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Basic ideas

What are pattern languages?

Type of formal languages

Introduced by Dana Angluin
in 1980
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Basic ideas

Why do they interest us?

Gold ’67: Language Identification in the Limit

Learning from positive and negative data more powerful than
from positive data only

Angluin ’80:
Inductive Inference of Formal Languages from Positive Data

inductive inference - generalizing rules from examples

Finding Patterns Common to a Set of Strings

Pattern languages

can be learned from positive data
are a natural model for inductive inference
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Basic ideas

Example

Let p = x1y2x a pattern

By substituting

x := 10

y := 3

we get:

1013210

By substituting

x := 0x

y := z3

we get:

0x1z320x

By substituting

x := y

y := x

we get:

y1x2y

Many more substitutions possible!
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Basic ideas

Formal definition

A pattern is any finite string of constants and variables

Σ: finite alphabet of constants, for us: Σ = {0, 1}
X : set of variables disjoint from Σ, for us: X = {x1, x2, . . . }
A substitution replaces symbols in a pattern so that

constants remain the same
variables are mapped to any non-null string

The language of a pattern is the set of all strings of constants
we get through substitutions
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Basic ideas

Our main question

We call a set of strings of constants a sample
e.g: S = {101, 10010, 0110011}

Given a sample S , which pattern generates every string in S?

p = x works, but here q = x0x is more precise

We call a pattern p descriptive of S iff

it generates every string in S
no other pattern q generates S so that the language of q is a
strict subset of the language of p

Given a sample S , which pattern is descriptive of S?
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Finding Patterns Common to a Set of Strings Learning pattern languages in the limit

Repetition: Gold’s model

Objects: formal languages

Presentation: sequence of strings from a language, where each
string appears at least once (a text)

The learner outputs hypotheses after receiving a string

The learner learns the language, if, after some finite amount of
time, the hypotheses are correct and remain the same
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Finding Patterns Common to a Set of Strings Learning pattern languages in the limit

In our case

Assuming a learner is presented with a text s1, s2, s3, . . . of some
pattern language

The hypothesis space is the set of all patterns

The hypotheses are patterns descriptive of the strings seen so far

Assuming there exists an algorithm to find descriptive patterns

Then paper by Angluin shows:
Pattern languages can be learned in the limit from positive data
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Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our first attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S

→ exponential growth

Test for each pattern if its language contains S

→ NP-complete

From all patterns that pass the test:
Select one which is minimal with regards to inclusion

→ /!
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Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our second attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Test for each pattern if its language contains S → NP-complete

Corollary (3.4, Angluin)

Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a
substitution from q to p

From all patterns that pass the test select the longest

From the resulting set of patterns, output any which cannot be
gained by substituting from another

→ NP-complete

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 15 / 44



Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our second attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Test for each pattern if its language contains S → NP-complete

Corollary (3.4, Angluin)

Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a
substitution from q to p

From all patterns that pass the test select the longest

From the resulting set of patterns, output any which cannot be
gained by substituting from another

→ NP-complete

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 15 / 44



Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our second attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Test for each pattern if its language contains S → NP-complete

Corollary (3.4, Angluin)

Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a
substitution from q to p

From all patterns that pass the test select the longest

From the resulting set of patterns, output any which cannot be
gained by substituting from another

→ NP-complete

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 15 / 44



Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our second attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Test for each pattern if its language contains S → NP-complete

Corollary (3.4, Angluin)

Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a
substitution from q to p

From all patterns that pass the test select the longest

From the resulting set of patterns, output any which cannot be
gained by substituting from another

→ NP-complete

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 15 / 44



Finding Patterns Common to a Set of Strings Finding descriptive patterns

Our second attempt

Let S be a sample

Enumerate all patterns of shorter or equal length of the shortest
string in S → exponential growth

Test for each pattern if its language contains S → NP-complete

Corollary (3.4, Angluin)

Let p, q be patterns with the same length.
Then the language of q includes the language of p iff there is a
substitution from q to p

From all patterns that pass the test select the longest

From the resulting set of patterns, output any which cannot be
gained by substituting from another → NP-complete

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 15 / 44



Finding Patterns Common to a Set of Strings Finding descriptive patterns

Results so far

Let S be a sample

Theorem (4.2)

