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What are pattern languages?

@ Type of formal languages

@ Introduced by Dana Angluin
in 1980
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Why do they interest us?

Gold '67: Language Identification in the Limit

@ Learning from positive and negative data more powerful than
from positive data only
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Why do they interest us?

Gold '67: Language Identification in the Limit

@ Learning from positive and negative data more powerful than
from positive data only

Angluin '80:
Inductive Inference of Formal Languages from Positive Data
@ inductive inference - generalizing rules from examples
Finding Patterns Common to a Set of Strings
o Pattern languages

e can be learned from positive data
e are a natural model for inductive inference
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Example

@ Let p = x1y2x a pattern
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Example

@ Let p = x1y2x a pattern

@ By substituting e By substituting e By substituting

X = X = X =
y:=3 y =23 y =X
we get: we get: we get:
132 1232 1x2

@ Many more substitutions possible!
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Formal definition

@ A pattern is any finite string of constants and variables
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Formal definition

A pattern is any finite string of constants and variables
Y. finite alphabet of constants, for us: ¥ = {0,1}
X: set of variables disjoint from X, for us: X = {x1,%,...}

A substitution replaces symbols in a pattern so that

e constants remain the same
e variables are mapped to any non-null string

The language of a pattern is the set of all strings of constants
we get through substitutions
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Our main question

@ We call a set of strings of constants a sample
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Repetition: Gold’s model
epetition: Gold’s mode

@ Objects: formal languages

@ Presentation: sequence of strings from a language, where each
string appears at least once (a text)

@ The learner outputs hypotheses after receiving a string

@ The learner learns the language, if, after some finite amount of
time, the hypotheses are correct and remain the same
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Finding Patterns Common to a Set of Strings Learning pattern languages in the limit

In our case

Assuming a learner is presented with a text s, s, s3,

. of some
pattern language

@ The hypothesis space is the set of all patterns

@ The hypotheses are patterns descriptive of the strings seen so far

Assuming there exists an algorithm to find descriptive patterns
@ Then paper by Angluin shows:
Pattern languages can be learned in the limit from positive data
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© Finding Patterns Common to a Set of Strings
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Finding Patterns Common to a Set of Strings Finding descriptive patterns

Results so far

Let S be a sample

Theorem (4.2)

If P £ NP then there is no polynomial-time algorithm to find a
pattern of maximum possible length descriptive of S
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Finding Patterns Common to a Set of Strings Finding descriptive patterns

Results so far

Let S be a sample

Theorem (4.2)

If P £ NP then there is no polynomial-time algorithm to find a
pattern of maximum possible length descriptive of S

@ We may still solve this efficiently in special cases!
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Finding Patterns Common to a Set of Strings Properties of pattern languages

Comparison to other language types

@ The pattern language L(xx) is not context-free
@ The regular language L(0]|1) = {0,1} is not a pattern language
Theorem (3.4, Jiang)

Every pattern language is context-sensitive

Language

Membership

Emptiness

Equivalence | Inclusion
Context-sens. D V) U U
Context-free D D U U
Regular D D D D
Pattern lang. D D D U

Michael Krause (RWTH Aachen)

Table: D=decidable, U=undecidable
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Overview

Introduce necessary conditions for one-variable patterns that
could generate a string

Bound the number of one-variable patterns that could generate
every string in a sample

Construct automata that recognize exactly these patterns

©0 © ©

Finally, select a specific automaton that recognizes descriptive
one-variable patterns
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Finding descriptive one-variable patterns
Feasible triples

Let p be a one-variable pattern and s a string of constants
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Let p be a one-variable pattern and s a string of constants
e We define a mapping 7(p) = (i,J, k) where
e / is the number of constants in p

e j is the number of occurences of x in p
o k is the position of the first occurence of x in p

@ A pattern p can only generate s, if 7(p) is feasible for s
Let S ={s1,...,5n} a sample
@ Let F be the set of all triples feasible for every string in S

@ We can bound |F| = O(/?log /) where [ is the length of the
shortest string in S
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Finding descriptive one-variable patterns
Anguin’s algorithm for finding descriptive
one-variable patterns

Let S be a sample
@ Construct F by enumerating all feasible triples

@ For each triple f € F
e For each strings€ S
o Construct automaton which recognizes patterns p that
- fulfill 7(p) = f - generate s

o Intersect these automata
@ From the resulting set of automata: discard those whose
language is empty

Any pattern accepted by an automaton built from a triple that
maximizes i + j is descriptive of S among one variable patterns
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Example

