Analysis of Algorithms, WS 2020 Prof. Dr. P. Rossmanith Dr. E. Burjons, H. Lotze, D. Mock

Exercise Sheet 12

Problem T28

In the lecture we used the saddle point method to approximate $[z^n]e^z$. In order to do it, we chose a circle as our integrating path.

Approximate now $[z^n]e^z$ using the same method but choosing a rectangular integrating path. In order to simplify the calculation, you can use a degenerated rectangle.

Problem H28 (10 credits)

In this exercise we consider the following (regular) CFG G:

$$S \to abA \mid bS \mid a$$
$$A \to bA \mid aS$$

- 1. Find a generating function for number of words s_n in L(G) that have length n.
- 2. What is the dominant singularity and what kind of singularity is it?
- 3. What is the exponential growth of s_n ?
- 4. How precisely can you estimate s_n with just the knowledge of the dominating singularity and its nature?
- 5. Find a closed formula for s_n with an additive error of at most $O(0.8^n)$.

Problem H29 (10 credits)

In the lecture, we used the exponential generating function I(z) for the number of involutions to demonstrate the power of the saddle point method. In this exercise, you should derive this EGF. Remember, an *involution* is a permutation which is self-inverse.

First, find the recurrence relation for I_n where I_n is the number of involutions over n elements. Then use the usual toolbox for EGF to find an ordinary differential equation for I(z). You can solve this by using tools like Wolfram Alpha or use that $I(z) = ce^{f(z)}$.