Lower Bounds on the Complexity of MSO₁ Model-Checking

Somnath Sikdar

Joint work with
Robert Ganian Petr Hliněný Alexander Langer
Jan Obdržálek Peter Rossmanith

Theoretical Computer Science,
RWTH Aachen University, Germany.

Faculty of Informatics,
Masaryk University, Brno, Czech Republic.
Outline

1. **Motivation**
2. **Main Theorem**
3. **Proof Overview**
4. **Consequences**
Algorithmic Meta Theorems

Theorems that identify classes of tractable problems, rather than a few isolated problems.

Examples

- All graph properties expressible in MSO$_2$ can be decided in linear time on graphs of bounded treewidth [Courcelle, 1990].
- All problems in MAX SNP have constant-factor approximation algorithms [Papadimitriou and Yannakakis, 1991].
- Compact parameterized problems expressible in CMSO admit polynomial kernels on graphs of bounded genus [Bodlaender et al, 2010].

Uses

- Quick way of checking whether a problem admits an algorithm of a particular kind.
Courcelle’s Theorem

Theorem (Courcelle, 1990)

Any graph property definable in monadic second-order logic with quantification over sets of vertices and/or edges can be decided in linear time on any class of graphs of bounded treewidth.

- Linear-time algorithms for several NP-hard problems on graphs of “small” treewidth: Hamiltonian Cycle, Vertex Cover, 3-Colorability.

Hamiltonian Cycle There exists a set $C \subseteq E$ of edges that
- C induces a connected graph in which every vertex has degree exactly two;
- every vertex is in $V(C)$.
The Model-Checking Problem

Definition (\mathcal{L}-Model-Checking)

Let \mathcal{C} be a class of graphs and let \mathcal{L} be a logic. The \mathcal{L}-model-checking problem denoted by $MC(\mathcal{L}, \mathcal{C})$ is: given $G \in \mathcal{C}$ and $\varphi \in \mathcal{L}$, decide whether $G \models \varphi$.

If $\mathcal{L} = \text{MSO}_2$ then this is the MSO-model-checking problem.
Courcelle’s Theorem . . .

. . . rephrased in the parlance of parameterized complexity:

Theorem (Courcelle, 1990)

Let $\varphi \in MSO_2$ and let \mathcal{C} be the class of all graphs. Then MSO_2 model-checking problem $MC(MSO_2, \mathcal{C})$: “Does $G \models \varphi$?” is fixed-parameter tractable wrt the parameter $|\varphi| + \text{tw}(G)$.

Extended to **(directed) graphs with vertex/edge labels** (from a finite set) and **problems involving evaluations of sets** definable in MSO [Arnborg, Lagergren and Seese, 1991].

No **lower bounds** were known till recently.
Courcelle’s Theorem . . .

. . . rephrased in the parlance of parameterized complexity:

Theorem (Courcelle, 1990)

Let $\varphi \in \text{MSO}_2$ and let \mathcal{C} be the class of all graphs. Then \text{MSO}_2 model-checking problem $\text{MC}(\text{MSO}_2, \mathcal{C})$: “Does $G \models \varphi$?” is fixed-parameter tractable wrt the parameter $|\varphi| + \text{tw}(G)$.

Extended to *(directed) graphs with vertex/edge labels* (from a finite set) and *problems involving evaluations of sets* definable in MSO [Arnborg, Lagergren and Seese, 1991].

No *lower bounds* were known till recently.
Courcelle’s Theorem: Lower Bounds

Are there classes of unbounded treewidth for which Courcelle’s Theorem holds?

YES!

Let $C = \{ G \mid \text{tw} (G) = \log^* |G| \}$. Given an MSO-formula φ and an n-vertex graph $G \in C$, time taken to decide $G \models \varphi$:

$$\exp(|\varphi|) (\text{tw} (G)) \cdot n \leq \exp(|\varphi|) (\text{tw} (G)) \cdot \exp (\log^* n) (\log^* n) \leq n^2,$$

where $\exp^{(0)}(x) = x$ and

$$\exp^{(i)}(x) = 2^{\exp^{(i-1)}(x)}.$$

Question

How fast must the treewidth grow for Courcelle’s Theorem to fail?
Courcelle’s Theorem: Lower Bounds

Are there classes of **unbounded treewidth** for which Courcelle’s Theorem holds?

YES!

Let $\mathcal{C} = \{ G \mid \text{tw}(G) = \log^* |G| \}$. Given an MSO-formula φ and an n-vertex graph $G \in \mathcal{C}$, time taken to decide $G \models \varphi$:

$$\exp(|\varphi|)(\text{tw}(G)) \cdot n \leq \exp(|\varphi|)(\text{tw}(G)) \cdot \exp(\log^* n)(\log^* n) \leq n^2,$$

where $\exp^{(0)}(x) = x$ and

$$\exp^{(i)}(x) = 2^{\exp^{(i-1)}(x)}.$$
Courcelle’s Theorem: Lower Bounds

Are there classes of **unbounded treewidth** for which Courcelle’s Theorem holds?

YES!