Let S = {s1, 52, 53} a sample with

s; = 1101011, s, = 10011, s3 = 11111

@ We construct F through enumeration

We get:
F={(1,1,k),(1,2,k),(2,1,k),(3,1,k),(3,2,k), (4,1, k)}
1<k<i+1
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Let S = {s1, 52, 53} a sample with

s; = 1101011, s, = 10011, s3 = 11111

@ We construct F through enumeration
We get:
F={(1,1,k),(1,2,k),(2,1,k),(3,1,k),(3,2,k), (4,1, k)}

1<k

@ We construct three automata per triple in F
@ In this example we do this for: (3,2,2) € F
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Substring: x = 10

~09e),
QX

BASAS

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015

24 / 44



Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3,2,2), String: s; = 1101011
Substring starts at position 2, length: (|s;| —3) /2 =2
Substring: x = 10

~69),
Qi

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015

24 / 44



Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3,2,2), String: s; = 1101011
Substring starts at position 2, length: (|s;| —3) /2 =2
Substring: x = 10

~09e),
Qi

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44



Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3,2,2), String: s; = 1101011
Substring starts at position 2, length: (|s;| —3) /2 =2
Substring: x = 10

~099),
D@Dy

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44



Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3,2,2), String: s; = 1101011
Substring starts at position 2, length: (|s;| —3) /2 =2
Substring: x = 10

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44



Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3,2,2), String: s, = 10011,
Substring length: (|s;| —3) /2 =1
Substring: x =0
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3,2,2), String: s3 = 11111,
Substring length: (|s3| —3) /2 =1
Substring: x =1

1
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1 1 1
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Intersection of all three automata:

~09*),
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Intersection of all three automata:
1
—
X
©y),

Clearly the automaton recognizes the language {1xx11}
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Recall:

S ={s1, 5,83} with s = 1101011, s, = 10011, s3 = 11111,

F={(1,1,k),(1,2,k),(2,1,k),(3,1,k),(3,2,k), (4,1, k)},
1<k<i+1

Example automata for (3,2,2) € F
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Recall:
S ={s1, 5,83} with s = 1101011, s, = 10011, s3 = 11111,
F={(1,1,k),(1,2,k),(2,1,k),(3,1,k),(3,2,k), (4,1, k)},
1<k<i+1
Example automata for (3,2,2) € F
o Clearly 3 + 2 maximizes i +j in F

@ The language recognized by the automaton for (3,2,2) € F
is {Ixx11} # 0

@ Thus, 1xx11 is descriptive of S among one-variable patterns
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Let S be a sample
@ Construct F by enumerating all feasible triples
@ For each triple f € F

o For each string s € S construct automaton
e Intersect these automata

@ Discard automata whose language is empty

@ Choose any pattern recognized by an automaton that was built
from a triple maximizing i + j

@ We can bound the number of feasible triples and construct the
automata in time polynomial in their sizes

@ The algorithm runs in time polynomial in the length of the input
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Other results

© Other results
@ Lange and Wiehagen's algorithm
@ Further work
@ Practical applications
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@ Paper by Steffen Lange and Rolf Wiehagen published in 1991
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Lange and Wichagen's lgorithm
What if we allowed wrong results?

@ Paper by Steffen Lange and Rolf Wiehagen published in 1991
Polynomial-time Inference of Arbitrary Pattern Languages

@ Presents an algorithm that identifies any pattern language in the
limit

@ Each hypothesis is found in polynomial time
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Idea:
@ Only look at strings of minimal length (discard the others)
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Result:
o Will identify pattern language in the limit

@ Polynomial run time - finding descriptive patterns of the same
length is easy
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Lange and Wichagen's lgorithm
Lange and Wiehagen's algorithm

Idea:
@ Only look at strings of minimal length (discard the others)
@ Output pattern descriptive of strings of minimal length

Result:
o Will identify pattern language in the limit

@ Polynomial run time - finding descriptive patterns of the same
length is easy

@ Algorithm will sometimes output wrong hypotheses
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Other results Further work

@ Possible extensions of pattern languages

e In extended pattern languages, empty substitutions are allowed
e A regular pattern contains each variable at most once

Language Membership | Equivalence | Inclusion
Standard NP P U
Regular P P P
Extended NP Open U
Extended Regular P P P

Table: U=undecidable

@ Polynomial update time does not guarantee good learning time

@ One variable patterns can be learned very efficiently - will be
covered in next talk!

Michael Krause (RWTH Aachen)
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Other results Practical applications

@ Shinohara '82: Data entry systems
@ Nix '83: Automatic text editing by examples
@ Arimura '94: Finding patterns in amino acid sequences

@ Much work done in related fields!
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Summary

@ Pattern languages: model for inductive inference
e Finding descriptive patterns: generally not efficiently possible
@ Special case: polynomial-time algorithm for one-variable patterns

o Lange/Wiehagen algorithm: inconsistent algorithm turns out to
be very effective
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