If P 6= NP then there is no polynomial-time algorithm to find a
pattern of maximum possible length descriptive of S

We may still solve this efficiently in special cases!
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Finding Patterns Common to a Set of Strings Properties of pattern languages

Comparison to other language types

The pattern language L(xx) is not context-free

The regular language L(0|1) = {0, 1} is not a pattern language

Theorem (3.4, Jiang)

Every pattern language is context-sensitive

Language Membership Emptiness Equivalence Inclusion
Context-sens. D U U U
Context-free D D U U
Regular D D D D
Pattern lang. D D D U

Table: D=decidable, U=undecidable
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Overview

1 Introduce necessary conditions for one-variable patterns that
could generate a string

2 Bound the number of one-variable patterns that could generate
every string in a sample

3 Construct automata that recognize exactly these patterns

4 Finally, select a specific automaton that recognizes descriptive
one-variable patterns
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Feasible triples

Let p be a one-variable pattern and s a string of constants

We define a mapping τ(p) = (i , j , k) where

i is the number of constants in p
j is the number of occurences of x in p
k is the position of the first occurence of x in p

A pattern p can only generate s, if τ(p) is feasible for s

Let S = {s1, . . . , sm} a sample

Let F be the set of all triples feasible for every string in S

We can bound |F | = O(l2 log l) where l is the length of the
shortest string in S
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Anguin’s algorithm for finding descriptive

one-variable patterns

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S

Construct automaton which recognizes patterns p that
- fulfill τ(p) = f - generate s

Intersect these automata

From the resulting set of automata: discard those whose
language is empty

Lemma (6.3)

Any pattern accepted by an automaton built from a triple that
maximizes i + j is descriptive of S among one variable patterns
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Example

Let S = {s1, s2, s3} a sample with

s1 = 1101011, s2 = 10011, s3 = 11111

We construct F through enumeration
We get:
F = {(1, 1, k), (1, 2, k), (2, 1, k), (3, 1, k), (3, 2, k), (4, 1, k)}

1 ≤ k ≤ i + 1

We construct three automata per triple in F

In this example we do this for: (3, 2, 2) ∈ F
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s1 = 1101011

Substring starts at position 2, length: (|s1| − 3) /2 = 2
Substring: x = 10

(0, 0) (1, 0)

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(1, 2) (2, 2) (3, 2)
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s2 = 10011,
Substring length: (|s2| − 3) /2 = 1
Substring: x = 0

(0, 0) (1, 0)

(1, 1) (2, 1) (3, 1) (4, 1)

(1, 2) (2, 2) (3, 2)

1
x
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0 1 1

1 1

Michael Krause (RWTH Aachen) Pattern Languages 07.05.2015 25 / 44



Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Triple: (3, 2, 2), String: s3 = 11111,
Substring length: (|s3| − 3) /2 = 1
Substring: x = 1

(0, 0) (1, 0)

(1, 1) (2, 1) (3, 1) (4, 1)

(1, 2) (2, 2) (3, 2)

1
x

x
1 1

x
1
x

1 1
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Intersection of all three automata:

(0, 0) (1, 0)

(1, 1)

(1, 2) (2, 2) (3, 2)

1
x

x
1 1

Clearly the automaton recognizes the language {1xx11}
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Recall:
S = {s1, s2, s3} with s1 = 1101011, s2 = 10011, s3 = 11111,
F = {(1, 1, k), (1, 2, k), (2, 1, k), (3, 1, k), (3, 2, k), (4, 1, k)},

1 ≤ k ≤ i + 1
Example automata for (3, 2, 2) ∈ F

Clearly 3 + 2 maximizes i + j in F

The language recognized by the automaton for (3, 2, 2) ∈ F
is {1xx11} 6= ∅

Thus, 1xx11 is descriptive of S among one-variable patterns
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Finding Patterns Common to a Set of Strings Finding descriptive one-variable patterns

Summary

Let S be a sample

Construct F by enumerating all feasible triples

For each triple f ∈ F

For each string s ∈ S construct automaton
Intersect these automata

Discard automata whose language is empty

Choose any pattern recognized by an automaton that was built
from a triple maximizing i + j

We can bound the number of feasible triples and construct the
automata in time polynomial in their sizes

The algorithm runs in time polynomial in the length of the input
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