Let $\mathcal{C} = \{ G \mid tw(G) = \log^* |G| \}$. Given an MSO-formula φ and an n-vertex graph $G \in \mathcal{C}$, time taken to decide $G \models \varphi$:

$$\exp(|\varphi|)(tw(G)) \cdot n \leq \exp(|\varphi|)(tw(G)) \cdot \exp(\log^* n)(\log^* n) \leq n^2,$$

where $\exp^{(0)}(x) = x$ and

$$\exp^{(i)}(x) = 2^{\exp^{(i-1)}(x)}.$$

Question

How fast must the treewidth grow for Courcelle’s Theorem to fail?
Courcelle’s Theorem: Lower Bounds ...

Theorem (Makowsky and Mariño, 2004)

If C is a class of graphs of unbounded treewidth that is closed under topological minors and $G \in C$, then deciding whether $G \models \varphi$ is not in FPT wrt $|\varphi|$ as parameter unless $P = NP$.

- Closure under topological minors is a very strong restriction.
- Kreutzer and Tazari: Similar result without this restriction for graph classes with **moderately unbounded treewidth**.
Classes of Unbounded Treewidth

Definition (Bounded Treewidth)

Let $f : \mathbb{N} \rightarrow \mathbb{N}$. A class \mathcal{C} of graphs have f-bounded-treewidth if for all $G \in \mathcal{C}$, we have that $\text{tw}(G) \leq f(|G|)$.

Examples

- Courcelle’s Theorem: $f(n) := c$, a constant.
- $f(n) := n$ is the maximum function that makes sense.
- In Kreutzer and Tazari: $f(n) := \log^c n$, for some constant $c > 0$.
Polylogarithmically Unbounded Classes

Definition (Kreutzer and Tazari)

The treewidth of a graph class \(\mathcal{C} \) is **polylogarithmically unbounded** if for all \(c > 1 \) the following holds: for all \(n \in \mathbb{N} \) there exists \(G_n \in \mathcal{C} \) with

- \(\log^c(|G_n|) \leq tw(G_n) \) (unboundedness);
- \(n \leq tw(G_n) \leq n^\gamma \), for some fixed \(\gamma \) (density);
- \(G_n \) can be constructed in time \(2^{n^\epsilon} \), for some fixed \(\epsilon < 1 \) (constructibility).

Note

\[
\log^c(|G_n|) \leq tw(G_n) \leq n^\gamma \implies |G_n| \leq 2^{n^\gamma/c}.
\]
Courcelle’s Theorem: A Lower Bound

Theorem (Kreutzer and Tazari, 2010)

Let \mathcal{C} be a graph class with the following properties:

- \mathcal{C} is closed under subgraphs;
- the treewidth of \mathcal{C} is polylogarithmically unbounded.

Then $\text{MC}(\text{MSO}_2, \mathcal{C})$ is not in XP ($|G|^f(|\varphi|)$ for any computable f), unless SAT can be solved in subexponential time.
High-level Proof Idea

Reduce Sat to $\text{MC} (\text{MSO}_2, \mathcal{C})$.

- **Input:** A SAT formula F of length n.
- **Question:** Is F satisfiable?

Reduction

1. Construct $G_n \in \mathcal{C}$ of treewidth n^d s.t. $\log^c (|G_n|) < \text{tw} (G_n)$ and $c > d$.
 - Conditions 1 and 2: G_n exists in \mathcal{C}.
 - Condition 3: G_n is efficiently constructible and $|G_n| < 2^{n^d/c}$.

2. Encode F in a subgraph of G_n (exists because $\text{tw} (G_n) \approx n^d$).
 - Using closure under subgraphs.

3. Define an MSO-formula φ (independent of F) s.t. F satisfiable iff $G_n \models \varphi$.
 - Deciding $G_n \models \varphi$ in XP takes time $2^{n^{c/d} \cdot f(|\varphi|)}$, subexponential in $|F|$.
A Critique of Kreutzer & Tazari’s Result

- There are classes C closed under subgraphs with logarithmic treewidth s.t. $MC(MSO_2, C)$ is in XP [Makowski and Mariño, 2004].
 - Threshold for treewidth is more-or-less strict.
- The constructibility clause in the definition of polylogarithmically unbounded treewidth is unnatural.
- Proofs are very technical and spread over several papers.
Outline

1 Motivation
2 Main Theorem
3 Proof Overview
4 Consequences
Main Theorem I

Theorem

Let \(C \) be a graph class s.t.
- \(C \) is closed under subgraphs;
- the treewidth of \(C \) is polylogarithmically unbounded.

Then the \(\text{MSO}_1 \) model-checking problem on vertex labeled graphs from \(C \) is not in \(\text{XP} \), unless \(3\text{-Colorability is in time } 2^{o(n)} \text{ with subexponential advice.} \)

- The labels are from a **fixed**, finite set.
- **Nonuniform ETH**: SAT, 3-Colorability are **not in** \(2^{o(n)} \) time with subexponential advice.
Major Differences Between the Two Results

1. We use a **weaker logic**.
 - **Our result**: applies to MSO$_1$ model-checking on vertex-labeled graphs.
 - **K & T’s result**: applies to MSO$_2$ model-checking on unlabeled graphs.

2. **No constructibility requirement**.
 - We use a **stronger complexity assumption**: Nonuniform ETH.

3. **Easy proofs!**
MSO\textsubscript{2} versus MSO\textsubscript{1} with Vertex Labels

MSO\textsubscript{1} with vertex labels is weaker than MSO\textsubscript{2}.

- