Pattern Languages
 Seminar Algorithmic Learning Theory, SS 2015

Michael Krause

RWTH Aachen

07.05 .2015
(1) Basic ideas
(2) Finding Patterns Common to a Set of Strings
(3) Other results
4. Conclusion
(1) Basic ideas

(2) Finding Patterns Common to a Set of Strings

(3) Other results

(4) Conclusion

What are pattern languages?

- Type of formal languages
- Introduced by Dana Angluin in 1980

Why do they interest us?

Gold '67: Language Identification in the Limit

- Learning from positive and negative data more powerful than from positive data only

Why do they interest us?

Gold '67: Language Identification in the Limit

- Learning from positive and negative data more powerful than from positive data only

Angluin '80:
Inductive Inference of Formal Languages from Positive Data

- inductive inference - generalizing rules from examples

Why do they interest us?

Gold '67: Language Identification in the Limit

- Learning from positive and negative data more powerful than from positive data only
Angluin '80:
Inductive Inference of Formal Languages from Positive Data
- inductive inference - generalizing rules from examples

Finding Patterns Common to a Set of Strings

- Pattern languages

Why do they interest us?

Gold '67: Language Identification in the Limit

- Learning from positive and negative data more powerful than from positive data only
Angluin '80:
Inductive Inference of Formal Languages from Positive Data
- inductive inference - generalizing rules from examples

Finding Patterns Common to a Set of Strings

- Pattern languages
- can be learned from positive data

Why do they interest us?

Gold '67: Language Identification in the Limit

- Learning from positive and negative data more powerful than from positive data only
Angluin '80:
Inductive Inference of Formal Languages from Positive Data
- inductive inference - generalizing rules from examples

Finding Patterns Common to a Set of Strings

- Pattern languages
- can be learned from positive data
- are a natural model for inductive inference

Example

- Let $p=x 1 y 2 x$ a pattern

Example

- Let $p=x 1 y 2 x$ a pattern
- By substituting

$$
\begin{aligned}
x & :=10 \\
y & :=3
\end{aligned}
$$

we get:
1013210

Example

- Let $p=x 1 y 2 x$ a pattern
- By substituting
- By substituting

$$
\begin{array}{rr}
x:=10 & x:=0 x \\
y:=3 & y:=z 3 \\
\text { we get: } & \text { we get: } \\
1013210 & 0 x 1 z 320 x
\end{array}
$$

Example

- Let $p=x 1 y 2 x$ a pattern
- By substituting

$$
\begin{aligned}
x & :=10 \\
y & :=3
\end{aligned}
$$

we get:
1013210

- By substituting

$$
x:=0 x
$$

$$
y:=z 3
$$

we get:
$0 x 1 z 320 x$

- By substituting

$$
x:=y
$$

$$
y:=x
$$

we get:

Example

- Let $p=x 1 y 2 x$ a pattern
- By substituting

$$
\begin{aligned}
x & :=10 \\
y & :=3
\end{aligned}
$$

we get:
1013210

- By substituting

$$
x:=0 x
$$

$$
y:=z 3
$$

we get:
$0 x 1 z 320 x$

- By substituting

$$
x:=y
$$

$$
y:=x
$$

we get:

- Many more substitutions possible!

Formal definition

- A pattern is any finite string of constants and variables

Formal definition

- A pattern is any finite string of constants and variables
- Σ : finite alphabet of constants, for us: $\Sigma=\{0,1\}$

Formal definition

- A pattern is any finite string of constants and variables
- Σ : finite alphabet of constants, for us: $\Sigma=\{0,1\}$
- X : set of variables disjoint from Σ, for us: $X=\left\{x_{1}, x_{2}, \ldots\right\}$

Formal definition

- A pattern is any finite string of constants and variables
- Σ : finite alphabet of constants, for us: $\Sigma=\{0,1\}$
- X : set of variables disjoint from Σ, for us: $X=\left\{x_{1}, x_{2}, \ldots\right\}$
- A substitution replaces symbols in a pattern so that

Formal definition

- A pattern is any finite string of constants and variables
- Σ : finite alphabet of constants, for us: $\Sigma=\{0,1\}$
- X : set of variables disjoint from Σ, for us: $X=\left\{x_{1}, x_{2}, \ldots\right\}$
- A substitution replaces symbols in a pattern so that
- constants remain the same

