
laim N := bN=2
 on page 55 is
orre
t.

3.16 We want to
ompare the following two programs for a sear
h in a sorted

array:

int binsear
h (double v)

f

int l , r ,m;

l=1; r=N;

while (l � r) f

m=(r+l)/2;

if (v � a[m℄) return 1;

if (v<a[m℄) r=m-1; else l=m+1;

g

return 0;

g

int binsear
h2(double v)

f

int l , r ,m;

l=1; r=N;

while (r-l>1) f

m=(r+l)/2;

if (v<a[m℄) r=m-1; else l=m;

g

if (a[l ℄ � v) return 1;

if (a[r ℄ � v) return 1;

return 0;

g

Analyse how many if-instru
tions are exe
uted by the programs in
ase of a su
-

essful or unsu

essful sear
h for v. Find an exa
t solution for the �rst program

and an estimate of the form f(n) + O(1) for the se
ond one. Make the usual

assumptions about v.

Chapter 4

Generating fun
tions

We are often interested in a series (g

0

; g

1

; g

2

; : : :), where the
oeÆ
ients g

n

indi
ate the usage of a ressour
e or another
ombinatorial parameter. The

series is often impli
itely represented, e.g., given by a re
ursion equation.

We
all

G(z) =

1

X

n=0

g

n

z

n

the generating fun
tion (GF) of the series (g

n

)

1

n=0

. One fundamental task

in the analysis of algorithms is to �nd an expli
it expression for g

n

or a

good approximation of it. Generating fun
tions are the most important

tool for this purpose that we will get to know.

Very often an important step in the analysis of an algorithm is to extra
t

the n-th
oeÆ
ient of a generating fun
tion G(z). Theoreti
ally, we
ould

develop G(z) into a Taylor series,

G(z) = G(0) + zG

0

(0) +

z

2

2

G

00

(0) +

z

3

3!

G

000

(0) + : : : ;

where

[z

n

℄G(z) =

d

n

dz

n

G(z)

n!

�

�

�

�

z=0

from whi
h we
an read of g

n

dire
tly. By [z

n

℄G(z) we denote the
oeÆ
ient

of z

n

in the power series G(z).

To go over the Taylor series is usually too stony and normally there are

better methods to extra
t the nth
oeÆ
ient. A table with important

known generation fun
tions
an be very useful, be
ause we
an look them

59

60 CHAPTER 4. GENERATING FUNCTIONS

Series a

n

OGF

1; 0; 0; 0; 0; 0; 0; : : : (n = 0) 1

0; 1; 0; 0; 0; 0; 0; : : : (n = 1) z

1; 1; 1; 1; 1; 1; 1; : : : 1

1

1- z

0; a; a

2

; a

3

; a

4

; a

5

; : : : a

n

1

1- az

1; 2; 3; 4; 5; 6; 7; 8; : : : n+ 1

1

(1- z)

2

�

r

0

�

;

�

r

1

�

;

�

r

2

�

;

�

r

3

�

; : : :

�

r

n

�

(1+ z)

r

�

k

k

�

;

�

k+ 1

k

�

;

�

k+ 2

k

�

;

�

k+ 3

k

�

; : : :

�

k+ n

k

�

1

(1- z)

k+1

1; 1;

1

2!

;

1

3!

;

1

4!

; : : :

1

n!

e

z

0; 1;

1

2

;

1

3

;

1

4

; : : :

1

n

(n > 0) ln

1

1- z

0; 1;

3

2

;

11

6

;

25

12

; : : : H

n

1

1- z

ln

1

1- z

Table 4.1: Important generating fun
tions and their series.

61

up qui
kly possibly after manipulating them �rst. Table 4.1
ontains the

most important generating fun
tions and the
orresponding series.

With the help of tables 4.1 and 4.2 and other tables from textbooks many

fun
tions
an be expanded into a power series. All you have to do is to

rewrite the generating fun
tions in su
h a way that they
orrespond to an

entry in one of the tables.

Let us apply what we have seen so far to a simple re
urren
e relation, the

re
urren
e for Fibona

i numbers:

F

0

= 0; F

1

= 1; F

n

= F

n-1

+ F

n-2

for n > 1

The �rst step to deal with su
h a re
urren
e relation is to �nd a single

formular whi
h de�nes F

n

for all n. Getting rid of
ase distin
tions makes

life easier. In the following we will use the following
onvention:

(Condition) =

Æ

1 if Condition is true

0 otherwise

The re
urren
e relation F

n

= F

n-1

+ F

n-2

holds only for n > 1, for n = 1 it

is wrong be
ause F

1

= 1, but F

0

+ F

-1

= 0 (we assume F

n

= 0 for n < 0).

Lu
kily, however, F

n

= F

n-1

+F

n-2

holds true for n = 0. The following, still

quite simple formula holds true for all n 2 Z:

F

n

= F

n-1

+ F

n-2

+ (n = 1) (4.1)

We will fo
us now on the generation fun
tion

G(z) =

1

X

n=0

F

n

z

n

:

In order to get a
losed formula for G(z) we multiply both sides of (4.1)

with z

n

and sum over n from 0 to 1:

1

X

n=0

F

n

z

n

=

1

X

n=0

F

n-1

z

n

+

1

X

n=0

F

n-2

z

n

+

1

X

n=0

(n = 1)z

n

(4.2)

The last sum is simply z and the other sums
an be rewritten to get

G(z) = zG(z) + z

2

G(z) + z: (4.3)

62 CHAPTER 4. GENERATING FUNCTIONS

A(z) =

1

X

n=0

a

n

z

n

B(z) =

1

X

n=0

b

n

z

n

zA(z) =

1

X

n=0

a

n-1

z

n

(Right shift)

A(z) - a

0

z

=

1

X

n=0

a

n+1

z

n

(Left shift)

A

0

(z) =

1

X

n=0

(n+ 1)a

n+1

z

n

(Derivative)

Z

z

0

A(t)dt =

1

X

n=1

a

n-1

n

z

n

(Integral)

A(�z) =

1

X

n=0

�

n

a

n

z

n

(S
ale)

A(z) + B(z) =

1

X

n=0

(a

n

+ b

n

)z

n

(Addition)

(1- z)A(z) =

1

X

n=0

(a

n

- a

n-1

)z

n

(Di�eren
e)

A(z)B(z) =

1

X

n=0

n

X

k=0

a

k

b

n-k

!

z

n

(Convolution)

A(z)

1- z

=

1

X

n=0

n

X

k=0

a

k

!

z

n

(Partial sum)

Table 4.2: Some operations for generating fun
tions. We de�ne a

n

= b

n

= 0

for n < 0.

63

We
an dire
tly get this equation faster from (4.1) if we use the rules from

table 4.2. The �rst two terms of the right side of F

n-1

and F

n-2

are the

same series as F

n

but shifted by one, respe
tively two positions to the

right and therefore their generating fun
tions are zG(z) and z

2

G(z). The

generation fun
tion of (0; 1; 0; 0; 0; 0; : : :) is z be
ause it is simply the series

(1; 0; 0; 0; 0; 0; : : :) shifted one position to the right. The last series
an be

found in table 4.1. The generation fun
tion of the right hand side is now

simply the sum of the three fun
tions (Addition rule). In this way we obtain

an algebrai
 equation for G(z). Sometimes instead of an algebrai
 equation

we might get a di�erential, integral, or integro-di�erential equation.

If we solve (4.3) for G(z), then we obtain a solution of the algebrai
 equation

and therefore a
losed formula for G(z):

G(z) =

z

1- z- z

2

What remains to do is to expand G(z) into a power series. To do so we

rewrite G(z) in su
h a way that we
an �nd it in table 4.1. Hew we
an use

a partial fra
tion de
omposition of the rational fun
tion 1=(1- z- z

2

). To

do so we need the roots of z

2

+ z- 1, whi
h are

1

�

=

p

5- 1

2

and

1

^

�

=

-

p

5- 1

2

:

That means we
an write

1

1- z- z

2

=

A

1- �z

+

B

1-

^

�z

;

where we still have to �nd out what the parameters A and B are.

Setting z = 0 yields 1 = A + B, so B = 1 - A. Setting z = 1 yields

-1 = A=(1-�)+(1-A)=(1-

^

�). From 1=(1-�) = -� and 1=(1-

^

�) = -

^

�

we get 1 = �A +

^

� -

^

�A =

^

� +

p

5A be
ause of � -

^

� =

p

5. This gives

us A = �=

p

5.

From Table 4.1 we learn that

1

1- �z

=

1

X

n=0

�

n

z

n

and

1

1-

^

�z

=

1

X

n=0

^

�

n

z

n

:

Altogether we get

G(z) =

z

1- z- z

2

= Az

1

X

n=0

�

n

z

n

+ Bz

1

X

n=0

^

�

n

z

n

;

64 CHAPTER 4. GENERATING FUNCTIONS

from whi
h we simply
an read of the
oeÆzient of z

n

:

[z

n

℄G(z) = A�

n-1

+ B

^

�

n-1

=

1

p

5

�

�

n

+

^

�

n

�

Of
ourse, we
ould get the same result using
lassi
al methods as we are

dealing with a homogeneous linear re
urren
e relation with
onstant
oef-

�
ients. It is good to see, however, that the generating fun
tion ma
hinery

awlessly works on su
h a simple example.

