
Pattern Languages
Seminar Algorithmic Learning Theory, SS 2015

Michael Krause

RWTH Aachen

07.05.2015

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 1 / 44

1 Basic ideas

2 Finding Patterns Common to a Set of Strings

3 Other results

4 Conclusion

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 2 / 44

Basic ideas

1 Basic ideas

2 Finding Patterns Common to a Set of Strings

3 Other results

4 Conclusion

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 3 / 44

Basic ideas

What are pattern languages?

Type of formal languages

Introduced by Dana Angluin
in 1980

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 4 / 44

Basic ideas

Why do they interest us?

Gold ’67: Language Identification in the Limit

Learning from positive and negative data more powerful than
from positive data only

Angluin ’80:
Inductive Inference of Formal Languages from Positive Data

inductive inference - generalizing rules from examples

Finding Patterns Common to a Set of Strings

Pattern languages

can be learned from positive data
are a natural model for inductive inference

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 5 / 44

Basic ideas

Why do they interest us?

Gold ’67: Language Identification in the Limit

Learning from positive and negative data more powerful than
from positive data only

Angluin ’80:
Inductive Inference of Formal Languages from Positive Data

inductive inference - generalizing rules from examples

Finding Patterns Common to a Set of Strings

Pattern languages

can be learned from positive data
are a natural model for inductive inference

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 5 / 44

Basic ideas

Why do they interest us?

Gold ’67: Language Identification in the Limit

Learning from positive and negative data more powerful than
from positive data only

Angluin ’80:
Inductive Inference of Formal Languages from Positive Data

inductive inference - generalizing rules from examples

Finding Patterns Common to a Set of Strings

Pattern languages

can be learned from positive data
are a natural model for inductive inference

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 5 / 44

Basic ideas

Why do they interest us?

Gold ’67: Language Identification in the Limit

Learning from positive and negative data more powerful than
from positive data only

Angluin ’80:
Inductive Inference of Formal Languages from Positive Data

inductive inference - generalizing rules from examples

Finding Patterns Common to a Set of Strings

Pattern languages

can be learned from positive data

are a natural model for inductive inference

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 5 / 44

Basic ideas

Why do they interest us?

Gold ’67: Language Identification in the Limit

Learning from positive and negative data more powerful than
from positive data only

Angluin ’80:
Inductive Inference of Formal Languages from Positive Data

inductive inference - generalizing rules from examples

Finding Patterns Common to a Set of Strings

Pattern languages

can be learned from positive data
are a natural model for inductive inference

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 5 / 44

Basic ideas

Example

Let p = x1y2x a pattern

By substituting

x := 10

y := 3

we get:

1013210

By substituting

x := 0x

y := z3

we get:

0x1z320x

By substituting

x := y

y := x

we get:

y1x2y

Many more substitutions possible!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 6 / 44

Basic ideas

Example

Let p = x1y2x a pattern

By substituting

x := 10

y := 3

we get:

1013210

By substituting

x := 0x

y := z3

we get:

0x1z320x

By substituting

x := y

y := x

we get:

y1x2y

Many more substitutions possible!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 6 / 44

Basic ideas

Example

Let p = x1y2x a pattern

By substituting

x := 10

y := 3

we get:

1013210

By substituting

x := 0x

y := z3

we get:

0x1z320x

By substituting

x := y

y := x

we get:

y1x2y

Many more substitutions possible!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 6 / 44

Basic ideas

Example

Let p = x1y2x a pattern

By substituting

x := 10

y := 3

we get:

1013210

By substituting

x := 0x

y := z3

we get:

0x1z320x

By substituting

x := y

y := x

we get:

y1x2y

Many more substitutions possible!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 6 / 44

Basic ideas

Example

Let p = x1y2x a pattern

By substituting

x := 10

y := 3

we get:

1013210

By substituting

x := 0x

y := z3

we get:

0x1z320x

By substituting

x := y

y := x

we get:

y1x2y

Many more substitutions possible!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 6 / 44

Basic ideas

Formal definition

A pattern is any finite string of constants and variables

Σ: finite alphabet of constants, for us: Σ = {0, 1}
X : set of variables disjoint from Σ, for us: X = {x1, x2, . . . }
A substitution replaces symbols in a pattern so that

constants remain the same
variables are mapped to any non-null string

The language of a pattern is the set of all strings of constants
we get through substitutions

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 7 / 44

Basic ideas

Formal definition

A pattern is any finite string of constants and variables

Σ: finite alphabet of constants, for us: Σ = {0, 1}

X : set of variables disjoint from Σ, for us: X = {x1, x2, . . . }
A substitution replaces symbols in a pattern so that

constants remain the same
variables are mapped to any non-null string

The language of a pattern is the set of all strings of constants
we get through substitutions

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 7 / 44

Basic ideas

Formal definition

A pattern is any finite string of constants and variables

Σ: finite alphabet of constants, for us: Σ = {0, 1}
X : set of variables disjoint from Σ, for us: X = {x1, x2, . . . }

A substitution replaces symbols in a pattern so that

constants remain the same
variables are mapped to any non-null string

The language of a pattern is the set of all strings of constants
we get through substitutions

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 7 / 44

Basic ideas

Formal definition

A pattern is any finite string of constants and variables

Σ: finite alphabet of constants, for us: Σ = {0, 1}
X : set of variables disjoint from Σ, for us: X = {x1, x2, . . . }
A substitution replaces symbols in a pattern so that

constants remain the same
variables are mapped to any non-null string

The language of a pattern is the set of all strings of constants
we get through substitutions

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 7 / 44

Basic ideas

Formal definition

A pattern is any finite string of constants and variables

Σ: finite alphabet of constants, for us: Σ = {0, 1}
X : set of variables disjoint from Σ, for us: X = {x1, x2, . . . }
A substitution replaces symbols in a pattern so that

constants remain the same

variables are mapped to any non-null string

The language of a pattern is the set of all strings of constants
we get through substitutions

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 7 / 44

Basic ideas

Formal definition

A pattern is any finite string of constants and variables

Σ: finite alphabet of constants, for us: Σ = {0, 1}
X : set of variables disjoint from Σ, for us: X = {x1, x2, . . . }
A substitution replaces symbols in a pattern so that

constants remain the same
variables are mapped to any non-null string

The language of a pattern is the set of all strings of constants
we get through substitutions

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 7 / 44

Basic ideas

Formal definition

A pattern is any finite string of constants and variables

Σ: finite alphabet of constants, for us: Σ = {0, 1}
X : set of variables disjoint from Σ, for us: X = {x1, x2, . . . }
A substitution replaces symbols in a pattern so that

constants remain the same
variables are mapped to any non-null string

The language of a pattern is the set of all strings of constants
we get through substitutions

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 7 / 44

Basic ideas

Our main question

We call a set of strings of constants a sample
e.g: S = {101, 10010, 0110011}

Given a sample S , which pattern generates every string in S?

p = x works, but here q = x0x is more precise

We call a pattern p descriptive of S iff

it generates every string in S
no other pattern q generates S so that the language of q is a
strict subset of the language of p

Given a sample S , which pattern is descriptive of S?

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 8 / 44

Basic ideas

Our main question

We call a set of strings of constants a sample
e.g: S = {101, 10010, 0110011}
Given a sample S , which pattern generates every string in S?

p = x works, but here q = x0x is more precise

We call a pattern p descriptive of S iff

it generates every string in S
no other pattern q generates S so that the language of q is a
strict subset of the language of p

Given a sample S , which pattern is descriptive of S?

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 8 / 44

Basic ideas

Our main question

We call a set of strings of constants a sample
e.g: S = {101, 10010, 0110011}
Given a sample S , which pattern generates every string in S?

p = x works, but here q = x0x is more precise

We call a pattern p descriptive of S iff

it generates every string in S
no other pattern q generates S so that the language of q is a
strict subset of the language of p

Given a sample S , which pattern is descriptive of S?

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 8 / 44

Basic ideas

Our main question

We call a set of strings of constants a sample
e.g: S = {101, 10010, 0110011}
Given a sample S , which pattern generates every string in S?

p = x works, but here q = x0x is more precise

We call a pattern p descriptive of S iff

it generates every string in S
no other pattern q generates S so that the language of q is a
strict subset of the language of p

Given a sample S , which pattern is descriptive of S?

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 8 / 44

Basic ideas

Our main question

We call a set of strings of constants a sample
e.g: S = {101, 10010, 0110011}
Given a sample S , which pattern generates every string in S?

p = x works, but here q = x0x is more precise

We call a pattern p descriptive of S iff

it generates every string in S

no other pattern q generates S so that the language of q is a
strict subset of the language of p

Given a sample S , which pattern is descriptive of S?

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 8 / 44

Basic ideas

Our main question

We call a set of strings of constants a sample
e.g: S = {101, 10010, 0110011}
Given a sample S , which pattern generates every string in S?

p = x works, but here q = x0x is more precise

We call a pattern p descriptive of S iff

it generates every string in S
no other pattern q generates S so that the language of q is a
strict subset of the language of p

Given a sample S , which pattern is descriptive of S?

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 8 / 44

Basic ideas

Our main question

We call a set of strings of constants a sample
e.g: S = {101, 10010, 0110011}
Given a sample S , which pattern generates every string in S?

p = x works, but here q = x0x is more precise

We call a pattern p descriptive of S iff

it generates every string in S
no other pattern q generates S so that the language of q is a
strict subset of the language of p

Given a sample S , which pattern is descriptive of S?

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 8 / 44

Finding Patterns Common to a Set of Strings

1 Basic ideas

2 Finding Patterns Common to a Set of Strings
Learning pattern languages in the limit
Finding descriptive patterns
Properties of pattern languages
Finding descriptive one-variable patterns

3 Other results

4 Conclusion

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 9 / 44

Finding Patterns Common to a Set of Strings Learning pattern languages in the limit

1 Basic ideas

2 Finding Patterns Common to a Set of Strings
Learning pattern languages in the limit
Finding descriptive patterns
Properties of pattern languages
Finding descriptive one-variable patterns

3 Other results

4 Conclusion

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 10 / 44

Finding Patterns Common to a Set of Strings Learning pattern languages in the limit

Repetition: Gold’s model

Objects: formal languages

Presentation: sequence of strings from a language, where each
string appears at least once (a text)

The learner outputs hypotheses after receiving a string

The learner learns the language, if, after some finite amount of
time, the hypotheses are correct and remain the same

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 11 / 44

Finding Patterns Common to a Set of Strings Learning pattern languages in the limit

Repetition: Gold’s model

Objects: formal languages

Presentation: sequence of strings from a language, where each
string appears at least once (a text)

The learner outputs hypotheses after receiving a string

The learner learns the language, if, after some finite amount of
time, the hypotheses are correct and remain the same

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 11 / 44

Finding Patterns Common to a Set of Strings Learning pattern languages in the limit

Repetition: Gold’s model

Objects: formal languages

Presentation: sequence of strings from a language, where each
string appears at least once (a text)

The learner outputs hypotheses after receiving a string

The learner learns the language, if, after some finite amount of
time, the hypotheses are correct and remain the same

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 11 / 44

Finding Patterns Common to a Set of Strings Learning pattern languages in the limit

Repetition: Gold’s model

Objects: formal languages

Presentation: sequence of strings from a language, where each
string appears at least once (a text)

The learner outputs hypotheses after receiving a string

The learner learns the language, if, after some finite amount of
time, the hypotheses are correct and remain the same

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 11 / 44

Finding Patterns Common to a Set of Strings Learning pattern languages in the limit

In our case

Assuming a learner is presented with a text s1, s2, s3, . . . of some
pattern language

The hypothesis space is the set of all patterns

The hypotheses are patterns descriptive of the strings seen so far

Assuming there exists an algorithm to find descriptive patterns

Then paper by Angluin shows:
Pattern languages can be learned in the limit from positive data

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 12 / 44

Finding Patterns Common to a Set of Strings Learning pattern languages in the limit

In our case

Assuming a learner is presented with a text s1, s2, s3, . . . of some
pattern language

The hypothesis space is the set of all patterns

The hypotheses are patterns descriptive of the strings seen so far

Assuming there exists an algorithm to find descriptive patterns

Then paper by Angluin shows:
Pattern languages can be learned in the limit from positive data

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 12 / 44

Finding Patterns Common to a Set of Strings Learning pattern languages in the limit

In our case

Assuming a learner is presented with a text s1, s2, s3, . . . of some
pattern language