Formal definition

- A pattern is any finite string of constants and variables
- Σ : finite alphabet of constants, for us: $\Sigma=\{0,1\}$
- X : set of variables disjoint from Σ, for us: $X=\left\{x_{1}, x_{2}, \ldots\right\}$
- A substitution replaces symbols in a pattern so that
- constants remain the same
- variables are mapped to any non-null string

Formal definition

- A pattern is any finite string of constants and variables
- Σ : finite alphabet of constants, for us: $\Sigma=\{0,1\}$
- X : set of variables disjoint from Σ, for us: $X=\left\{x_{1}, x_{2}, \ldots\right\}$
- A substitution replaces symbols in a pattern so that
- constants remain the same
- variables are mapped to any non-null string
- The language of a pattern is the set of all strings of constants we get through substitutions

Our main question

- We call a set of strings of constants a sample e.g: $S=\{101,10010,0110011\}$

Our main question

- We call a set of strings of constants a sample e.g: $S=\{101,10010,0110011\}$
- Given a sample S, which pattern generates every string in S ?

Our main question

- We call a set of strings of constants a sample e.g: $S=\{101,10010,0110011\}$
- Given a sample S, which pattern generates every string in S ?
- $p=x$ works, but here $q=x 0 x$ is more precise

Our main question

- We call a set of strings of constants a sample e.g: $S=\{101,10010,0110011\}$
- Given a sample S, which pattern generates every string in S ?
- $p=x$ works, but here $q=x 0 x$ is more precise
- We call a pattern p descriptive of S iff

Our main question

- We call a set of strings of constants a sample e.g: $S=\{101,10010,0110011\}$
- Given a sample S, which pattern generates every string in S ?
- $p=x$ works, but here $q=x 0 x$ is more precise
- We call a pattern p descriptive of S iff
- it generates every string in S

Our main question

- We call a set of strings of constants a sample e.g: $S=\{101,10010,0110011\}$
- Given a sample S, which pattern generates every string in S ?
- $p=x$ works, but here $q=x 0 x$ is more precise
- We call a pattern p descriptive of S iff
- it generates every string in S
- no other pattern q generates S so that the language of q is a strict subset of the language of p

Our main question

- We call a set of strings of constants a sample e.g: $S=\{101,10010,0110011\}$
- Given a sample S, which pattern generates every string in S ?
- $p=x$ works, but here $q=x 0 x$ is more precise
- We call a pattern p descriptive of S iff
- it generates every string in S
- no other pattern q generates S so that the language of q is a strict subset of the language of p
- Given a sample S, which pattern is descriptive of S ?
(2) Finding Patterns Common to a Set of Strings
- Learning pattern languages in the limit
- Finding descriptive patterns
- Properties of pattern languages
- Finding descriptive one-variable patterns

3) Other results

(1) Basic ideas

(2) Finding Patterns Common to a Set of Strings

- Learning pattern languages in the limit
- Finding descriptive patterns
- Properties of pattern languages
- Finding descriptive one-variable patterns
(3) Other results
(4) Conclusion

Repetition: Gold's model

- Objects: formal languages

Repetition: Gold's model

- Objects: formal languages
- Presentation: sequence of strings from a language, where each string appears at least once (a text)

Repetition: Gold's model

- Objects: formal languages
- Presentation: sequence of strings from a language, where each string appears at least once (a text)
- The learner outputs hypotheses after receiving a string

Repetition: Gold's model

- Objects: formal languages
- Presentation: sequence of strings from a language, where each string appears at least once (a text)
- The learner outputs hypotheses after receiving a string
- The learner learns the language, if, after some finite amount of time, the hypotheses are correct and remain the same

In our case

Assuming a learner is presented with a text $s_{1}, s_{2}, s_{3}, \ldots$ of some pattern language

In our case

Assuming a learner is presented with a text $s_{1}, s_{2}, s_{3}, \ldots$ of some pattern language

- The hypothesis space is the set of all patterns

In our case

Assuming a learner is presented with a text $s_{1}, s_{2}, s_{3}, \ldots$ of some pattern language

- The hypothesis space is the set of all patterns
- The hypotheses are patterns descriptive of the strings seen so far

In our case

Assuming a learner is presented with a text $s_{1}, s_{2}, s_{3}, \ldots$ of some pattern language

- The hypothesis space is the set of all patterns
- The hypotheses are patterns descriptive of the strings seen so far

Assuming there exists an algorithm to find descriptive patterns

In our case

Assuming a learner is presented with a text $s_{1}, s_{2}, s_{3}, \ldots$ of some pattern language

- The hypothesis space is the set of all patterns
- The hypotheses are patterns descriptive of the strings seen so far