We are not going to prove the
orre
tness of all formul� in Tables 4.1

and 4.2. The proofs are quite similar and not hard. As an example we

show the validity of the last two entries of table 4.1.

First, we have to deal with the series

0; 1;

1

2

;

1

3

;

1

4

;

1

5

; : : :

The generating fun
tion of this series
an be found with the help of the

integration rule in Table 4.2 as

1

X

n=1

1

n

z

n

=

Z

z

0

1

1- t

dt;

sin
e 1=(1- z) is the GF of (1; 1; 1; 1; : : :). We
an solve this integral with

the formula

Z

f

0

(t)

f(t)

dt = ln(f(t)) + C

and get the GF

Z

z

0

1

1- t

dt = ln

1

1- z

:

Next, we look at the series of Harmoni
 numbers

H

0

; H

1

; H

2

; H

3

; H

4

; : : :

Expanding H

n

into a sum yields

1

X

n=0

n

X

k=1

1

k

!

z

n

:

This expression is a spe
ial
ase of a partial sum with a

k

= 1=k for k > 0

and a

0

= 0. The generating fun
tion for 1=n is ln(1=(1- z)) and using the

formula for a partial sum yields

1

X

n=0

n

X

k=1

1

k

!

z

n

=

1

1- z

ln

1

1- z

:

4.1. COUNTING DATA STRUCTURESWITHGENERATING FUNCTIONS65

4.1 Counting Data Stru
tures with Generat-

ing Fun
tions

We
an
ount the number of obje
ts of given sizes with the help of gener-

ating fun
tions. As a �rst example we will apply this te
hnique to binary

trees.

A binary tree is a re
ursive data stru
ture. It is either just a root or a root

with a two
hildren (the left and the right
hild), whi
h are themselves

binary trees. We
all leafs also external nodes and non-leafs internal

nodes. We are interested in the number of binary trees with a given number

of internal nodes.

We de�ne the generating fun
tion

T(z) =

1

X

n=0

t

n

z

n

;

where t

n

is the number of binary trees with n internal nodes.

For t

n

we
an write down the re
urren
e

t

n

=

n-1

X

k=0

t

k

t

n-1-k

+ (n = 0):

After multiplying the equation by z

n

and summing over n we get

T(z) =

1

X

n=0

n-1

X

k=0

t

k

t

n-1-k

!

z

n

+ 1

= z

1

X

n=0

n

X

k=0

t

k

t

n-k

!

z

n

+ 1

= zT(z)

2

+ 1

There is a simple short
ut that dire
tly leads to this relationship: Let T

be the set of all binary trees. Informally T = E + ITT using a little bit of

abstra
tion, where E denotes an external and I an internal node. Swit
hing

to generating fun
tions we get E(z) = z

0

= 1 and I(z) = z

1

= z be
ause I,

resp. E,
ontain exa
tly one tree with one, resp. two, internal nodes. Then

T(z) = E(z) + I(z) + T(z)T(z) = 1+ zT(z)

2

:

66 CHAPTER 4. GENERATING FUNCTIONS

All left to do is to expand T(z) into a power series in order to read o�

t

n

= [z

n

℄T(z).

We solve for T(z), whi
h is easy in this
ase as it is a simple quadrati

equation. This gives us a
loses formula for T(Z):

T(z) =

1

2z

�

1

2z

p

1- 4z

There are two solutions to the quadrati
 equation, but there is only one

solution to the original re
urren
e relation and, of
ourse, there is only one

number of binary trees of a
ertain size.

So how is it possible that we have two solutions for the generating fun
tion?

Easy: One solution is the
orre
t one and
an be expanded into a power

series. The other solution
annot be expanded into a power series and in

this sense does not really exist. After all, we are looking for a power series

and in terms of power series there is really only one solution for T(z).

We will easily see, whi
h solution is the
orre
t one. Let us �rst expand

p

1- 4z into a power series, whi
h
an be done at on
e using Newton's

formula.

T(z) =

1

2z

�

1

2z

p

1- 4z =

1

2z

�

1

2z

1

X

n=0

�

1=2

n

�

(-4)

n

z

n

Now we see that the solution with \minus" is the
orre
t one, be
ause then

the pole at z = 0 is
an
elled.

T(z) = -

1

2z

1

X

n=1

�

1=2

n

�

(-4)

n

z

n

= -

1

2

1

X

n=0

�

1=2

n+ 1

�

(-4)

n+1

z

n

We
an now read o� the
oeÆ
ients:

t

n

= [z

n

℄T(z) = -

1

2

�

1=2

n+ 1

�

(-4)

n+1

It
annot hurt to
he
k the formula on a small example. Let n = 3.

t

3

= -

1

2

�

1=2

n+ 4

�

(-4)

4

= 5

We
ould simplify the result in order to get a better readable formula, but

let us �rst study a di�erent approa
h to solve this re
urren
e, whi
h avoids

some of the small problems we fa
ed in the derivation above.

4.1. COUNTING DATA STRUCTURESWITHGENERATING FUNCTIONS67

The most annoying step was solving the quadrati
 equation. Although

quadrati
 equations are easy to solve, you
an nervous thinking about

polynomial equations of higher order, whi
h will o

ur when we look at

ternary or other trees. The next theorem relates the
oeÆ
ients of power

series that are \inverse" to ea
h other and opens a path to avoid solving

polynomial equations in some
ases. In fa
t it has many more appli
ations.

Theorem 6. (Lagrange inversion)

Let G(z) be a GF su
h that z = f(G(z)) with f(0) = 0 and f

0

(0) 6= 0. Then

[z

n

℄G(z) =

1

n

[u

n-1

℄

�

u

f(u)

�

n

:

We
annot apply Lagrange inversion dire
tly to T(z) be
ause the resulting

f(z) does not ful�ll the ne
essary pre
onditions. We
an, however, let

H(z) = zT(z) and apply Lagrange inversion to H(z). The
orresponding

fun
tional equation for H(z) is

H(z) = z+H(z)

2

;

whi
h
an easily be solved for z, but presents a quadrati
 equation when

solving for H(z). We
an write z = f(H(z)) for f(t) = t- t

2

. With f(0) = 0

and f(0) = 1 the
ondition for the theorem on Lagrange inversion are

ful�lled and the theorem yields us

[z

n

℄H(z) =

1

n

[u

n-1

℄

�

1

1- u

�

n

:

A formula from Table 4.1 mat
hes the right hand side:

1

(1- u)

n

=

1

X

k=0

�

k+ n- 1

k

�

z

k

This yields

[z

n

℄H(z) =

1

n

�

2n- 2

n- 1

�

:

For T(z) we have to shift the sequen
e and get

t

n

=

1

n+ 1

�

2n

n

�

:

Let us
he
k this formula again for n = 3:

t

3

=

1

4

�

6

3

�

= 5

68 CHAPTER 4. GENERATING FUNCTIONS

4.2 Bivariate Generating Fun
tions

Up to now we
onsidered generating fun
tion with one variable z that

represents a series. We
an generalize this
on
ept to fun
tions with more

than one variable. Su
h a fun
tion represents a multi-dimensional series.

For two variables we
all su
h a fun
tion a bivariate generating fun
tion

(BGF).

Let us run through a simple example of using BGF's for whi
h we already

know the result. How many binary strings are there that
ontain exa
tly

m ones and have length n?

The set of all binary strings
an be re
ursively de�ned as follows:

B = f�g [0B [1B

We de�ne the BGF

B(u; z) =

X

n;m�0

b

mn

u

m

z

n

;

where b

mn

is the number of di�erent bitstrings of length n that
ontain

exa
tly m ones. We get the equation

B(u; z) = 1+ zB(u; z) + uzB(u; z):

We solve for B(u; z) and expand the result into a power series:

B(u; z) =

1

1- z(1+ u)

=

1

X

n=0

z

n

(1+ u)

n

=

1

X

n=0

n

X

k=0

�

n

k

�

z

n

u

k

We
an read o� b

mn

= [u

m

z

n

℄B(u; z) =

�

n

m

�

.

4.3 Exponential Generating Fun
tions

For a series g

0

; g

1

; g

2

; g

3

; : : : we de�ne the exponential generating fun
tion

(EGF)

G(z) = g

0

1

1!

+ g

1

z

2!

+ g

2

z

2

3!

+ g

2

z

3

3!

+ � � � =

1

X

n=0

g

n

z

n

n!

:

The nth
oeÆzient in the EGF G(z) of (g

n

)

1

n=0

is then

g

n

= n![z

n

℄G(z):

4.4. THE SYMBOLIC METHOD 69

Sometimes we rea
h our goal using an EGF easier than with a GF and

sometimes it is the other way around. The di�eren
e lies in the way GFs

and EGFs transform and are formed from a series. Table 4.3
ontains

EGFs for several series and Table 4.4 transformation rules. These two

tables
orrespond to tables 4.1 and 4.2 for GFs.

4.4 The Symboli
 Method

In this subse
tion we are going to learn more systemati
ally how to
ount

obje
ts with the help of generating fun
tions without going throug re
ur-

ren
e relations. We put an emphasis on re
ursive obje
ts.

To
onstru
t a set of obje
ts we alle the following operations wher M is

the new set and M

1

are M

2

sets that are already de�ned.

1. atomi
 obje
t: M = fxg

2. pairs of obje
ts: M = M

1

�M

2

3. union of obje
t sets: M = M

1

[M

2

4. �nite series of obje
ts: M = M

1

[M

1

�M

1

[M

1

�M

1

�M

1

[� � �

The size of an obje
t is the sum of the sizes of all atoms of whi
h it
onsists.