The hypothesis space is the set of all patterns

The hypotheses are patterns descriptive of the strings seen so far

Assuming there exists an algorithm to find descriptive patterns

Then paper by Angluin shows:
Pattern languages can be learned in the limit from positive data

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 12 / 44

Finding Patterns Common to a Set of Strings Learning pattern languages in the limit

In our case

Assuming a learner is presented with a text s1, s2, s3, . . . of some
pattern language

The hypothesis space is the set of all patterns

The hypotheses are patterns descriptive of the strings seen so far

Assuming there exists an algorithm to find descriptive patterns

Then paper by Angluin shows:
Pattern languages can be learned in the limit from positive data

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 12 / 44

Finding Patterns Common to a Set of Strings Learning pattern languages in the limit

In our case

Assuming a learner is presented with a text s1, s2, s3, . . . of some
pattern language

The hypothesis space is the set of all patterns

The hypotheses are patterns descriptive of the strings seen so far

Assuming there exists an algorithm to find descriptive patterns

Then paper by Angluin shows:
Pattern languages can be learned in the limit from positive data

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 12 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

1 Basic ideas

2 Finding Patterns Common to a Set of Strings
Learning pattern languages in the limit
Finding descriptive patterns
Properties of pattern languages
Finding descriptive one-variable patterns

3 Other results

4 Conclusion

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 13 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our first attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S

→ exponential growth

Test for each pattern if its language contains S

→ NP-complete

From all patterns that pass the test:
Select one which is minimal with regards to inclusion

→ /!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 14 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our first attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S

→ exponential growth

Test for each pattern if its language contains S

→ NP-complete

From all patterns that pass the test:
Select one which is minimal with regards to inclusion

→ /!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 14 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our first attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S

→ exponential growth

Test for each pattern if its language contains S

→ NP-complete

From all patterns that pass the test:
Select one which is minimal with regards to inclusion

→ /!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 14 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our first attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S

→ exponential growth

Test for each pattern if its language contains S

→ NP-complete

From all patterns that pass the test:
Select one which is minimal with regards to inclusion

→ /!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 14 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our first attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Test for each pattern if its language contains S

→ NP-complete

From all patterns that pass the test:
Select one which is minimal with regards to inclusion

→ /!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 14 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our first attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Theorem (3.6, Angluin)

The membership problem for pattern languages is NP-complete

Test for each pattern if its language contains S

→ NP-complete

From all patterns that pass the test:
Select one which is minimal with regards to inclusion

→ /!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 14 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our first attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Theorem (3.6, Angluin)

The membership problem for pattern languages is NP-complete

Test for each pattern if its language contains S → NP-complete

From all patterns that pass the test:
Select one which is minimal with regards to inclusion

→ /!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 14 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our first attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Theorem (3.6, Angluin)

The membership problem for pattern languages is NP-complete

Test for each pattern if its language contains S → NP-complete

Theorem (5.1, Jiang et al.)

The inclusion problem for arbitrary pattern languages is undecidable

From all patterns that pass the test:
Select one which is minimal with regards to inclusion

→ /!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 14 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our first attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Theorem (3.6, Angluin)

The membership problem for pattern languages is NP-complete

Test for each pattern if its language contains S → NP-complete

Theorem (5.1, Jiang et al.)

The inclusion problem for arbitrary pattern languages is undecidable

From all patterns that pass the test:
Select one which is minimal with regards to inclusion → /!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 14 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our second attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Test for each pattern if its language contains S → NP-complete

Corollary (3.4, Angluin)

Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a
substitution from q to p

From all patterns that pass the test select the longest

From the resulting set of patterns, output any which cannot be
gained by substituting from another

→ NP-complete

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 15 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our second attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Test for each pattern if its language contains S → NP-complete

Corollary (3.4, Angluin)

Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a
substitution from q to p

From all patterns that pass the test select the longest

From the resulting set of patterns, output any which cannot be
gained by substituting from another

→ NP-complete

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 15 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our second attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Test for each pattern if its language contains S → NP-complete

Corollary (3.4, Angluin)

Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a
substitution from q to p

From all patterns that pass the test select the longest

From the resulting set of patterns, output any which cannot be
gained by substituting from another

→ NP-complete

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 15 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our second attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Test for each pattern if its language contains S → NP-complete

Corollary (3.4, Angluin)

Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a
substitution from q to p

From all patterns that pass the test select the longest

From the resulting set of patterns, output any which cannot be
gained by substituting from another

→ NP-complete

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 15 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our second attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Test for each pattern if its language contains S → NP-complete

Corollary (3.4, Angluin)

Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a
substitution from q to p

From all patterns that pass the test select the longest

From the resulting set of patterns, output any which cannot be
gained by substituting from another → NP-complete

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 15 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Results so far

Let S be a sample

Theorem (4.2)

If P 6= NP then there is no polynomial-time algorithm to find a
pattern of maximum possible length descriptive of S

We may still solve this efficiently in special cases!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 16 / 44

Finding Patterns Common to a Set of Strings Finding descriptive patterns

Results so far

Let S be a sample

Theorem (4.2)

If P 6= NP then there is no polynomial-time algorithm to find a
pattern of maximum possible length descriptive of S

We may still solve this efficiently in special cases!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 16 / 44

Finding Patterns Common to a Set of Strings Properties of pattern languages

1 Basic ideas

2 Finding Patterns Common to a Set of Strings
Learning pattern languages in the limit
Finding descriptive patterns
Properties of pattern languages
Finding descriptive one-variable patterns

3 Other results

4 Conclusion

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 17 / 44

Finding Patterns Common to a Set of Strings Properties of pattern languages

Comparison to other language types

The pattern language L(xx) is not context-free

The regular language L(0|1) = {0, 1} is not a pattern language

Theorem (3.4, Jiang)

Every pattern language is context-sensitive

Language Membership Emptiness Equivalence Inclusion
Context-sens. D U U U
Context-free D D U U
Regular D D D D
Pattern lang. D D D U

Table: D=decidable, U=undecidable

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 18 / 44

Finding Patterns Common to a Set of Strings Properties of pattern languages

Comparison to other language types

The pattern language L(xx) is not context-free

The regular language L(0|1) = {0, 1} is not a pattern language

Theorem (3.4, Jiang)

Every pattern language is context-sensitive

Language Membership Emptiness Equivalence Inclusion
Context-sens. D U U U
Context-free D D U U
Regular D D D D
Pattern lang. D D D U

Table: D=decidable, U=undecidable

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 18 / 44

Finding Patterns Common to a Set of Strings Properties of pattern languages

Comparison to other language types

The pattern language L(xx) is not context-free

The regular language L(0|1) = {0, 1} is not a pattern language

Theorem (3.4, Jiang)

Every pattern language is context-sensitive

Language Membership Emptiness Equivalence Inclusion
Context-sens. D U U U
Context-free D D U U
Regular D D D D
Pattern lang. D D D U

Table: D=decidable, U=undecidable

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 18 / 44

Finding Patterns Common to a Set of Strings Properties of pattern languages

Comparison to other language types

The pattern language L(xx) is not context-free

The regular language L(0|1) = {0, 1} is not a pattern language

Theorem (3.4, Jiang)

Every pattern language is context-sensitive

Language Membership Emptiness Equivalence Inclusion
Context-sens. D U U U
Context-free D D U U
Regular D D D D
Pattern lang. D D D U

Table: D=decidable, U=undecidable

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 18 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

1 Basic ideas

2 Finding Patterns Common to a Set of Strings
Learning pattern languages in the limit
Finding descriptive patterns
Properties of pattern languages
Finding descriptive one-variable patterns

3 Other results

4 Conclusion

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 19 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Overview

1 Introduce necessary conditions for one-variable patterns that
could generate a string

2 Bound the number of one-variable patterns that could generate
every string in a sample

3 Construct automata that recognize exactly these patterns

4 Finally, select a specific automaton that recognizes descriptive
one-variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 20 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Overview

1 Introduce necessary conditions for one-variable patterns that
could generate a string

2 Bound the number of one-variable patterns that could generate
every string in a sample

3 Construct automata that recognize exactly these patterns

4 Finally, select a specific automaton that recognizes descriptive
one-variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 20 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Overview

1 Introduce necessary conditions for one-variable patterns that
could generate a string

2 Bound the number of one-variable patterns that could generate
every string in a sample

3 Construct automata that recognize exactly these patterns

4 Finally, select a specific automaton that recognizes descriptive
one-variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 20 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Overview

1 Introduce necessary conditions for one-variable patterns that
could generate a string

2 Bound the number of one-variable patterns that could generate
every string in a sample

3 Construct automata that recognize exactly these patterns

4 Finally, select a specific automaton that recognizes descriptive
one-variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 20 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Feasible triples

Let p be a one-variable pattern and s a string of constants

We define a mapping τ(p) = (i , j , k) where

i is the number of constants in p
j is the number of occurences of x in p
k is the position of the first occurence of x in p

A pattern p can only generate s, if τ(p) is feasible for s

Let S = {s1, . . . , sm} a sample

Let F be the set of all triples feasible for every string in S

We can bound |F | = O(l2 log l) where l is the length of the
shortest string in S

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 21 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Feasible triples

Let p be a one-variable pattern and s a string of constants

We define a mapping τ(p) = (i , j , k) where

i is the number of constants in p
j is the number of occurences of x in p
k is the position of the first occurence of x in p

A pattern p can only generate s, if τ(p) is feasible for s

Let S = {s1, . . . , sm} a sample

Let F be the set of all triples feasible for every string in S

We can bound |F | = O(l2 log l) where l is the length of the
shortest string in S

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 21 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Feasible triples

Let p be a one-variable pattern and s a string of constants

We define a mapping τ(p) = (i , j , k) where

i is the number of constants in p

j is the number of occurences of x in p
k is the position of the first occurence of x in p

A pattern p can only generate s, if τ(p) is feasible for s

Let S = {s1, . . . , sm} a sample

Let F be the set of all triples feasible for every string in S

We can bound |F | = O(l2 log l) where l is the length of the
shortest string in S

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 21 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Feasible triples

Let p be a one-variable pattern and s a string of constants

We define a mapping τ(p) = (i , j , k) where

i is the number of constants in p
j is the number of occurences of x in p

k is the position of the first occurence of x in p

A pattern p can only generate s, if τ(p) is feasible for s

Let S = {s1, . . . , sm} a sample

Let F be the set of all triples feasible for every string in S

We can bound |F | = O(l2 log l) where l is the length of the
shortest string in S

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 21 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Feasible triples

Let p be a one-variable pattern and s a string of constants

We define a mapping τ(p) = (i , j , k) where

i is the number of constants in p
j is the number of occurences of x in p
k is the position of the first occurence of x in p

A pattern p can only generate s, if τ(p) is feasible for s

Let S = {s1, . . . , sm} a sample

Let F be the set of all triples feasible for every string in S

We can bound |F | = O(l2 log l) where l is the length of the
shortest string in S

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 21 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Feasible triples

Let p be a one-variable pattern and s a string of constants

We define a mapping τ(p) = (i , j , k) where

i is the number of constants in p
j is the number of occurences of x in p
k is the position of the first occurence of x in p

A pattern p can only generate s, if τ(p) is feasible for s

Let S = {s1, . . . , sm} a sample

Let F be the set of all triples feasible for every string in S

We can bound |F | = O(l2 log l) where l is the length of the
shortest string in S

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 21 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Feasible triples

Let p be a one-variable pattern and s a string of constants

We define a mapping τ(p) = (i , j , k) where

i is the number of constants in p
j is the number of occurences of x in p
k is the position of the first occurence of x in p

A pattern p can only generate s, if τ(p) is feasible for s

Let S = {s1, . . . , sm} a sample

Let F be the set of all triples feasible for every string in S

We can bound |F | = O(l2 log l) where l is the length of the
shortest string in S

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 21 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Feasible triples

Let p be a one-variable pattern and s a string of constants

We define a mapping τ(p) = (i , j , k) where

i is the number of constants in p
j is the number of occurences of x in p
k is the position of the first occurence of x in p

A pattern p can only generate s, if τ(p) is feasible for s

Let S = {s1, . . . , sm} a sample

Let F be the set of all triples feasible for every string in S

We can bound |F | = O(l2 log l) where l is the length of the
shortest string in S

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 21 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Feasible triples

Let p be a one-variable pattern and s a string of constants

We define a mapping τ(p) = (i , j , k) where

i is the number of constants in p
j is the number of occurences of x in p
k is the position of the first occurence of x in p

A pattern p can only generate s, if τ(p) is feasible for s

Let S = {s1, . . . , sm} a sample

Let F be the set of all triples feasible for every string in S

We can bound |F | = O(l2 log l) where l is the length of the
shortest string in S

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 21 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Anguin’s algorithm for finding descriptive

one-variable patterns

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S

Construct automaton which recognizes patterns p that
- fulfill τ(p) = f - generate s

Intersect these automata

From the resulting set of automata: discard those whose
language is empty

Lemma (6.3)

Any pattern accepted by an automaton built from a triple that
maximizes i + j is descriptive of S among one variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 22 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Anguin’s algorithm for finding descriptive

one-variable patterns

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S

Construct automaton which recognizes patterns p that
- fulfill τ(p) = f - generate s

Intersect these automata

From the resulting set of automata: discard those whose
language is empty

Lemma (6.3)

Any pattern accepted by an automaton built from a triple that
maximizes i + j is descriptive of S among one variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 22 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Anguin’s algorithm for finding descriptive

one-variable patterns

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S

Construct automaton which recognizes patterns p that
- fulfill τ(p) = f - generate s

Intersect these automata

From the resulting set of automata: discard those whose
language is empty

Lemma (6.3)

Any pattern accepted by an automaton built from a triple that
maximizes i + j is descriptive of S among one variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 22 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Anguin’s algorithm for finding descriptive

one-variable patterns

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F
For each string s ∈ S

Construct automaton which recognizes patterns p that
- fulfill τ(p) = f - generate s

Intersect these automata

From the resulting set of automata: discard those whose
language is empty

Lemma (6.3)

Any pattern accepted by an automaton built from a triple that
maximizes i + j is descriptive of S among one variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 22 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Anguin’s algorithm for finding descriptive

one-variable patterns

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F
For each string s ∈ S

Construct automaton which recognizes patterns p that
- fulfill τ(p) = f - generate s

Intersect these automata

From the resulting set of automata: discard those whose
language is empty

Lemma (6.3)

Any pattern accepted by an automaton built from a triple that
maximizes i + j is descriptive of S among one variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 22 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Anguin’s algorithm for finding descriptive

one-variable patterns

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F
For each string s ∈ S

Construct automaton which recognizes patterns p that
- fulfill τ(p) = f - generate s

Intersect these automata

From the resulting set of automata: discard those whose
language is empty

Lemma (6.3)

Any pattern accepted by an automaton built from a triple that
maximizes i + j is descriptive of S among one variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 22 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Anguin’s algorithm for finding descriptive

one-variable patterns

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F
For each string s ∈ S

Construct automaton which recognizes patterns p that
- fulfill τ(p) = f - generate s

Intersect these automata

From the resulting set of automata: discard those whose
language is empty

Lemma (6.3)

Any pattern accepted by an automaton built from a triple that
maximizes i + j is descriptive of S among one variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 22 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Anguin’s algorithm for finding descriptive

one-variable patterns

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F
For each string s ∈ S

Construct automaton which recognizes patterns p that
- fulfill τ(p) = f - generate s

Intersect these automata

From the resulting set of automata: discard those whose
language is empty

Lemma (6.3)

Any pattern accepted by an automaton built from a triple that
maximizes i + j is descriptive of S among one variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 22 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Example

Let S = {s1, s2, s3} a sample with

s1 = 1101011, s2 = 10011, s3 = 11111

We construct F through enumeration
We get:
F = {(1, 1, k), (1, 2, k), (2, 1, k), (3, 1, k), (3, 2, k), (4, 1, k)}

1 ≤ k ≤ i + 1

We construct three automata per triple in F

In this example we do this for: (3, 2, 2) ∈ F

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 23 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Example

Let S = {s1, s2, s3} a sample with

s1 = 1101011, s2 = 10011, s3 = 11111

We construct F through enumeration
We get:
F = {(1, 1, k), (1, 2, k), (2, 1, k), (3, 1, k), (3, 2, k), (4, 1, k)}

1 ≤ k ≤ i + 1

We construct three automata per triple in F

In this example we do this for: (3, 2, 2) ∈ F

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 23 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Example

Let S = {s1, s2, s3} a sample with

s1 = 1101011, s2 = 10011, s3 = 11111

We construct F through enumeration
We get:
F = {(1, 1, k), (1, 2, k), (2, 1, k), (3, 1, k), (3, 2, k), (4, 1, k)}

1 ≤ k ≤ i + 1

We construct three automata per triple in F

In this example we do this for: (3, 2, 2) ∈ F

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 23 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s1 = 1101011

Substring starts at position 2, length: (|s1| − 3) /2 = 2
Substring: x = 10

(0, 0) (1, 0)

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(1, 2) (2, 2) (3, 2)

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s1 = 1101011
Substring starts at position 2, length: (|s1| − 3) /2 = 2

Substring: x = 10

(0, 0) (1, 0)

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(1, 2) (2, 2) (3, 2)

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s1 = 1101011
Substring starts at position 2, length: (|s1| − 3) /2 = 2
Substring: x = 10

(0, 0)

(1, 0)

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(1, 2) (2, 2) (3, 2)

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s1 = 1101011
Substring starts at position 2, length: (|s1| − 3) /2 = 2
Substring: x = 10

(0, 0) (1, 0)

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(1, 2) (2, 2) (3, 2)

1

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s1 = 1101011
Substring starts at position 2, length: (|s1| − 3) /2 = 2
Substring: x = 10

(0, 0) (1, 0)

(1, 1)

(2, 1) (3, 1) (4, 1) (5, 1)

(1, 2) (2, 2) (3, 2)

1
x

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s1 = 1101011
Substring starts at position 2, length: (|s1| − 3) /2 = 2
Substring: x = 10

(0, 0) (1, 0)

(1, 1)

(2, 1) (3, 1) (4, 1) (5, 1)

(1, 2)

(2, 2) (3, 2)

1
x

x

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s1 = 1101011
Substring starts at position 2, length: (|s1| − 3) /2 = 2
Substring: x = 10

(0, 0) (1, 0)

(1, 1)

(2, 1) (3, 1) (4, 1) (5, 1)

(1, 2) (2, 2)

(3, 2)

1
x

x
1

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s1 = 1101011
Substring starts at position 2, length: (|s1| − 3) /2 = 2
Substring: x = 10

(0, 0) (1, 0)

(1, 1)

(2, 1) (3, 1) (4, 1) (5, 1)

(1, 2) (2, 2) (3, 2)

1
x

x
1 1

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s1 = 1101011
Substring starts at position 2, length: (|s1| − 3) /2 = 2
Substring: x = 10

(0, 0) (1, 0)

(1, 1) (2, 1)

(3, 1) (4, 1) (5, 1)

(1, 2) (2, 2) (3, 2)

1
x

x
1

1 1

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s1 = 1101011
Substring starts at position 2, length: (|s1| − 3) /2 = 2
Substring: x = 10

(0, 0) (1, 0)

(1, 1) (2, 1) (3, 1)

(4, 1) (5, 1)

(1, 2) (2, 2) (3, 2)

1
x

x
1 0

1 1

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s1 = 1101011
Substring starts at position 2, length: (|s1| − 3) /2 = 2
Substring: x = 10

(0, 0) (1, 0)

(1, 1) (2, 1) (3, 1) (4, 1)

(5, 1)

(1, 2) (2, 2) (3, 2)

1
x

x
1 0 1

1 1

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s1 = 1101011
Substring starts at position 2, length: (|s1| − 3) /2 = 2
Substring: x = 10

(0, 0) (1, 0)

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(1, 2) (2, 2) (3, 2)

1
x

x
1 0 1 1

1 1

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 24 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s2 = 10011,
Substring length: (|s2| − 3) /2 = 1
Substring: x = 0

(0, 0) (1, 0)

(1, 1) (2, 1) (3, 1) (4, 1)

(1, 2) (2, 2) (3, 2)

1
x

x
0 1 1

1 1

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 25 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s3 = 11111,
Substring length: (|s3| − 3) /2 = 1
Substring: x = 1

(0, 0) (1, 0)

(1, 1) (2, 1) (3, 1) (4, 1)

(1, 2) (2, 2) (3, 2)

1
x

x
1 1

x
1
x

1 1

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 26 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Intersection of all three automata:

(0, 0) (1, 0)

(1, 1)

(1, 2) (2, 2) (3, 2)

1
x

x
1 1

Clearly the automaton recognizes the language {1xx11}

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 27 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Intersection of all three automata:

(0, 0) (1, 0)

(1, 1)

(1, 2) (2, 2) (3, 2)

1
x

x
1 1

Clearly the automaton recognizes the language {1xx11}

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 27 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Recall:
S = {s1, s2, s3} with s1 = 1101011, s2 = 10011, s3 = 11111,
F = {(1, 1, k), (1, 2, k), (2, 1, k), (3, 1, k), (3, 2, k), (4, 1, k)},

1 ≤ k ≤ i + 1
Example automata for (3, 2, 2) ∈ F

Clearly 3 + 2 maximizes i + j in F

The language recognized by the automaton for (3, 2, 2) ∈ F
is {1xx11} 6= ∅

Thus, 1xx11 is descriptive of S among one-variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 28 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Recall:
S = {s1, s2, s3} with s1 = 1101011, s2 = 10011, s3 = 11111,
F = {(1, 1, k), (1, 2, k), (2, 1, k), (3, 1, k), (3, 2, k), (4, 1, k)},

1 ≤ k ≤ i + 1
Example automata for (3, 2, 2) ∈ F

Clearly 3 + 2 maximizes i + j in F

The language recognized by the automaton for (3, 2, 2) ∈ F
is {1xx11} 6= ∅

Thus, 1xx11 is descriptive of S among one-variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 28 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Recall:
S = {s1, s2, s3} with s1 = 1101011, s2 = 10011, s3 = 11111,
F = {(1, 1, k), (1, 2, k), (2, 1, k), (3, 1, k), (3, 2, k), (4, 1, k)},

1 ≤ k ≤ i + 1
Example automata for (3, 2, 2) ∈ F

Clearly 3 + 2 maximizes i + j in F

The language recognized by the automaton for (3, 2, 2) ∈ F
is {1xx11} 6= ∅

Thus, 1xx11 is descriptive of S among one-variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 28 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Recall:
S = {s1, s2, s3} with s1 = 1101011, s2 = 10011, s3 = 11111,
F = {(1, 1, k), (1, 2, k), (2, 1, k), (3, 1, k), (3, 2, k), (4, 1, k)},

1 ≤ k ≤ i + 1
Example automata for (3, 2, 2) ∈ F

Clearly 3 + 2 maximizes i + j in F

The language recognized by the automaton for (3, 2, 2) ∈ F
is {1xx11} 6= ∅

Thus, 1xx11 is descriptive of S among one-variable patterns

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 28 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Summary

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S construct automaton
Intersect these automata

Discard automata whose language is empty

Choose any pattern recognized by an automaton that was built
from a triple maximizing i + j

We can bound the number of feasible triples and construct the
automata in time polynomial in their sizes

The algorithm runs in time polynomial in the length of the input

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 29 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Summary

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S construct automaton
Intersect these automata

Discard automata whose language is empty

Choose any pattern recognized by an automaton that was built
from a triple maximizing i + j

We can bound the number of feasible triples and construct the
automata in time polynomial in their sizes

The algorithm runs in time polynomial in the length of the input

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 29 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Summary

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S construct automaton
Intersect these automata

Discard automata whose language is empty

Choose any pattern recognized by an automaton that was built
from a triple maximizing i + j

We can bound the number of feasible triples and construct the
automata in time polynomial in their sizes

The algorithm runs in time polynomial in the length of the input

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 29 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Summary

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S construct automaton

Intersect these automata

Discard automata whose language is empty

Choose any pattern recognized by an automaton that was built
from a triple maximizing i + j

We can bound the number of feasible triples and construct the
automata in time polynomial in their sizes

The algorithm runs in time polynomial in the length of the input

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 29 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Summary

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S construct automaton
Intersect these automata

Discard automata whose language is empty

Choose any pattern recognized by an automaton that was built
from a triple maximizing i + j

We can bound the number of feasible triples and construct the
automata in time polynomial in their sizes

The algorithm runs in time polynomial in the length of the input

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 29 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Summary

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S construct automaton
Intersect these automata

Discard automata whose language is empty

Choose any pattern recognized by an automaton that was built
from a triple maximizing i + j

We can bound the number of feasible triples and construct the
automata in time polynomial in their sizes

The algorithm runs in time polynomial in the length of the input

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 29 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Summary

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S construct automaton
Intersect these automata

Discard automata whose language is empty

Choose any pattern recognized by an automaton that was built
from a triple maximizing i + j

We can bound the number of feasible triples and construct the
automata in time polynomial in their sizes

The algorithm runs in time polynomial in the length of the input

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 29 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Summary

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S construct automaton
Intersect these automata

Discard automata whose language is empty

Choose any pattern recognized by an automaton that was built
from a triple maximizing i + j

We can bound the number of feasible triples and construct the
automata in time polynomial in their sizes

The algorithm runs in time polynomial in the length of the input

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 29 / 44

Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Summary

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S construct automaton
Intersect these automata

Discard automata whose language is empty

Choose any pattern recognized by an automaton that was built
from a triple maximizing i + j

We can bound the number of feasible triples and construct the
automata in time polynomial in their sizes

The algorithm runs in time polynomial in the length of the input

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 29 / 44

Other results

1 Basic ideas

2 Finding Patterns Common to a Set of Strings

3 Other results
Lange and Wiehagen’s algorithm
Further work
Practical applications

4 Conclusion

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 30 / 44

Other results Lange and Wiehagen’s algorithm

1 Basic ideas

2 Finding Patterns Common to a Set of Strings

3 Other results
Lange and Wiehagen’s algorithm
Further work
Practical applications

4 Conclusion

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 31 / 44

Other results Lange and Wiehagen’s algorithm

What if we allowed wrong results?

Paper by Steffen Lange and Rolf Wiehagen published in 1991
Polynomial-time Inference of Arbitrary Pattern Languages

Presents an algorithm that identifies any pattern language in the
limit

Each hypothesis is found in polynomial time

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 32 / 44

Other results Lange and Wiehagen’s algorithm

What if we allowed wrong results?

Paper by Steffen Lange and Rolf Wiehagen published in 1991
Polynomial-time Inference of Arbitrary Pattern Languages

Presents an algorithm that identifies any pattern language in the
limit

Each hypothesis is found in polynomial time

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 32 / 44

Other results Lange and Wiehagen’s algorithm

What if we allowed wrong results?

Paper by Steffen Lange and Rolf Wiehagen published in 1991
Polynomial-time Inference of Arbitrary Pattern Languages

Presents an algorithm that identifies any pattern language in the
limit

Each hypothesis is found in polynomial time

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 32 / 44

Other results Lange and Wiehagen’s algorithm

Lange and Wiehagen’s algorithm

Idea:

Only look at strings of minimal length (discard the others)

Output pattern descriptive of strings of minimal length

Result:

Will identify pattern language in the limit

Polynomial run time - finding descriptive patterns of the same
length is easy

Algorithm will sometimes output wrong hypotheses

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 33 / 44

Other results Lange and Wiehagen’s algorithm

Lange and Wiehagen’s algorithm

Idea:

Only look at strings of minimal length (discard the others)

Output pattern descriptive of strings of minimal length

Result:

Will identify pattern language in the limit

Polynomial run time - finding descriptive patterns of the same
length is easy

Algorithm will sometimes output wrong hypotheses

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 33 / 44

Other results Lange and Wiehagen’s algorithm

Lange and Wiehagen’s algorithm

Idea:

Only look at strings of minimal length (discard the others)

Output pattern descriptive of strings of minimal length

Result:

Will identify pattern language in the limit

Polynomial run time - finding descriptive patterns of the same
length is easy

Algorithm will sometimes output wrong hypotheses

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 33 / 44

Other results Lange and Wiehagen’s algorithm

Lange and Wiehagen’s algorithm

Idea:

Only look at strings of minimal length (discard the others)

Output pattern descriptive of strings of minimal length

Result:

Will identify pattern language in the limit

Polynomial run time - finding descriptive patterns of the same
length is easy

Algorithm will sometimes output wrong hypotheses

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 33 / 44

Other results Lange and Wiehagen’s algorithm

Lange and Wiehagen’s algorithm

Idea:

Only look at strings of minimal length (discard the others)

Output pattern descriptive of strings of minimal length

Result:

Will identify pattern language in the limit

Polynomial run time - finding descriptive patterns of the same
length is easy

Algorithm will sometimes output wrong hypotheses

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 33 / 44

Other results Lange and Wiehagen’s algorithm

Lange and Wiehagen’s algorithm

Idea:

Only look at strings of minimal length (discard the others)

Output pattern descriptive of strings of minimal length

Result:

Will identify pattern language in the limit

Polynomial run time - finding descriptive patterns of the same
length is easy

Algorithm will sometimes output wrong hypotheses

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 33 / 44

Other results Further work

1 Basic ideas

2 Finding Patterns Common to a Set of Strings

3 Other results
Lange and Wiehagen’s algorithm
Further work
Practical applications

4 Conclusion

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 34 / 44

Other results Further work

Possible extensions of pattern languages

In extended pattern languages, empty substitutions are allowed
A regular pattern contains each variable at most once

Language Membership Equivalence Inclusion
Standard NP P U
Regular P P P
Extended NP Open U
Extended Regular P P P

Table: U=undecidable

Polynomial update time does not guarantee good learning time

One variable patterns can be learned very efficiently - will be
covered in next talk!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 35 / 44

Other results Further work

Possible extensions of pattern languages

In extended pattern languages, empty substitutions are allowed

A regular pattern contains each variable at most once

Language Membership Equivalence Inclusion
Standard NP P U
Regular P P P
Extended NP Open U
Extended Regular P P P

Table: U=undecidable

Polynomial update time does not guarantee good learning time

One variable patterns can be learned very efficiently - will be
covered in next talk!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 35 / 44

Other results Further work

Possible extensions of pattern languages

In extended pattern languages, empty substitutions are allowed
A regular pattern contains each variable at most once

Language Membership Equivalence Inclusion
Standard NP P U
Regular P P P
Extended NP Open U
Extended Regular P P P

Table: U=undecidable

Polynomial update time does not guarantee good learning time

One variable patterns can be learned very efficiently - will be
covered in next talk!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 35 / 44

Other results Further work

Possible extensions of pattern languages

In extended pattern languages, empty substitutions are allowed
A regular pattern contains each variable at most once

Language Membership Equivalence Inclusion
Standard NP P U
Regular P P P
Extended NP Open U
Extended Regular P P P

Table: U=undecidable

Polynomial update time does not guarantee good learning time

One variable patterns can be learned very efficiently - will be
covered in next talk!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 35 / 44

Other results Further work

Possible extensions of pattern languages

In extended pattern languages, empty substitutions are allowed
A regular pattern contains each variable at most once

Language Membership Equivalence Inclusion
Standard NP P U
Regular P P P
Extended NP Open U
Extended Regular P P P

Table: U=undecidable

Polynomial update time does not guarantee good learning time

One variable patterns can be learned very efficiently - will be
covered in next talk!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 35 / 44

Other results Further work

Possible extensions of pattern languages

In extended pattern languages, empty substitutions are allowed
A regular pattern contains each variable at most once

Language Membership Equivalence Inclusion
Standard NP P U
Regular P P P
Extended NP Open U
Extended Regular P P P

Table: U=undecidable

Polynomial update time does not guarantee good learning time

One variable patterns can be learned very efficiently - will be
covered in next talk!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 35 / 44

Other results Practical applications

1 Basic ideas

2 Finding Patterns Common to a Set of Strings

3 Other results
Lange and Wiehagen’s algorithm
Further work
Practical applications

4 Conclusion

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 36 / 44

Other results Practical applications

Shinohara ’82: Data entry systems

Nix ’83: Automatic text editing by examples

Arimura ’94: Finding patterns in amino acid sequences

Much work done in related fields!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 37 / 44

Other results Practical applications

Shinohara ’82: Data entry systems

Nix ’83: Automatic text editing by examples

Arimura ’94: Finding patterns in amino acid sequences

Much work done in related fields!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 37 / 44

Other results Practical applications

Shinohara ’82: Data entry systems

Nix ’83: Automatic text editing by examples

Arimura ’94: Finding patterns in amino acid sequences

Much work done in related fields!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 37 / 44

Other results Practical applications

Shinohara ’82: Data entry systems

Nix ’83: Automatic text editing by examples

Arimura ’94: Finding patterns in amino acid sequences

Much work done in related fields!

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 37 / 44

Conclusion

1 Basic ideas

2 Finding Patterns Common to a Set of Strings

3 Other results

4 Conclusion
References

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 38 / 44

Conclusion

Summary

Pattern languages: model for inductive inference

Finding descriptive patterns: generally not efficiently possible

Special case: polynomial-time algorithm for one-variable patterns

Lange/Wiehagen algorithm: inconsistent algorithm turns out to
be very effective

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 39 / 44

Conclusion

Summary

Pattern languages: model for inductive inference

Finding descriptive patterns: generally not efficiently possible

Special case: polynomial-time algorithm for one-variable patterns

Lange/Wiehagen algorithm: inconsistent algorithm turns out to
be very effective

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 39 / 44

Conclusion

Summary

Pattern languages: model for inductive inference

Finding descriptive patterns: generally not efficiently possible

Special case: polynomial-time algorithm for one-variable patterns

Lange/Wiehagen algorithm: inconsistent algorithm turns out to
be very effective

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 39 / 44

Conclusion

Summary

Pattern languages: model for inductive inference

Finding descriptive patterns: generally not efficiently possible

Special case: polynomial-time algorithm for one-variable patterns

Lange/Wiehagen algorithm: inconsistent algorithm turns out to
be very effective

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 39 / 44

Conclusion References

References I

I Dana Angluin.
Finding patterns common to a set of strings.
Journal of Computer and System Sciences, 21(1):46 – 62, 1980.

I Dana Angluin.
Inductive inference of formal languages from positive data.
Information and Control, 45(2):117 – 135, 1980.

I Hiroki Arimura, Ryoichi Fujino, Takeshi Shinohara, and Setsuo
Arikawa.
Protein motif discovery from positive examples by minimal multiple
generalization over regular patterns.
Genome Informatics, 5:39–48, 1994.

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 40 / 44

Conclusion References

References II

I Thomas Erlebach, Peter Rossmanith, Hans Stadtherr, Agelika
Steger, and Thomas Zeugmann.
Learning one-variable pattern languages very efficiently on average,
in parallel, and by asking queries.
Theor. Comput. Sci., 261(1):119–156, June 2001.

I Dominik D. Freydenberger and Daniel Reidenbach.
Bad news on decision problems for patterns.
Information and Computation, 208(1):83 – 96, 2010.

I E. Mark Gold.
Language identification in the limit.
Information and Control, 10(5):447–474, 1967.

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 41 / 44

Conclusion References

References III

I Tao Jiang, Ming Li, Bala Ravikumar, and Kenneth W. Regan.
Formal grammars and languages.
In Mikhail J. Atallah and Marina Blanton, editors, Algorithms and
Theory of Computation Handbook, pages 20–20. Chapman &
Hall/CRC, 2010.

I Tao Jiang, Arto Salomaa, Kai Salomaa, and Sheng Yu.
Inclusion is undecidable for pattern languages.
In Andrzej Lingas, Rolf Karlsson, and Svante Carlsson, editors,
Automata, Languages and Programming, volume 700 of Lecture
Notes in Computer Science, pages 301–312. Springer Berlin
Heidelberg, 1993.

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 42 / 44

Conclusion References

References IV

I Steffen Lange and Rolf Wiehagen.
Polynomial-time inference of arbitrary pattern languages.
New Generation Computing, 8(4):361–370, 1991.

I Yen Kaow Ng and Takeshi Shinohara.
Developments from enquiries into the learnability of the pattern
languages from positive data.
Theoretical Computer Science, 397(1):150–165, 2008.

I Takeshi Shinohara.
Polynomial time inference of pattern languages and its
applications.
In Proceedings of the 7th IBM Symposium on Mathematical
Foundations of Computer Science, pages 191–209, 1982.

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 43 / 44

Conclusion References

References V

I Takeshi Shinohara and Setsuo Arikawa.
Pattern inference.
In Algorithmic Learning for Knowledge-Based Systems, pages
259–291. Springer, 1995.

I Thomas Zeugmann.
Lange and wiehagen’s pattern language learning algorithm: An
average-case analysis with respect to its total learning time.
Annals of Mathematics and Artificial Intelligence, 23(1-2):117–145,
January 1998.

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 44 / 44

	Basic ideas
	Finding Patterns Common to a Set of Strings
	Learning pattern languages in the limit
	Finding descriptive patterns
	Properties of pattern languages
	Finding descriptive one-variable patterns

	Other results
	Lange and Wiehagen's algorithm
	Further work
	Practical applications

	Conclusion
	References