Assuming there exists an algorithm to find descriptive patterns

- Then paper by Angluin shows:

Pattern languages can be learned in the limit from positive data

(1) Basic ideas

(2) Finding Patterns Common to a Set of Strings

- Learning pattern languages in the limit
- Finding descriptive patterns
- Properties of pattern languages
- Finding descriptive one-variable patterns
(3) Other results
(4) Conclusion

Our first attempt

Let S be a sample

Our first attempt

Let S be a sample

- Enumerate all patterns of shorter or equal length of the shortest string in S

Our first attempt

Let S be a sample

- Enumerate all patterns of shorter or equal length of the shortest string in S
- Test for each pattern if its language contains S

Our first attempt

Let S be a sample

- Enumerate all patterns of shorter or equal length of the shortest string in S
- Test for each pattern if its language contains S
- From all patterns that pass the test:

Select one which is minimal with regards to inclusion

Our first attempt

Let S be a sample

- Enumerate all patterns of shorter or equal length of the shortest string in S \rightarrow exponential growth
- Test for each pattern if its language contains S
- From all patterns that pass the test:

Select one which is minimal with regards to inclusion

Our first attempt

Let S be a sample

- Enumerate all patterns of shorter or equal length of the shortest string in S
\rightarrow exponential growth

Theorem (3.6, Angluin)

The membership problem for pattern languages is NP-complete

- Test for each pattern if its language contains S
- From all patterns that pass the test:

Select one which is minimal with regards to inclusion

Our first attempt

Let S be a sample

- Enumerate all patterns of shorter or equal length of the shortest string in S
\rightarrow exponential growth

Theorem (3.6, Angluin)

The membership problem for pattern languages is NP-complete

- Test for each pattern if its language contains $S \rightarrow$ NP-complete
- From all patterns that pass the test:

Select one which is minimal with regards to inclusion

Our first attempt

Let S be a sample

- Enumerate all patterns of shorter or equal length of the shortest string in S
\rightarrow exponential growth

Theorem (3.6, Angluin)

The membership problem for pattern languages is NP-complete

- Test for each pattern if its language contains $S \rightarrow$ NP-complete

Theorem (5.1, Jiang et al.)

The inclusion problem for arbitrary pattern languages is undecidable

- From all patterns that pass the test:

Select one which is minimal with regards to inclusion

Our first attempt

Let S be a sample

- Enumerate all patterns of shorter or equal length of the shortest string in S
\rightarrow exponential growth

Theorem (3.6, Angluin)

The membership problem for pattern languages is NP-complete

- Test for each pattern if its language contains $S \rightarrow$ NP-complete

Theorem (5.1, Jiang et al.)

The inclusion problem for arbitrary pattern languages is undecidable

- From all patterns that pass the test:

Select one which is minimal with regards to inclusion

Our second attempt

Let S be a sample

- Enumerate all patterns of shorter or equal length of the shortest string in S
\rightarrow exponential growth
- Test for each pattern if its language contains $S \rightarrow$ NP-complete

Our second attempt

Let S be a sample

- Enumerate all patterns of shorter or equal length of the shortest string in S
\rightarrow exponential growth
- Test for each pattern if its language contains $S \rightarrow$ NP-complete

Corollary (3.4, Angluin)

Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a substitution from q to p

Our second attempt

Let S be a sample

- Enumerate all patterns of shorter or equal length of the shortest string in S
- Test for each pattern if its language contains $S \rightarrow$ NP-complete

Corollary (3.4, Angluin)

Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a substitution from q to p

- From all patterns that pass the test select the longest

Our second attempt

Let S be a sample

- Enumerate all patterns of shorter or equal length of the shortest string in S \rightarrow exponential growth
- Test for each pattern if its language contains $S \rightarrow$ NP-complete Corollary (3.4, Angluin)
Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a substitution from q to p
- From all patterns that pass the test select the longest
- From the resulting set of patterns, output any which cannot be gained by substituting from another

Our second attempt

Let S be a sample

- Enumerate all patterns of shorter or equal length of the shortest string in S \rightarrow exponential growth
- Test for each pattern if its language contains $S \rightarrow$ NP-complete

Corollary (3.4, Angluin)

Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a substitution from q to p

- From all patterns that pass the test select the longest
- From the resulting set of patterns, output any which cannot be gained by substituting from another $\quad \rightarrow$ NP-complete

Results so far

Let S be a sample

Theorem (4.2)

If $P \neq N P$ then there is no polynomial-time algorithm to find a pattern of maximum possible length descriptive of S

Results so far

Let S be a sample

Theorem (4.2)

If $P \neq N P$ then there is no polynomial-time algorithm to find a pattern of maximum possible length descriptive of S

- We may still solve this efficiently in special cases!

(1) Basic ideas

(2) Finding Patterns Common to a Set of Strings

- Learning pattern languages in the limit
- Finding descriptive patterns
- Properties of pattern languages
- Finding descriptive one-variable patterns
(3) Other results
(4) Conclusion

Comparison to other language types

- The pattern language $L(x x)$ is not context-free

Comparison to other language types

- The pattern language $L(x x)$ is not context-free
- The regular language $L(0 \mid 1)=\{0,1\}$ is not a pattern language

Comparison to other language types

- The pattern language $L(x x)$ is not context-free
- The regular language $L(0 \mid 1)=\{0,1\}$ is not a pattern language

Theorem (3.4, Jiang)

Every pattern language is context-sensitive

Comparison to other language types

- The pattern language $L(x x)$ is not context-free
- The regular language $L(0 \mid 1)=\{0,1\}$ is not a pattern language

Theorem (3.4, Jiang)

Every pattern language is context-sensitive

Language	Membership	Emptiness	Equivalence	Inclusion
Context-sens.	D	U	U	U
Context-free	D	D	U	U
Regular	D	D	D	D
Pattern lang.	D	D	D	U

Table: $\mathrm{D}=$ decidable, $\mathrm{U}=$ undecidable

(1) Basic ideas

(2) Finding Patterns Common to a Set of Strings

- Learning pattern languages in the limit
- Finding descriptive patterns
- Properties of pattern languages
- Finding descriptive one-variable patterns
(3) Other results

Overview

(1) Introduce necessary conditions for one-variable patterns that could generate a string

Overview

(1) Introduce necessary conditions for one-variable patterns that could generate a string
(2) Bound the number of one-variable patterns that could generate every string in a sample

Overview

(1) Introduce necessary conditions for one-variable patterns that could generate a string
(2) Bound the number of one-variable patterns that could generate every string in a sample
(3) Construct automata that recognize exactly these patterns

Overview

(1) Introduce necessary conditions for one-variable patterns that could generate a string
(2) Bound the number of one-variable patterns that could generate every string in a sample
(3) Construct automata that recognize exactly these patterns
(4) Finally, select a specific automaton that recognizes descriptive one-variable patterns

Feasible triples

Let p be a one-variable pattern and s a string of constants

Feasible triples

Let p be a one-variable pattern and s a string of constants

- We define a mapping $\tau(p)=(i, j, k)$ where

Feasible triples

Let p be a one-variable pattern and s a string of constants

- We define a mapping $\tau(p)=(i, j, k)$ where
- i is the number of constants in p

Feasible triples

Let p be a one-variable pattern and s a string of constants

- We define a mapping $\tau(p)=(i, j, k)$ where
- i is the number of constants in p
- j is the number of occurences of x in p

Feasible triples

Let p be a one-variable pattern and s a string of constants

- We define a mapping $\tau(p)=(i, j, k)$ where
- i is the number of constants in p
- j is the number of occurences of x in p
- k is the position of the first occurence of x in p

Feasible triples

Let p be a one-variable pattern and s a string of constants

- We define a mapping $\tau(p)=(i, j, k)$ where
- i is the number of constants in p
- j is the number of occurences of x in p
- k is the position of the first occurence of x in p
- A pattern p can only generate s, if $\tau(p)$ is feasible for s

Feasible triples

Let p be a one-variable pattern and s a string of constants

- We define a mapping $\tau(p)=(i, j, k)$ where
- i is the number of constants in p
- j is the number of occurences of x in p
- k is the position of the first occurence of x in p
- A pattern p can only generate s, if $\tau(p)$ is feasible for s

Let $S=\left\{s_{1}, \ldots, s_{m}\right\}$ a sample

Feasible triples

Let p be a one-variable pattern and s a string of constants

- We define a mapping $\tau(p)=(i, j, k)$ where
- i is the number of constants in p
- j is the number of occurences of x in p
- k is the position of the first occurence of x in p
- A pattern p can only generate s, if $\tau(p)$ is feasible for s

Let $S=\left\{s_{1}, \ldots, s_{m}\right\}$ a sample

- Let F be the set of all triples feasible for every string in S

Feasible triples

Let p be a one-variable pattern and s a string of constants

- We define a mapping $\tau(p)=(i, j, k)$ where
- i is the number of constants in p
- j is the number of occurences of x in p
- k is the position of the first occurence of x in p
- A pattern p can only generate s, if $\tau(p)$ is feasible for s

Let $S=\left\{s_{1}, \ldots, s_{m}\right\}$ a sample

- Let F be the set of all triples feasible for every string in S
- We can bound $|F|=\mathcal{O}\left(I^{2} \log I\right)$ where I is the length of the shortest string in S

Anguin's algorithm for finding descriptive one-variable patterns

Let S be a sample

Anguin's algorithm for finding descriptive one-variable patterns

Let S be a sample

- Construct F by enumerating all feasible triples

Anguin's algorithm for finding descriptive one-variable patterns

Let S be a sample

- Construct F by enumerating all feasible triples
- For each triple $f \in F$

Anguin's algorithm for finding descriptive one-variable patterns

Let S be a sample

- Construct F by enumerating all feasible triples
- For each triple $f \in F$
- For each string $s \in S$

Anguin's algorithm for finding descriptive one-variable patterns

Let S be a sample

- Construct F by enumerating all feasible triples
- For each triple $f \in F$
- For each string $s \in S$
- Construct automaton which recognizes patterns p that - fulfill $\tau(p)=f \quad$ - generate s

Anguin's algorithm for finding descriptive one-variable patterns

Let S be a sample

- Construct F by enumerating all feasible triples
- For each triple $f \in F$
- For each string $s \in S$
- Construct automaton which recognizes patterns p that - fulfill $\tau(p)=f \quad$ - generate s
- Intersect these automata

Anguin's algorithm for finding descriptive one-variable patterns

Let S be a sample

- Construct F by enumerating all feasible triples
- For each triple $f \in F$
- For each string $s \in S$
- Construct automaton which recognizes patterns p that - fulfill $\tau(p)=f \quad$ - generate s
- Intersect these automata
- From the resulting set of automata: discard those whose language is empty

Anguin's algorithm for finding descriptive one-variable patterns

Let S be a sample

- Construct F by enumerating all feasible triples
- For each triple $f \in F$
- For each string $s \in S$
- Construct automaton which recognizes patterns p that
- fulfill $\tau(p)=f \quad$ - generate s
- Intersect these automata
- From the resulting set of automata: discard those whose language is empty

Lemma (6.3)

Any pattern accepted by an automaton built from a triple that maximizes $i+j$ is descriptive of S among one variable patterns

Example

Let $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ a sample with

$$
s_{1}=1101011, s_{2}=10011, s_{3}=11111
$$

- We construct F through enumeration

We get:
$F=\{(1,1, k),(1,2, k),(2,1, k),(3,1, k),(3,2, k),(4,1, k)\}$
$1 \leq k \leq i+1$

Example

Let $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ a sample with

$$
s_{1}=1101011, s_{2}=10011, s_{3}=11111
$$

- We construct F through enumeration

We get:

$$
\begin{aligned}
F=\{(1,1, k),(1,2, k),(2,1, k),(3,1, k),(3,2, k), & (4,1, k)\} \\
& 1 \leq k \leq i+1
\end{aligned}
$$

- We construct three automata per triple in F

Example

Let $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ a sample with

$$
s_{1}=1101011, s_{2}=10011, s_{3}=11111
$$

- We construct F through enumeration We get:

$$
\begin{aligned}
F=\{(1,1, k),(1,2, k),(2,1, k),(3,1, k),(3,2, k), & (4,1, k)\} \\
& 1 \leq k \leq i+1
\end{aligned}
$$

- We construct three automata per triple in F
- In this example we do this for: $(3,2,2) \in F$

Triple: $(3,2,2)$, String: $s_{1}=1101011$

Triple: $(3,2,2)$, String: $s_{1}=1101011$
Substring starts at position 2, length: $\left(\left|s_{1}\right|-3\right) / 2=2$

Triple: $(3,2,2)$, String: $s_{1}=1101011$
Substring starts at position 2, length: $\left(\left|s_{1}\right|-3\right) / 2=2$ Substring: $x=10$

Triple: $(3,2,2)$, String: $s_{1}=1101011$
Substring starts at position 2, length: $\left(\left|s_{1}\right|-3\right) / 2=2$ Substring: $x=10$

Triple: $(3,2,2)$, String: $s_{1}=1101011$
Substring starts at position 2, length: $\left(\left|s_{1}\right|-3\right) / 2=2$ Substring: $x=10$

Triple: $(3,2,2)$, String: $s_{1}=1101011$
Substring starts at position 2, length: $\left(\left|s_{1}\right|-3\right) / 2=2$ Substring: $x=10$

Triple: $(3,2,2)$, String: $s_{1}=1101011$
Substring starts at position 2, length: $\left(\left|s_{1}\right|-3\right) / 2=2$ Substring: $x=10$

Triple: $(3,2,2)$, String: $s_{1}=1101011$
Substring starts at position 2, length: $\left(\left|s_{1}\right|-3\right) / 2=2$ Substring: $x=10$

Triple: $(3,2,2)$, String: $s_{1}=1101011$
Substring starts at position 2, length: $\left(\left|s_{1}\right|-3\right) / 2=2$ Substring: $x=10$

Triple: $(3,2,2)$, String: $s_{1}=1101011$
Substring starts at position 2, length: $\left(\left|s_{1}\right|-3\right) / 2=2$ Substring: $x=10$

Triple: $(3,2,2)$, String: $s_{1}=1101011$
Substring starts at position 2, length: $\left(\left|s_{1}\right|-3\right) / 2=2$ Substring: $x=10$

Triple: $(3,2,2)$, String: $s_{1}=1101011$
Substring starts at position 2, length: $\left(\left|s_{1}\right|-3\right) / 2=2$ Substring: $x=10$

Triple: $(3,2,2)$, String: $s_{2}=10011$, Substring length: $\left(\left|s_{2}\right|-3\right) / 2=1$ Substring: $x=0$

Triple: $(3,2,2)$, String: $s_{3}=11111$, Substring length: $\left(\left|s_{3}\right|-3\right) / 2=1$ Substring: $x=1$

Intersection of all three automata:

Intersection of all three automata:

Clearly the automaton recognizes the language $\{1 x x 11\}$

Recall:

$S=\left\{s_{1}, s_{2}, s_{3}\right\}$ with $s_{1}=1101011, s_{2}=10011, s_{3}=11111$,
$F=\{(1,1, k),(1,2, k),(2,1, k),(3,1, k),(3,2, k),(4,1, k)\}$,
$1 \leq k \leq i+1$
Example automata for $(3,2,2) \in F$

Recall:
$S=\left\{s_{1}, s_{2}, s_{3}\right\}$ with $s_{1}=1101011, s_{2}=10011, s_{3}=11111$,
$F=\{(1,1, k),(1,2, k),(2,1, k),(3,1, k),(3,2, k),(4,1, k)\}$,

$$
1 \leq k \leq i+1
$$

Example automata for $(3,2,2) \in F$

- Clearly $3+2$ maximizes $i+j$ in F

Recall:
$S=\left\{s_{1}, s_{2}, s_{3}\right\}$ with $s_{1}=1101011, s_{2}=10011, s_{3}=11111$,
$F=\{(1,1, k),(1,2, k),(2,1, k),(3,1, k),(3,2, k),(4,1, k)\}$,

$$
1 \leq k \leq i+1
$$

Example automata for $(3,2,2) \in F$

- Clearly $3+2$ maximizes $i+j$ in F
- The language recognized by the automaton for $(3,2,2) \in F$ is $\{1 x x 11\} \neq \emptyset$

Recall:
$S=\left\{s_{1}, s_{2}, s_{3}\right\}$ with $s_{1}=1101011, s_{2}=10011, s_{3}=11111$,
$F=\{(1,1, k),(1,2, k),(2,1, k),(3,1, k),(3,2, k),(4,1, k)\}$,

$$
1 \leq k \leq i+1
$$

Example automata for $(3,2,2) \in F$

- Clearly $3+2$ maximizes $i+j$ in F
- The language recognized by the automaton for $(3,2,2) \in F$ is $\{1 \times x 11\} \neq \emptyset$
- Thus, $1 \times x 11$ is descriptive of S among one-variable patterns

Summary

Summary

Let S be a sample

- Construct F by enumerating all feasible triples

Summary

Let S be a sample

- Construct F by enumerating all feasible triples
- For each triple $f \in F$

Summary

Let S be a sample

- Construct F by enumerating all feasible triples
- For each triple $f \in F$
- For each string $s \in S$ construct automaton

Summary

Let S be a sample

- Construct F by enumerating all feasible triples
- For each triple $f \in F$
- For each string $s \in S$ construct automaton
- Intersect these automata

Summary

Let S be a sample

- Construct F by enumerating all feasible triples
- For each triple $f \in F$
- For each string $s \in S$ construct automaton
- Intersect these automata
- Discard automata whose language is empty

Summary

Let S be a sample

- Construct F by enumerating all feasible triples
- For each triple $f \in F$
- For each string $s \in S$ construct automaton
- Intersect these automata
- Discard automata whose language is empty
- Choose any pattern recognized by an automaton that was built from a triple maximizing $i+j$

Summary

Let S be a sample

- Construct F by enumerating all feasible triples
- For each triple $f \in F$
- For each string $s \in S$ construct automaton
- Intersect these automata
- Discard automata whose language is empty
- Choose any pattern recognized by an automaton that was built from a triple maximizing $i+j$
- We can bound the number of feasible triples and construct the automata in time polynomial in their sizes

Summary

Let S be a sample

- Construct F by enumerating all feasible triples
- For each triple $f \in F$
- For each string $s \in S$ construct automaton
- Intersect these automata
- Discard automata whose language is empty
- Choose any pattern recognized by an automaton that was built from a triple maximizing $i+j$
- We can bound the number of feasible triples and construct the automata in time polynomial in their sizes
- The algorithm runs in time polynomial in the length of the input

(1) Basic ideas

(2) Finding Patterns Common to a Set of Strings

(3) Other results

- Lange and Wiehagen's algorithm
- Further work
- Practical applications

4. Conclusion

(1) Basic ideas

(2) Finding Patterns Common to a Set of Strings

(3) Other results

- Lange and Wiehagen's algorithm
- Further work
- Practical applications

(4) Conclusion

What if we allowed wrong results?

- Paper by Steffen Lange and Rolf Wiehagen published in 1991 Polynomial-time Inference of Arbitrary Pattern Languages

What if we allowed wrong results?

- Paper by Steffen Lange and Rolf Wiehagen published in 1991 Polynomial-time Inference of Arbitrary Pattern Languages
- Presents an algorithm that identifies any pattern language in the limit

What if we allowed wrong results?

- Paper by Steffen Lange and Rolf Wiehagen published in 1991 Polynomial-time Inference of Arbitrary Pattern Languages
- Presents an algorithm that identifies any pattern language in the limit
- Each hypothesis is found in polynomial time

Lange and Wiehagen's algorithm

Idea:

- Only look at strings of minimal length (discard the others)

Lange and Wiehagen's algorithm

Idea:

- Only look at strings of minimal length (discard the others)
- Output pattern descriptive of strings of minimal length

Lange and Wiehagen's algorithm

Idea:

- Only look at strings of minimal length (discard the others)
- Output pattern descriptive of strings of minimal length

Result:

Lange and Wiehagen's algorithm

Idea:

- Only look at strings of minimal length (discard the others)
- Output pattern descriptive of strings of minimal length

Result:

- Will identify pattern language in the limit

Lange and Wiehagen's algorithm

Idea:

- Only look at strings of minimal length (discard the others)
- Output pattern descriptive of strings of minimal length

Result:

- Will identify pattern language in the limit
- Polynomial run time - finding descriptive patterns of the same length is easy

Lange and Wiehagen's algorithm

Idea:

- Only look at strings of minimal length (discard the others)
- Output pattern descriptive of strings of minimal length

Result:

- Will identify pattern language in the limit
- Polynomial run time - finding descriptive patterns of the same length is easy
- Algorithm will sometimes output wrong hypotheses

(1) Basic ideas

(2) Finding Patterns Common to a Set of Strings

(3) Other results

- Lange and Wiehagen's algorithm
- Further work
- Practical applications

(4) Conclusion

- Possible extensions of pattern languages
- Possible extensions of pattern languages
- In extended pattern languages, empty substitutions are allowed
- Possible extensions of pattern languages
- In extended pattern languages, empty substitutions are allowed
- A regular pattern contains each variable at most once
- Possible extensions of pattern languages
- In extended pattern languages, empty substitutions are allowed
- A regular pattern contains each variable at most once

Language	Membership	Equivalence	Inclusion
Standard	NP	P	U
Regular	P	P	P
Extended	NP	Open	U
Extended Regular	P	P	P

Table: U=undecidable

- Possible extensions of pattern languages
- In extended pattern languages, empty substitutions are allowed
- A regular pattern contains each variable at most once

Language	Membership	Equivalence	Inclusion
Standard	NP	P	U
Regular	P	P	P
Extended	NP	Open	U
Extended Regular	P	P	P

Table: U=undecidable

- Polynomial update time does not guarantee good learning time
- Possible extensions of pattern languages
- In extended pattern languages, empty substitutions are allowed
- A regular pattern contains each variable at most once

Language	Membership	Equivalence	Inclusion
Standard	NP	P	U
Regular	P	P	P
Extended	NP	Open	U
Extended Regular	P	P	P

Table: U=undecidable

- Polynomial update time does not guarantee good learning time
- One variable patterns can be learned very efficiently - will be covered in next talk!