A pre
ise de�nition uses the re
ursive
onstru
tion of an obje
t. We denote

the size of an obje
t x by jxj.

jxj = f(x) (atomi
 obje
t)

j(x; y)j = jxj+ jyj (pairs of obje
ts)

j(x

1

; x

2

; : : : ; x

m

)j = jx

1

j+ � � �+ jx

m

j (�nite series)

The size of an atomi
 obje
t
an be de�ned arbitrarily. In the following

we are interested in the number of obje
t of a
ertain size in a given set of

obje
ts.

Let M(z) =

P

1

n=0

m

n

z

n

be the generating fun
tion for m

n

where m

n

is the

number of obje
ts in M with size n:

m

n

=

�

�

�

x 2M

�

�

jxj = m

n

	

�

�

70 CHAPTER 4. GENERATING FUNCTIONS

Series a

n

EGF

1; 0; 0; 0; 0; 0; 0; : : : (n = 0) 1

0; 1; 0; 0; 0; 0; 0; : : : (n = 1) z

1; 1; 1; 1; 1; 1; 1; : : : 1 e

z

1;
;

2

;

3

;

4

;

5

;

6

; : : :

n

e

z

0; 1; 2; 3; 4; 5; 6; : : : n ze

z

�

0

m

�

;

�

1

m

�

;

�

2

m

�

; : : :

�

n

m

�

z

m

m!

e

z

1; 0; 1; 0; 1; 0; 1; : : : 1+ (-1)

n

osh(z) =

1

2

(e

z

+ e

-z

)

0; 1; 0; 1; 0; 1; 0; : : : 1- (-1)

n

sinh(z) =

1

2

(e

z

- e

-z

)

1;

1

2

;

1

3

;

1

4

;

1

5

;

1

6

;

1

7

; : : :

1

n+ 1

e

z

- 1

z

0!; 1!; 2!; 3!; 4!; 5!; 6!; : : : n!

1

1- z

Table 4.3: Important EGFs and their series.

4.4. THE SYMBOLIC METHOD 71

A(z) =

1

X

n=0

a

n

z

n

n!

B(z) =

1

X

n=0

b

n

z

n

n!

Z

z

0

A(t)dt =

1

X

n=0

a

n-1

z

n

n!

(right shift)

A

0

(z) =

1

X

n=0

a

n+1

z

n

n!

(left shift)

zA(z) =

1

X

n=0

na

n-1

z

n

n!

(index multipli
ation)

A(z) -A(0)

z

=

1

X

n=1

a

n+1

n+ 1

z

n

n!

(index division)

A(�z) =

1

X

n=0

�

n

a

n

z

n

n!

(s
aling)

A(z) + B(z) =

1

X

n=0

(a

n

+ b

n

)

z

n

n!

(addition)

A

0

(z) -A(z) =

1

X

n=0

(a

n+1

- a

n

)

z

n

n!

(di�eren
e)

A(z)B(z) =

1

X

n=0

n

X

k=0

�

n

k

�

a

k

b

n-k

!

z

n

n!

(binomial
onvolution)

e

z

A(z) =

1

X

n=0

n

X

k=0

�

n

k

�

a

k

!

z

n

n!

(binomial sum)

Table 4.4: Some operations with EGFs. Again we de�ne a

n

= b

n

= 0 for

n < 0.

72 CHAPTER 4. GENERATING FUNCTIONS

Let M

1

(z) and M

2

(z) be the
orresponding generating fun
tions for the

setsM

1

andM

2

. Let x denote an atomi
 obje
t and f be the fun
tion that

maps atomi
 obje
t to there sizes. Then the following formulas show how

to
onstru
t M(z):

M = ; �!M(z) = 0

M = fxg =)M(z) = z

jxj

M = M

1

[M

2

�!M(z) = M

1

(z) +M

2

(z) falls M

1

\M

2

= ;

M = M

1

�M

2

�!M(z) = M

1

(z)M

2

(z)

M =

1

[

k=1

M

k

1

�!M(z) =

M

1

(z)

1-M

1

(z)

Binary trees, for example,
an be de�ned as

B = [
� B � B;

where j j = 0 and j
 j = 1. This leads dire
tly to a fun
tional equation

for B(z):

B(z) = 1+ zB(z)

2

It is the same equation we have gotten by using re
urren
es and we already

solved it.

Ordered, rooted trees with an arbitrary number of
hildren
an be de�ned

as

T = [
�

1

[

k=1

T

k

;

whi
h immeadiate yields the following equation:

T(z) = 1+

zT(z)

1- T(z)

If we solve this equation for T(z) we get:

T(z) = 1-

z

2

�

1

2

p

z(z- 4):

This fun
tion, however,
annot be expanded into a power series. We
annot

even say what T(0) is. It does not seem to be a real number. We know,

on the other hand, that if T(z) =

P

1

n=0

t

n

z

n

then T(0) = t

0

, the number

of trees of size 0. We de�ned sizes of atomi
 obje
ts just as in the
ase of

4.4. THE SYMBOLIC METHOD 73

binary trees: An internal node has size one and an external node size zero.

So there is exa
tly one tree of size zero and that means T(0) = 1. How is

this
ontradi
tion possible?

Let us
ount again. A

ording to our de�nition there is exa
tly on tree of

size zero, but how many trees of size one are there? Well, su
h a tree must

have exa
tly one internal node, whi
h has to be the root. It
an have one,

two, three, or any other number of
hildren that are then external nodes.

All these trees have size one, but there are in�nitely many. So t

1

would not

be a natural number. Obviously, the symboli
 does not work for in�nitely

big sets of obje
ts that have a �xed number nor should it work. We
an

express only �nite numbers with generating fun
tions.

Let us form the question in a di�erent way that makes more sense: How

many rooted, oriented trees are there with n nodes,
ounting both internal

and external ones?

Now we get the fun
tional equation

T(z) = z+

zT(z)

1- T(z)

;

whi
h looks as follows if solved for T(z):

T(z) =

1

2

�

1

2

p

1- 4z

We
an easily expand this one into a power series:

T(z) =

1

2

+

1

2

1

X

n=0

�

1=2

n

�

(-4)

n

z

n

For n > 0 we get

[z

n

℄T(z) = -

1

2

�

1=2

n

�

(-4)

n

Testing the
losed formula with small numbers shows that indeed there are

exa
tly 14 trees of size 5, whi
h
an be veri�ed by hand. Even simpler to

he
k is the fa
t that there are indeed only two trees with exa
tly three

nodes.

Up to now we assumed that the same atomi
 obje
ts are not distinguishable.

For example, the set obje
ts de�ned in the following
ontains exa
tly one

obje
t of size n for ea
h n > 0 (and no obje
t of size 0):

A = fxg [fxg�A

74 CHAPTER 4. GENERATING FUNCTIONS

The set A simply
onsists of all n-tupels (x; x; x; : : : ; x) and for ea
h size

there is exa
tly one of them.

If we distinguished atoms from ea
h other, we would get n! di�erent n-

tupels.

Let us
all obje
ts as de�ned up to now unlabeled obje
ts and obje
ts,

where atoms are distinguished from ea
h other, labeled obje
ts.

For these labeled obje
ts EGFs are the tool of
hoi
e be
ause there are by

a fa
tor of n! more labeled than unlabeled obje
ts if they
onsists of atomi

obje
ts of size 1. If the atomi
 obje
ts are bigger the fa
tor is di�erent, but

in general there are mu
h more labeled than unlabeled obje
ts and EGFs

are better at very big numbers.

Now let

^

M(z) be the EGF

^

M(z) =

1

X

n=0

m

n

z

n

n!

;

where m

n

denotes the number of di�erent labeled obje
ts of size n in the

set M.

M = ; �!

^

M(z) = 0

M = fxg �!

^

M(z) = z

jxj

M = M

1

[M

2

�!

^

M(z) =

^

M

1

(z) +

^

M

2

(z) falls M

1

\M

2

= ;

M = M

1

�M

2

�!

^

M(z) =

^

M

1

(z)

^

M

2

(z)

M =

1

[

k=1

M

k

1

�!

^

M(z) =

^

M

1

(z)

1-

^

M

1

(z)

The EGF's behave for labeled obje
t in the same way as OGF's behave for

unlabeled obje
ts.

4.5 Average Sta
k Height

Let us look at a larger, non-trivial example. Assume we have an algorithm

that solves a problem of size n re
ursively by a divide-and-
onquer ap-

proa
h. If n = 1 it is solved dire
tly and otherwise the problem is split into

two parts of sizes m and n-m, where m;n-m > 0. The �rst subproblem

4.5. AVERAGE STACK HEIGHT 75

of size m is solved at on
e re
ursively and the other is pushed onto a sta
k

for later. After both subproblems are solved, the solutions
an be
ombined

into a solution of the original problem.

We are interested in the amount of memory used for the sta
k. To be

more pre
ise: the average size of the sta
k over the running time of the

algorithm. A modern runtime system releases memory if the sta
k shrinks.

Furthermore, we assume that every re
ursive
all stru
ture possible o

urs

with the same probability. Su
h a
all stru
ture
orresponds to exa
tly one

re
ursive tree of
alls, whi
h is a binary tree.

An inner node of this binary tree
orresponds to a subproblem of size at

least two, while a leaf
orresponds to a subproblem of size one. Hen
e, the

tree has n - 1 internal and n external nodes. The memory usage of the

sta
k used for the subproblem at a node is the distan
e to the root or the

path length of this node. The average sta
k usage is therefore

�(t) + �(t)

2n- 1

=

2�(t) + 2n

2n- 1

for a tree t with n internal nodes.

Therefore it is suÆ
ient to answer this question: How big is �(t) on average

for all binary trees t with n internal nodes?

For this end we
ompute

p

n

=

X

t2T

�(t)(jtj = n);

where T is the set of all binary trees. To get the average external path

length of all binary trees all we have to do is divide p

n

by the number of

binary trees. The latter number is already known to us. It is b

n

=

1

n+1

�

2n

n

�

.

Let us
ompute p

n

. Let P(z) be the
orresponding OGF

P(z) =

1

X

n=0

p

n

z

n

=

X

t2T

�(t)z

jtj

:

We will also need the number b

n

of binary trees of size n and the
orre-

sponding OGF B(z):

B(z) =

1-

p

1- 4z

2z

76 CHAPTER 4. GENERATING FUNCTIONS

It t 2 t

1

�t

2

, then �(t) = �(t

1

)+�(t

2

)+jtj-1. We split P(z)
orrespondingly

into

P(z) =

X

t=t

1

�t

2

2T

�(t

1

)z

jtj

+

X

t=t

1

�t

2

2T

�(t

2

)z

jtj

+

X

t=t

1

�t

2

2T

jtjz

jtj

-

X

t=t

1

�t

2

2T

z

jtj

=

= A+ B+ C-D;

where

A =

X

t=t

1

�t

2

2T

�(t

1

)z

jtj

B =

X

t=t

1

�t

2

2T

�(t

2

)z

jtj

C =

X

t=t

1

�t

2

2T

jtjz

jtj

D =

X

t=t

1

�t

2

2T

z

jtj

:

Let us have a
loser look at A, B, C, and D. an. The easiest is by far D,

whi
h turns out to be nothing else but B(z) - 1.

A =

X

t=t

1

�t

2

2T

�(t

1

)z

jtj

=

X

t=t

1

�t

2

2T

�(t

1

)z

jt

1

j+jt

2

j+1

=

= z

X

t

1

2T

�(t

1

)z

jt

1

j

X

t

2

2T

z

jt

2

j

= z

X

t2T

�(t)z

jtj

X

t2T

z

jtj

= zP(z)B(z)

We
an handle B in the same way. Be
ause of symmetry between t

1

and

t

2

we get A = B. The power series C looks like a �rst direvative and after

some small manipolations we see that it is
losely related to B(z)

0

.

C =

X

t=t

1

�t

2

2T

jtjz

jtj

= z

X

t=t

1

�t

2

2T

jtjz

jtj-1

= z

�

X

t=t

1

�t

2

2T

z

jtj

�

0

= zB(z)

0

:

Altogether the result is

P(z) = 1+ 2zP(z)B(z) + zB(z)

0

- B(z)

4.5. AVERAGE STACK HEIGHT 77

or, if we solve for P(z),

P(z) =

1- 1=z

p

1- 4z

+

1=z- 3

1- 4z

=

�

1-

1

z

�

1

X

n=0

�

-1=2

n

�

(-4)

n

z

n

+

�

1

z

- 3

�

1

X

n=0

4

n

z

n

=

�

1-

1

z

�

1

X

n=0

�

2n

n

�

z

n

+

�

1

z

- 3

�

1

X

n=0

4

n

z

n

=

1

X

n=0

�

2n

n

�

z

n

-

1

X

n=0

�

2(n+ 1)

n+ 1

�

z

n

- 3

1

X

n=0

4

n

z

n

+

1

X

n=0

4

n+1

z

n

=

1

X

n=0

4

n

z

n

-

1

X

n=0

3n+ 1

n+ 1

�

2n

n

�

z

n

Exer
ises

4.1 Find the generating fun
tions of the following series:

1. a

n

= 2

n

+ 3

n

2. b

n

= (n+ 1)2

n+1

3.

n

= �

n

�

k

n

�

4. d

n

= (n- 1) 5. e

n

= (n+ 1)

2

4.2 Find the generating fun
tion for the series de�ned by the follwing re
urren
e:

f

n

= f

n-1

+ 2f

n-2

+ 3f

n-3

+ � � �+ nf

0

for n > 0 und f

0

= 1.

4.3 Expand the following generating fun
tions into a power series. What is a

losed formula for their nth
oeÆ
ient?

1. A(z) = 3

z

2. B(z) = 1=

p

1- z=2

3. C(z) = (1+ z)=(1- z)

4.4 Express

�

1=2

n

�

as an expression that
ontains only integers in its binomial

oeÆ
ients.

4.5 Answer the following question with the help of Lagrange inversion: How

many di�erent expressions
an be generated in exa
tly n steps with the following

ontextfree grammar? (if, then, else, �, true, and false are the terminal symbols)

S ! if S then S else S � j

if S then S � j

true j

false

78 CHAPTER 4. GENERATING FUNCTIONS

4.6 Let us
all a sequen
e of push- and pop-operations, in short " and #, valid, if

it
ontains the same number of "'s and #'s and no pre�x in the sequen
e
ontains

less "'s than #'s. For example, ("; "; #; #; "; #) is valid, ("; #; "; ") and ("; #; #; ") are

not valid. The number of "'s in a sequen
e is the length of the sequen
e.

What is the number of valid sequen
es of length n?

4.7 A peak in a valid sequen
e (see the last exer
ise) is a pair of neighboring

elements ("; #).

Find the bivariate generating fun
tion for the number of valid sequen
es of length

n with exa
tly m peaks. Use the symboli
 method.

Hint: It might be a good idea to distinguish the
ases exa
tly on peak and at

least two peaks at �rst.

4.8 What is the bivariate generating fun
tion for the number of binary trees with

n internal andm external nodes. Find an interesting fa
t about
hanging the roles

of n and m.

4.9 Using the
losed formula for p

n

ompute the average sta
k height. Use an

asymptoti
 estimate for

�

2n

n

�

with the help of Stirling's formula. Present your

result as pre
isely as possible.

Chapter 5

Asymptoti
 Estimations

Often, an approximative solution is suÆ
ient, whi
h is only asympoti
ally

valid, if it di�ers only a little from the real solution. Sometimes it is not

possible at all to get the exa
t solution in a
losed form and sometimes, even

though it might be possible, but the resulting formula is very
ompli
ated.

A formula being only asympto
i
ally valid, but simpler,
an be more useful.

An example for this
ase was the median intern path length of a binary tree

with n intern nodes. The exa
t and asymptoti
 solution that we worked

out were

4

n

-

3n+ 1

n+ 1

�

2n

n

�

= n

p

�n- 3n+O(

p

n):

At last, there is a third possibility: Sometimes, one
an
ompute a good

approximation with little e�ort but only �nd out the exa
t solution with

very high e�ort. If the approximative solution is suÆ
ient, then it is not

worth the e�ort.

In addition to O-notation we also use the symbols � and �. The de�nition

of �
omes later, and � is used in two ways.

We write

f(n) � g(n) () f(n) = g(n) + o(g(n)):

For example, ln(n + 1=n) � ln(n) for n ! 1, where we
an leave out the

latter part if it is known from the
ontext. A further example is e

x

� 1+ x

for x! 0.

The se
ond possibility to use � are asymptoti
 expansions. In this
ase,

the right side of the relation is a series.

79

80 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9

√
z

Figure 5.1: Approximating a sum by an integral.

We write

f(n) �

1

X

k=0

g

k

(n) () f(n) �

m

X

k=0

g

l

(n) for all m 2 N: (5.1)

An asymptoti
 expansion o�ers a whole sequen
e of approximations to f(n)

getting more and more pre
ise.

The easiest way to get to asymptoti
 expansions is to expand it into a

power series. In these
ases, we
an even use the symbol = instead of �. In

general, however, we
annot repla
e � by = in an asymptoti
 expansion.

5.1 Euler's summation formula

Euler's summation formula is based on repla
ing a sum by an integral.

Theorem 7. (Euler's summation formula)

If

R

n

1

jf

(i)

(x)jdx exists for 1 � i � 2m, then

n

X

k=1

f(k) =

Z

n

1

f(x)dx+

1

2

f(n) + C+

m

X

k=1

B

2k

(2k)!

f

(2k-1)

(n) + R

m

;

where R

m

= O

�R

n

1

jf

(2m)

(x)jdx

�

and B

k

= n![z

n

℄z=(e

z

-1) are the Bernoulli-

numbers:

n 0 1 2 3 4 5 6

B

n

1 -

1

2

1

6

0 -

1

30

0

1

42

5.2. SINGULARITY ANALYSIS 81

If f

(i)

= o(f

(i+1)

) holds for all i, then Euler's summation formula gives us

an asymptoti
 expansion. We present two examples.

The harmoni
 numbers are de�ned by the sum

H

n

=

X

k=1

1

k

:

So we set f(x) = 1=x and must now
ompute the i-th derivative of f(x). In

this
ase this is very simple and we get

f

(i)

(x) = i!(-1)

i

x

-1-i

:

The
onditions of Euler's summation formula are ful�lled and we get

n

X

k=1

1

k

�

Z

n

1

dx

x

+

1

2n

+ C+

m

X

k=1

B

2k

(2k)!

-(2k- 1)!

n

-2k

� lnn+
+

1

2n

-

1

12n

2

+ � � �

The unknown
onstant is
alled
 and
annot be represented in an easy

way by other known mathemati
al
onstants.

As the next example we
hoose n!. Sin
e n! is de�ned by the use of a

produ
t instead of a sum, we apply Euler's summation formula to ln(n!)

instead.

ln(n!) =

n

X

k=1

ln(k) �

Z

n

1

ln(x)dx+

1

2

lnn+ ln�+

1

X

k=!

B

2k

(2k)!

(2k- 2)!

n

2k-1

� (n+

1

2

) lnn- n+ ln�+

1

12n

-

1

360n

3

+ � � �

From this we obtain the approximation for n!. It turns out that � =

p

2�.

n! �

p

2�n

�

n

e

�

n

�

1+

1

12n

+

1

288n

2

-

139

51840n

3

+ � � �

�

5.2 Singularity Analysis

Euler's summation formula was an appli
ation of
al
ulus of real numbers.

The methods of the real
al
ulus are, however, too limited. Now we turn

82 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

n! =

p

2�n

�

n

e

�

n

�

1+

1

12n

+

1

288n

2

+O(n

-3

)

�

(Stirling's formula)

H

n

= lnn+
+

1

2n

-

1

12n

2

+O(n

-4

) (Harmoni
 numbers);

with
 � 0:57721566490153286060651209

Table 5.1: Some important asymptoti
 approximations

the
omplex
al
ulus. In the following we are interested primarily in ap-

proximations of the
oeÆ
ients of an OGF or EGF.

Our �rst theorem will be the easiest to use but also deliver the most inexa
t

approximations Firstly, we deal only with the exponential grwoth of these

oeÆ
ients.

To this end, we de�ne for a sequen
e a

n

and a positive real number K

a

n

� K

n

() lim sup

n!1

ja

n

j

1=n

= K:

We
an also de�ne a

n

� K

n

as follows: For ea
h � > 0, no matter how

small, ja

n

j > (K-�)

n

holds for in�nitely many n, and ja

n

j < (K+�)

n

holds

for all n expe
t �nitely many ex
eptions.

We
an also say that a

n

= �(n)K

n

for all n, where �(n) is a subexponential

fun
tion (whi
h grows slower than any exponential fun
tion).

A fun
tion f is analyti
 in z

0

if f(z) =

P

1

n=0

f

n

z

n

in a neighborhood of z

0

.

Here, z

0

is some
omplex number and the neighborhood lies in the
omplex

plane.

The fun
tion z 7! 1=z is analyti
 in the entire plane expe
t in the origin.

A point in whi
h a fun
tion stops being analyti
al is
alled a singularity

of this fun
tion. The fun
tion z 7! 1=z therefore has the singularity 0.

We
all a singularity dominant if it is a singularity with a minimal absolute

value. A theorem going ba
k to Pringsheim is often helpful for us. It

says that the dominant singularity of a power series with non-negative

oeÆ
ients always is a positive real number. This helps us to �nd the

dominant singularity qui
kly.

Theorem 8. The dominant singularities of a GF f(z) determine their ex-

ponential growth: Let f(z) be a GF and z

0

be a dominant singularity with

5.2. SINGULARITY ANALYSIS 83

Figure 5.2: The absolute value of the fun
tion S(z) = 1=(2 - e

z

). The

dominant singularity at ln 2
an be seen in the middle. Next to it are the

next two singularities at ln 2� 2�i.

R = jz

0

j. Then

[z

n

℄f(z) �

�

1

R

�

n

:

Let us look at the EGF S(z) and the OGF U(z) as examples, represented

as

S(z) =

1

2- e

z

and U(z) =

1- z-

p

(1- 3z)(1+ z)

2z

in
losed form. The fun
tion S(z) has singularities for all z with e

z

= 2,

whi
h means z = ln(2) + 2k�i for all k 2 Z. The dominant singularity is

ln 2 and we get

n![z

n

℄S(z) � n!

�

1

ln 2

�

n

:

In U(z) we �nd the singularities at ea
h z, for whi
h the expression under

the root be
omes 0; these are

1

3

and -1. At 0, U(z) has no singularity,

be
ause lim

z!0

U(z) =

1

2

. The dominant singularity is

1

3

and therefore

[z

n

℄U(z) � 3

n

:

84 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

5.3 Meromorphi
 fun
tions

The exponential growth
an be easily determined for arbitrary GFs. The

next formula gives us a more pre
ise approximation. It works, however,

only for a sub
lass of all fun
tions | for the meromorphi
 fun
tions that

we de�ne now.

A fun
tion f(z) is meromorphi
 in z

0

, if there are fun
tions g(z) and h(z),

su
h that

f(z) =

g(z)

h(z)

for z 2 U - fz

0

g, where U is a neighborhood of z

0

(of
ourse, h = 0 is not

allowed) and g(z) and h(z) are analyti
 in z

0

.

It is easy to see that f(z) is meromorphi
 in z

0

i� there is a series expansion

of the form

f(z) =

1

X

n=-k

a

n

(z- z

0

)

n

=

=

a

-k

(z- z

0

)

k

+

a

-(k-1)

(z- z

0

)

k-1

+ � � � +

a

-1

z- z

0

+

1

X

n=0

a

n

(z- z

0

)

n

=

P(z)

(z- z

0

)

k

+

1

X

n=0

a

n

(z- z

0

)

n

=

in a neighborhood of z

0

. Here k is some positive integer and we
an assume

that a

-k

6= 0. The polynomial P(z) is

P(z) =

k-1

X

n=0

a

n-k

(z- z

0

)

n

:

We
all this the Laurent series of f(z) in z

0

.

We say that f(z) has a pole of order r in z

0

if f(z)(z

0

- z)

r

is analyti
 in

z

0

, but f(z) is not. In the Laurent series above f(z) has a pole of order k

in z

0

. A fun
tion f is meromorphi
 in a domain U if f is meromorphi
 in

every z

0

2 U. It should be obvious by now that

f(z) -

-1

X

n=-k

a

n

(z- z

0

)

n

= f(z) -

P(z)

(z- z

0

)

k

5.3. MEROMORPHIC FUNCTIONS 85

has no pole in z

0

(in fa
t it does not have a singularity in z

9

). If f is mero-

morphi
 in a domain U we
an in prin
iple \
an
el" all poles by adding

a simple fun
tions. What remains is an analyti
 fun
tion in U. In that

ase the
oeÆ
ients [z

n

℄f(z) depend mainly on the behavior of the sim-

ple fun
tions that
an
eled the poles be
ause the remaining fun
tion has

asymptoti
ally small
oeÆ
ients (its exponential growth is zero!). We
an

use this fa
t in the following theorem:

Theorem 9. Let f(z) be meromorphi
 for jzj � R. Inside this
ir
le let f(z)

have poles �

1

; �

2

; : : : ; �

m

. Moreover, let f(z) be analyti
 in the origin and

in z with jzj = R. Then there are polynomials P

1

(z); : : : ; P

m

(z) su
h that

[z

n

℄f(z) =

m

X

j=1

P

j

(n)�

-n

j

+O(R

-n

):

The degree of P

j

(z) is one less than the order of the pole �

j

.

We
an easily �nd out how these polynomials look like. et us look again

at S(z) = 1=(2- e

z

) as an example. If we
hoose R = 6, then there is only

one singularity at ln 2 inside the
ir
le jzj = R. The pole ln 2 has order 1.

Let us see how S(z) behaves asymptoti
ally for z! ln 2.

We have e

z

� 2- 2 ln(2) + 2z for z! ln 2 and therefore

1

2- e

z

�

1

2

1

ln 2- z

=

1

2 ln 2

1

1- (1= ln 2)z

=

1

2 ln 2

1

X

n=0

�

1

ln 2

�

n

z

n

:

The polynomial P

1

(z) is 1=(2 ln 2). In general you spe
ify all P

i

(z) in this

way.

The solution to our
andidate problem is

[z

n

℄S(z) =

1

2

�

1

ln 2

�

n+1

+O(6

-n

):

Let us look at another example demonstrating that we
an arrive at a very

good approximation with relative easy, while it seems to be impossible hard

to get an exa
t solution.

A well known example from probability are the seamen who
hoose their

hammo
ks randomly. In this story there are n seamen who return drunk

86 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

to their ship from shore leave. They
hoose a random hammo
k and go

to sleep. It is easy to see that the expe
ted number of seamen who sleep

in their own hammo
ks is exa
tly 1 be
ause for ea
h one the probability

is 1=n. How big, however, is the probability that no seaman sleeps in his

own hammo
k?

We
all a permutation without a �xpoint a derangement. The seaman

probability is
losely related to the problem of
ounting the number D

n

of

derangements of set of size n. Sin
e a permutation is not an derangements

if it
ontains between one and n �xpoints and there are exa
tly

�

n

k

�

D

n-k

permutations with exa
tly k �xpoints, we
an easily �nd a re
urren
e for

D

n

:

D

n

= n! -

n

X

k=1

�

n

k

�

D

n-k

We rewrite it into this simpler form:

n! =

n

X

k=1

�

n

k

�

D

k

Being marked obje
ts we opt for using an EGF to solve this equation. The

right hand side looks like a binomial sum and we get

1

1- z

= e

z

D(z);

whi
h gives us a
losed form for the EGF for D

n

:

D(z) =

e

-z

1- z

We
an read o� interesting properties right away. First, there is only one

singularity at 1. Hen
e, n![z

n

℄D(z) � n! and D

n

� n! or, stated in a

di�erent way, the fa
tor between D

n

and n! is subexponential. This might

be a surprise to you be
ause it implies that relatively many permutations

must be derangements. The probability that all seamen sleep in other's

hammo
ks must be quite high.

But how high is the probability exa
tly? Let us pro
eed in our analysis.

The fun
tion e

-z

is analyti
 in the whole
omplex plane and has its sole

singularity in 1. Su
h a fun
tion is also
alled an entire fun
tion. This

5.3. MEROMORPHIC FUNCTIONS 87

means that D(z) is meromorphi
 and has a pole of �rst order at 1. This

means that we
an write

n![z

n

℄D(z) = P

1

(n)�

n

1

+O(R

-n

) = C � 1

n

+O(R

-n

)

allowing us to
hoose R arbitrarily big. The
onstant C is the polynomial

of zeroth order and we
an establish the value of C by estimating D(z) for

z! 1:

e

-z

1- z

�

1

e

1

X

n=0

z

n

for z! 1

The �nal result turns out to be

D

n

=

n!

e

+O(n!�

n

)

for every � > 0. The error term approa
hes zero very fast and we
an

expe
t that the approximation is good even for relatively small n. There

is, however, no guarantee for that. This hidden
onstant in the O-notation

ould be giganti
 and as it depends on � there is always a tradeo�: If we

hoose a very small � the
onstant will be big.

Table 5.2 shows that the approximation is quite ex
ellent.

Let us look at another example, the generating fun
tion

L(z) =

1

X

n=0

L

n

z

n

=

z(1- z)

e

z-1

- z

;

where L

n

is the length of the nth run of a random series of numbers (
hosen,

say, from the unit interval). It is easy to see that L

1

= 1+

1

2

+

1

3!

+

1

4!

+ � � � =

e- 1.

Where are the singularities of L(z)? We �nd the dominant singularity at

z

0

= 1 on the positive real axis and the next two singularities form a

onjugate
omplex pair z

1

and �z

1

in the right upper and lower quadrant.

As we are looking for a z with e

z-1

= z we have simultaneously to ful�l the

equations e

x-1

osy = x and e

x-1

siny = y for the real and imaginary part.

Figure 5.3 shows the sheaf of singularities. We establish the order of the

pole at z

0

= 1: It turns out that

lim

z!1

1- z

e

z-1

- z

= lim

z!1

-1

e

z-1

- 1

88 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

n D

n

n! n!=D

n

2 1 2 2.000000000000000

3 2 6 3.000000000000000

4 9 24 2.666666666666667

5 44 120 2.727272727272727

6 265 720 2.716981132075472

7 1 854 5 040 2.718446601941748

8 14 833 40 320 2.718263331760264

9 133 496 362 880 2.718283693893450

10 1 334 961 3 628 800 2.718281657666404

11 14 684 570 39 916 800 2.718281842777827

12 176 214 841 479 001 600 2.718281827351874

13 2 290 792 932 6 227 020 800 2.718281828538486

14 32 071 101 049 87 178 291 200 2.718281828453728

15 481 066 515 734 1 307 674 368 000 2.718281828459379

16 7 697 064 251 745 20 922 789 888 000 2.718281828459026

17 130 850 092 279 664 355 687 428 096 000 2.718281828459046

18 2 355 301 661 033 953 6 402 373 705 728 000 2.718281828459045

19 44 750 731 559 645 106 121 645 100 408 832 000 2.718281828459045

Table 5.2: n!=e is a very good approximation for D

n

. The exa
t value of e

to 15 de
imal digits is 2:718281828459045.

5.4. ALGEBRAIC SINGULARITIES 89

Figure 5.3: The absolute value of z(1-z)=(e

z-1

-z). In the middle you �nd

the sole zero at z = 0. Next to it lies the dominant singularity at z = 1,

surrounded by a sheaf of
onjugated
omplex singularities.

does not exist, but

lim

z!1

1- z

e

z-1

- z

(z- 1) = lim

z!1

z

2

- 2z+ 1

z- e

z-1

= lim

z!1

2z- 2

1- e

z-1

= lim

z!1

2

-e

z-1

= -2

does. Therefore z

0

= 1 is a �rst order pole.

Furthermore, L(z) + 2=(z- 1) has no singularity at z = 1 and the next sin-

gularities are far away: They are jz

1

j = j�z

1

j = 8:07556 : : : > 8 and therefore

[z

n

℄L(z) = L

n

= [z

n

℄

-2

z- 1

+O(8

-n

) = 2+O(8

-n

):

The series L

n

onverges qui
kly towards 2.

5.4 Algebrai
 Singularities

A fun
tion f(z) has an algebrai
 singularity at z

0

if we
an write f(z) as

f(z) = h(z) +

m

X

j=1

�

1-

z

z

0

�

j

g

j

(z);

where h(z) and g

j

(z) are analyti
 z

0

and

j

6= f0; 1; 2; : : :g.

90 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

−3

−2

−1

0

1

2

3

4

5

−4 −3 −2 −1 0 1 2 3 4

Figure 5.4: The Gamma fun
tion.

Poles are spe
ial algebrai
 singularities.

Unfortunately we
annot �nd as good approximations for the
ase of al-

gebrai
 singularities as for poles. We will be
ontent with the following

theorem by Darboux, whi
h allows us to �nd asymptoti
 estimates with-

out too mu
h work.

Theorem 10. Let f(z) be analyti
 for jzj < R and let all singularities on

jzj = R be algebrai
 ones. Let

f(z) = h(z) +

k

X

j=1

(1- z=�

j

)

j

g

j

(z);

where h(z) and all g

j

(z) are analyti
 on jzj � R and let �

j

be the singularities

5.4. ALGEBRAIC SINGULARITIES 91

on jzj = R. Moreover

j

=2 f0; 1; 2; : : :g.

We de�ne a = minf<(

j

) j 1 � j � k g. Then

[z

n

℄f(z) =

X

j

g

j

(�

j

)n

-

j

-1

�(-

j

)�

n

j

+ o(R

-n

n

-a-1

);

where the sum is taken over all j with <(

j

) = a.

The rough idea behind Darboux's method is the same as for our treatment

of poles: If G(z) has an algebrai
 singularity � then we �nd a fun
tion

H(z) that has a similar algebrai
 singularity, but is easily expanded into a

power series. If we
hoose H(z) wisely, then [z

n

℄G(z) � [z

n

℄H(z) be
ause

[z

n

℄(G(z) - H(z)) grows asymptoti
ally slower. Unfortunately, we
annot

make the algebrai
 singularity appear
ompletely in this way as was the

ase for poles.

For the purpose of illustration we
onsider

G(z) =

p

(1- z)(1- �z)

with � < 1. The singularities ofG(z) are 1 and 1=�, where 1 is the dominant

one. The singularity 1 is algebrai
 be
ause G(z) = (1- z)

1=2

R(z) with R(z)

being analyti
 in 1. We are now looking for a
omparison fun
tion H(z)

su
h that [z

n

℄(G(z)-H(z)) is small making [z

n

℄H(z) a good approximation

of [z

n

℄G(z). For this end H(z) should have an algebrai
 singularity at 1 and

behave identi
ally to G(z) near 1. Using a Taylor approximation for R(z)

at z = 1 we �nd a ni
e fun
tion that is asymptoti
ally identi
al to G(z) for

z! 1:

G(z) � (z- 1)

1=2

p

�- 1+ (z- 1)

3=2

�

p

(�- 1)

2(�- 1)

- (z- 1)

5=2

�

2

p

(�- 1)

8(�- 1)

2

We
hoose H(z) = (1 - z)

1=2

p

1- � and look at G(z) - H(z) = (1 -

z)

1=2

(

p

1- �z -

p

1- �). The se
ond fa
tor

p

1- �z -

p

1- � has no

singularity at 1. On the
ontrary:

p

1- �z -

p

1- � � 0 for z ! 1. That

is exa
tly what we expe
ted and even

p

1- �z-

p

1- �

1- z

92 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

has no singularity at 1. Therefore we are able to write G(z) -H(z) as

G(z) -H(z) = (1- z)

3=2

p

1- �z-

p

1- �

1- z

:

Just like G(z) the fun
tion G(z)-H(z) has still an algebrai
 singularity at

1, but its order dropped from 1=2 to 3=2. We will see that the
oeÆ
ients of

G(z) -H(z) are asymptoti
ally mu
h smaller than the
oeÆ
ients of G(z).

In that way [z

n

℄H(z) be
omes a good approximation of [z

n

℄G(z).

To estimate [z

n

℄(G(z)-H(z)) we write G(z)-H(z) = A(z)B(z) with A(z) =

(1-z)

3=2

and B(z) = (

p

1- �z-

p

1- �)=(1-z). The dominant singularity

of B(z) is 1=� and therefore [z

n

℄B(z) � �

-n

or [z

n

℄ = O(r

-n

) for some r > 1

(and r < 1=�).

The
oeÆ
ients for A(z)B(z)
an be expressed as a
onvolution:

[z

n

℄(A(z)B(z)) =

n

X

k=0

a

k

b

n-k

At the beginning of the sum the a

k

's are relatively big and towards the

end the b

n-k

's. This suggests splitting the sum into two parts. For b

n

we

already have the good bound b

n

= O(r

-n

) and we
an get a good bound

for a

n

by expanding A(z) a

ording to Newton's formula:

a

n

=

�

3=2

n

�

(-1)

n

=

�

n- 5=2

n

�

= O(n

-5=2

)

This enables us to estimate the partial sum generously:

dn=2e

X

k=0

a

k

b

n-k

= O(r

-n=2

)

n

X

bn=2

a

k

b

n-k

= O(n

-5=2

)

Altogether we get [z

n

℄(G(z) -H(z)) = O(r

-n=2

) +O(n

-5=2

) = O(n

-5=2

) and

therefore [z

n

℄G(z) = [z

n

℄H(z)+O(n

-5=2

). Be
ause we
an expand H(z) into

a power series we get the following result:

[z

n

℄G(z) =

p

1- �

�

1=2

n

�

(-1)

n

+O(n

-5=2

) = -

p

1- �

n

-3=2

�(-1=2)

+O(n

-5=2

)

5.5. THE SADDLE POINT METHOD 93

Let n = 50 and � = 1=2. The exa
t value of [z

n

℄G(z) is then

-

99827864011764212779295458819104396304431

178405961588244985132285746181186892047843328

= -5:595545 : : :�10

-4

and

p

1- 1=2(-1)

50

�

1=2

50

�

= -5:684655 : : :� 10

-4

:

5.5 The Saddle Point Method

The last subse
tion is dedi
ated to generating fun
tion that have no sin-

gularities. We have not seen any method to handle su
h fun
tions and to

extra
t their
oeÆ
ient, yet.

We will get help from the famous redidue theorem of
omplex
al
ulus.

From this theorem the following follows easily:

g

n

=

1

2�i

Z

�

G(z)

z

n+1

dz;

where � is a
losed smoothed
urve that travels around the origin
ounter

lo
kwise exa
tly on
e.

Why is this theorem
orre
t? We will not prove it here, but let us look at

a
ir
le around the origin:

Z

C

1

z

n+1

=

Z

2�

0

e

-(n+1)�i

de

�i

=

Z

2�

0

e

-(n+1)�i

ie

�i

d� =

i

Z

2�

0

e

n�i

d� =

Æ

2�i falls n = 0

1

n

e

n�i

�

�

2�

�=0

= 0 sonst

As it turns out, only for n = 0 we get a value that is not zero.

Be
ause the value of this
ontour integral does not depend on whi
h
urve

we
hoose (something we do not prove here) and the linearity of integration

the above theorem follows.

Usually these kind of theorems are used to
ompute integrals, but we are

using the method ba
kwards: We estimate the integral and get an approx-

imation for the
oeÆ
ients of a GF.

94 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

To
ompute su
h an integral approximately, we will use a heuristi
 that

gives the method its name. We are free to
hoose what
urve we use in the

integration and it turns out that some
urves are better for us than others.

Ideally, the integrand is almost zero on almost the whole
urve and is big

only on a tiny part. Then essentially we have to approximate an integral

on a very short
urve, whi
h is relatively easy.

If that is indeed possible then we
an split the
urve into two parts. For

one part we show that the
ontribution to the integral is very small. For

the se
ond part we have to
ompute the value with only a small error.

Be
ause the
urve is very short, this is possible by repla
ing the integrand

by a simpler fun
tion whose shape is almost the same on this short
urve.

A Taylor approximation, for example,
an do the tri
k.

There is a good heuristi
 to �nd su
h a
urve: We are taking an entire

fun
tion (with no singularities) and dividing it by z

n+1

. Hen
e, there is

only a single singularity in the origin (and one in 1). As the absolute

value of a fun
tion that is analyti
 in a domain D
annot have a maximal

value in D there must be a saddle point between the singularities 0 and

1. If your are at a saddle point the fun
tion will de
rease in two opposite

dire
tion usually quite steeply. So it is usually a good idea to
hoose a

urve that uses this steep slope to get on top of the saddle and then down

on the other side. In this way we
an hope that the fun
tion is small if you

are far from the saddle point. Of
ourse, we have to take
are what the

exa
t shape of the remaining
urve is be
ause we have to
lose it somehow.

We try to do this in a way that the
urve stays
lose to zero all the time.

Let us illustrate the method on the example of G(z) = e

z

be
ause this OGF

is relatively simple and we already know the result g

n

= 1=n!. This enables

us to see easily how big the error of our approximation is.

If we look at the fun
tion e

z

=z

n+1

we �nd a saddle point at n + 1. It is

suÆ
ient to set the derivative to zero.

Figure 5.5 depi
ts the absolute value of this fun
tion in the
omplex plane.

You
an see the saddle quite prominently.

For our
al
ulation it is better to go through n instead of n + 1 (whi
h is

still very
lose to the saddle point). We will just use a
ir
le with radius n

5.5. THE SADDLE POINT METHOD 95

Figure 5.5: The absolute value of e

z

=z

n+1

for n = 5.

as our
ontour.

1

2�i

Z

C

e

z

z

n+1

dz =

1

2�i

Z

2�

0

e

ne

i�

n

n+1

e

(n+1)i�

dne

i�

=

=

1

2�

Z

2�

0

e

ne

i�

n

n+1

e

(n+1)i�

ne

i�

d� =

1

2�

Z

2�

0

e

ne

i�

n

n

e

ni�

d� =

1

2�

A+ B

n

n

with

A =

Z

Æ

-Æ

e

ne

i�

e

ni�

d� and B =

Z

2�-Æ

Æ

e

ne

i�

e

ni�

d�

Choosing delta in a
lever should make A the dominant part of the integral

and B asymptoti
ally negle
table, i.e., B = o(A) and therefore A+ B � A.

We will analyse both A and B and we start with A:

A =

Z

Æ

-Æ

e

ne

i�

-ni�

d�

For the exponent we get:

ne

i�

- ni� � n(1-

�

2

2

+O(�

3

))

and therefore

A =

Z

Æ

-Æ

e

n(1-Æ

2

=2+O(�

3

))

d� = e

n

Z

Æ

-Æ

e

-n�

2

=2

(1+O(n�

3

))d� =

= e

n

(1+O(nÆ

3

))

Z

Æ

-Æ

e

-n�

2

=2

d�

96 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

To make sure that the approximation is good we need n�

3

= o(1) and thus

Æ = o(n

-1=3

): To
ompute the integral we substitute � = t

p

2=n and get:

Z

Æ

-Æ

e

-n�

2

=2

d� =

Z

Æ

p

n=2

-Æ

p

n=2

e

-t

2

dt

p

2=n =

r

2

n

Z

Æ

p

n=2

-Æ

p

n=2

e

-t

2

dt

There is no
losed solution for that integral, but the improper integral

R

1

-1

e

-t

2

dt =

p

� is well known.

r

2

n

Z

Æ

p

n=2

-Æ

p

n=2

e

-t

2

dt =

r

2

n

Z

1

-1

e

-t

2

dt- 2

r

2

n

Z

1

Æ

p

n=2

e

-t

2

dt =

=

r

2�

n

+O

n

-1=2

Z

1

Æ

p

n=2

e

-t

dt

!

=

r

2�

n

+O(n

-1=2

e

-Æ

p

n=2

) �

r

2�

n

This approximation is only true if Æ

p

n=2 = !(1) sin
e only then we
an

repla
e e

-t

2

by e

-t

. We have to
hoose Æ in a way su
h that Æ = !(n

-1=2

)

and get A �

p

2�=ne

n

.

Finally, we
an turn our attention to B:

jBj =

�

�

�

�

�

Z

2�-Æ

Æ

e

ne

i�

-ni�

d�

�

�

�

�

�

�

Z

2�-Æ

Æ

�

�

�

e

ne

i�

-ni�

�

�

�

d� =

=

Z

2�-Æ

Æ

e

n
os�

d� � 2�e

n
os Æ

� 2�e

n

� e

-nÆ

2

=2

= e

o(n)

if nÆ

2

= !(1) or Æ = !(n

-1=2

). We
an
hoose Æ = n

-5=12

in order to

ful�ll all
onditions for Æ. We get �nally: A + B �

q

2�

n

e

n

and therefore

1

2�i

R

C

e

z

z

n+1

dz =

1

2�

A+B

n

n

�

1

2�n

e

n

n

n

.

This yields an approximate formula n! �

p

2�n

n

n

e

n

for the fa
torial fun
tion.

Euler's summation formula is more pre
ise, but fails to identify Stirling's

onstant as � =

p

2�.

A real example for the saddle point method is the generating fun
tion

I(z) = e

z+z

2

=2

for the number of involutions { permutations � where �

2

is

the identity. To �nd the saddle point we see where the derivative is zero:

�

I(z)

z

n+1

�

0

=

(z+ 1)e

z+z

2

=2

z

n+1

- (n+ 1)

e

z+z

2

=2

z

n+2

5.5. THE SADDLE POINT METHOD 97

It is zero when z(z+ 1) = n+ 1, whi
h means that the saddle point is near

p

n. We
hoose as the
ontour again a
ir
le and leave its radius R for the

moment unspe
i�ed.

[z

n

℄I(z) =

1

2�i

Z

e

z+z

2

=2

z

n+1

dz =

1

2�i

Z

2�

0

e

Re

i�

+R

2

e

2i�

=2

R

n+1

e

i(n+1)�

dRe

i�

=

=

1

2�R

n

Z

2�

0

e

Re

i�

+R

2

e

2i�

=2-in�

d� =

1

2�R

n

(A+ B)

where

A =

Z

Æ

-Æ

e

Re

i�

+R

2

e

2i�

=2-in�

d�

and

B =

Z

2�-Æ

Æ

e

Re

i�

+R

2

e

2i�

=2-in�

d�:

Let us
onsider A �rst:

e

Re

i�

+R

2

e

2i�

=2-in�

= e

R(1+i�-�

2

=2+O(�

3

))+R

2

(

1

2

+i�-�

2

+O(�

3

))-in�

=

= e

R+R

2

=2

� e

-�

2

(R=2+R

2

)+i�(R+R

2

-n)+(R+R

2

)O(�

3

)

We
hoose R

2

+ R = n, be
ause then the fa
tor in front of i� vanishes.

Then R =

1

2

p

4n+ 1-

1

2

and we get

A = e

R+R

2

=2

Z

Æ

-Æ

e

-�

2

(n+O(

p

n))+O(�

3

)

d� =

= e

R+R

2

=2

Z

Æ

-Æ

e

-�

2

n

�

1+O(�

2

p

n))(1+O(n�

3

)

�

d� =

= e

R+R

2

=2

�

1+O(Æ

2

p

n) +O(Æ

3

n)

�

Z

Æ

-Æ

e

-�

2

n

d�

We need the properties Æ

2

p

n = o(1) and Æ

3

n = o(1) in order to get a

good approximation for A. This means that Æ = o(n

-1=3

) and Æ = o(n

-1=4

),

where the �rst
ondition is the stronger one.

Finally we
an turn our attention to the remaining integral. We substitute

98 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

Figure 5.6: The absolute value of e

z+z

2

=2

=z

n+1

for n = 5. Two possible

ontours are depi
ted. The outer
ir
le passes exa
tly through the saddle

point (at R(R+ 1) = n+ 1), while the inner
ir
le uses R(R+ 1) = n, whi
h

will be a ni
er identity in the
al
ulation that follows. You
an
learly see

the singularity in the origin. Along the real axis the fun
tion eventually

grows exponentially.

t = �=

p

n.

Z

Æ

-Æ

e

-�

2

n

d� =

Z

Æ

p

n

-Æ

p

n

e

-t

2

d

t

p

n

=

1

p

n

�

Z

-1

1

e

-t

2

dt- 2

Z

1

Æ

p

n

e

-t

2

dt

�

=

=

1

p

n

�

p

�+ o(1)

�

This yields

R

1

Æ

p

n

dt = o(1) if Æ

p

n = !(1), or if Æ = !(n

-1=2

). We need

Æ = o(n

-1=3

) and Æ = !(n

-1=2

) at the same time, so we
hoose Æ = n

-5=12

,

whi
h lies in between. Altogether we get

A = e

R+R

2

=2

r

�

n

(1+ o(1))

and we
an turn to B:

B =

Z

2�-Æ

Æ

e

Re

i�

+R

2

e

2i�

=2-in�

d�

We would like to show that B is small. For this end it is suÆ
ient to look

at the absolute value of the integrand:

e

R
os�+R

2

os(2�)=2

5.5. THE SADDLE POINT METHOD 99

For je

Re

i�

+R

2

e

2i�

=2-in�

j = o(e

R+R

2

=2

) it is suÆ
ient if one of the following

onditions is ful�lled:

1. 1-
os� = !(1=

p

n)

2. 1-
os 2� = !(1=n)

We have to show that for every � with Æ � � � 2� - Æ at least one of

the two
onditions holds. For this end we
he
k when the
onditions are

violated:

1. � = O

�

1=

p

n

�

or � = 2�+O

�

1=

p

n

�

2. � = O (1=n) or � = �+O (1=n) or � = 2�+O (1=n)

Both
onditions together leave only the possibility � = O (1=n) and � =

2�+O (1=n). Be
ause of n

-5

12

� � � 2�-n

-5

12

these
annot be true either.

Altogether we get

A+ B �

r

�

n

e

R+R

2

=2

;

whi
h
an be simpli�ed:

R+

R

2

2

= n-

R

2

2

= n-

1

8

�

p

4n+ 1- 1

�

2

=

= n-

1

8

�

4n+ 1- 2

p

4n+ 1+ 1

�

=

n

2

-

1

4

+

p

n

2

+O(1=n)

and therefore

A+ B �

r

�

n

e

n=2+

p

n=2-1=4

we get

[z

n

℄I(z) =

1

2�R

n

(A+ B) �

e

n=2+

p

n=2-1=4

2

p

�nR

n

Finally we simplify R

n

:

R

n

= e

n ln(

1

2

p

4n+1-

1

2

)

= e

n(ln

1

2

+ln(

p

4n(1-1=

p

4n+O(1=n))))

=

= 2

-n

p

4n

n

e

n(-1=

p

4n+O(1=n))

� n

n=2

e

-

p

n=2

100 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

The �nal result is

[z

n

℄I(z) �

e

n=2+

p

n=2-1=4

2

p

�nR

n

�

e

n=2+

p

n=2-1=4

2

p

�nn

n=2

e

-

p

n=2

=

e

n=2+

p

n-1=4

2

p

�n � n

n=2

and

I

n

= n![z

n

℄I(z) �

p

2�n

n

n

e

n

e

n=2+

p

n-1=4

2

p

�n � n

n=2

=

n

n=2

e

p

n-1=4

p

2 e

n=2

If we let n = 50, then I

n

=n! is 9:17�10

-31

and our estimate is 8:82�10

-31

.

5.6 The Restri
ted Saddle Point Method

To go through the whole pro
ess of the saddle point method is usually

possible without problems, but
an be very long. With less e�ort we
an get

an upper bound that is in general worse, but often suÆ
iently good. The

idea of this simpli�ed method is simple: We repla
e a
ompli
ated integral,

whi
h runs along a
ir
le and the fun
tion is most of the time small, but

larger in
ertain areas, by a simple integral of a
onstant fun
tion on the

same
ontour. If the
onstant is bigger than the maximal absolute value

of the integrand along the
ontour, it is
lear that the upper bound of the

absolute value times the length of the
ontour is an upper bound to the

value of the original integral.

Figure 5.7 illustrates the idea. Ideally the maximum absolute fun
tion

value o

urs exa
tly in the saddle point. The se
ond part of the following

theorem is based on suÆ
ient
onditions guaranteeing exa
tly this, while

the �rst part is universally true.

Theorem 11. Let f(z) be analyti
 in the origin, the
oeÆ
ients [z

n

℄f(z)

are non-negative, and let R be the radius of
onvergen
e of the power series

for f. Furthermore, we assume that f(0) 6= 0 and there are in�nitely many

n with [z

n

℄f(z) 6= 0.

1. [z

n

℄f(z) � inf

0<r<R

f(r)=r

n

.

2. If lim

r!R-

f(r) = +1, then the equation �f

0

(�) = nf(�) has a unique

solution �(n) in (0; R) and [z

n

℄ � f(�(n)) �(n)

-n

.

5.6. THE RESTRICTED SADDLE POINT METHOD 101

Proof. The �rst part tells us essentially that we �nd the maximum of

jf(z)=z

n

j on the
ir
le on the real axis. We assumed that ann
oeÆ
ients

are non-negative and therefore

max

jzj=r

jf(z)j � max

jzj=r

1

X

n=0

f

n

jz

n

j = f(r):

We
an perform the following
al
ulation:

f

n

�

�

�

�

�

1

2�i

Z

jzj=r

f(z)

z

n+1

dz

�

�

�

�

�

1

r

n

max

jzj=r

jf(z)j =

f(r)

r

n

For the se
ond part we have to show that f(r)=r

n

has a minimum at �(n)

and that that this minimum is unique. If r ! 0+ or r ! R-, then

f(r)=r

n

! +1. Therefore, there must exist at least one minimum in

(0; R). This minimum must be unique if the fun
tion is
on
ave in the

whole interval. If we look at the se
ond derivative

r

2

f

00

(r) - 2nrf

0

(r) + n(n+ 1)f(r)

r

n+2

=

1

r

n+2

1

X

m=0

(n+ 1-m)(n-m)f

m

r

m

;

we
an easily see that it is positive in r 2 (0; R): Both f

m

and (n + 1 -

m)(n-m) are non-negative and for in�nitely many m they are positive.

Finally it is evident that this unique minimum must be at �(n) be
ause

this is the only pla
e where the se
ond derivative of f(r)=r

n

vanishes.

Exer
ises

5.1 Sort the three sequen
es with these EGFs by their asymptoti
 growth: A(z) =

1=

p

1- z=2, B(z) = (1+ z)=(1- z) and C(z) =

1

1-e

-z-1=3

.

5.2 What is the exponential growth of the sequen
e with this generating fun
tion:

z

3

- 11z

2

+ 39z- 45

z

5

- 4z

4

- 24z

3

+ 160z

2

- 304z+ 192

5.3 You are a gardener and always looking for a bargain. As you know, the

normal pri
e for ordered rooted trees is 3 euros per internal node and 1 euro per

leaf. Now the lo
al plant nursery makes you the following o�er: All trees that

normally
ost n euros a pie
e for only 2

n

euros altogether! As a
olle
tor you

are mostly interested in ex
lusive and therefore expensive trees. Fortunately, you