(1) Basic ideas

(2) Finding Patterns Common to a Set of Strings

(3) Other results

- Lange and Wiehagen's algorithm
- Further work
- Practical applications
(4) Conclusion
- Shinohara '82: Data entry systems
- Shinohara '82: Data entry systems
- Nix '83: Automatic text editing by examples
- Shinohara '82: Data entry systems
- Nix '83: Automatic text editing by examples
- Arimura '94: Finding patterns in amino acid sequences
- Shinohara '82: Data entry systems
- Nix '83: Automatic text editing by examples
- Arimura '94: Finding patterns in amino acid sequences
- Much work done in related fields!

(1) Basic ideas

(2) Finding Patterns Common to a Set of Strings

(3) Other results

(4) Conclusion

- References

Summary

- Pattern languages: model for inductive inference

Summary

- Pattern languages: model for inductive inference
- Finding descriptive patterns: generally not efficiently possible

Summary

- Pattern languages: model for inductive inference
- Finding descriptive patterns: generally not efficiently possible
- Special case: polynomial-time algorithm for one-variable patterns

Summary

- Pattern languages: model for inductive inference
- Finding descriptive patterns: generally not efficiently possible
- Special case: polynomial-time algorithm for one-variable patterns
- Lange/Wiehagen algorithm: inconsistent algorithm turns out to be very effective

References I

- Dana Angluin.

Finding patterns common to a set of strings.
Journal of Computer and System Sciences, 21(1):46-62, 1980.

- Dana Angluin.

Inductive inference of formal languages from positive data. Information and Control, 45(2):117-135, 1980.

- Hiroki Arimura, Ryoichi Fujino, Takeshi Shinohara, and Setsuo Arikawa.
Protein motif discovery from positive examples by minimal multiple generalization over regular patterns.
Genome Informatics, 5:39-48, 1994.

References II

- Thomas Erlebach, Peter Rossmanith, Hans Stadtherr, Agelika Steger, and Thomas Zeugmann.
Learning one-variable pattern languages very efficiently on average, in parallel, and by asking queries.
Theor. Comput. Sci., 261(1):119-156, June 2001.
- Dominik D. Freydenberger and Daniel Reidenbach.

Bad news on decision problems for patterns.
Information and Computation, 208(1):83-96, 2010.

- E. Mark Gold.

Language identification in the limit.
Information and Control, 10(5):447-474, 1967.

References III

- Tao Jiang, Ming Li, Bala Ravikumar, and Kenneth W. Regan. Formal grammars and languages.
In Mikhail J. Atallah and Marina Blanton, editors, Algorithms and Theory of Computation Handbook, pages 20-20. Chapman \& Hall/CRC, 2010.
- Tao Jiang, Arto Salomaa, Kai Salomaa, and Sheng Yu. Inclusion is undecidable for pattern languages.
In Andrzej Lingas, Rolf Karlsson, and Svante Carlsson, editors, Automata, Languages and Programming, volume 700 of Lecture Notes in Computer Science, pages 301-312. Springer Berlin Heidelberg, 1993.

References IV

- Steffen Lange and Rolf Wiehagen.

Polynomial-time inference of arbitrary pattern languages.
New Generation Computing, 8(4):361-370, 1991.

- Yen Kaow Ng and Takeshi Shinohara.

Developments from enquiries into the learnability of the pattern languages from positive data.
Theoretical Computer Science, 397(1):150-165, 2008.

- Takeshi Shinohara.

Polynomial time inference of pattern languages and its applications.
In Proceedings of the 7th IBM Symposium on Mathematical Foundations of Computer Science, pages 191-209, 1982.

References V

- Takeshi Shinohara and Setsuo Arikawa.

Pattern inference.
In Algorithmic Learning for Knowledge-Based Systems, pages 259-291. Springer, 1995.

- Thomas Zeugmann.

Lange and wiehagen's pattern language learning algorithm: An average-case analysis with respect to its total learning time. Annals of Mathematics and Artificial Intelligence, 23(1-2):117-145, January 1998.

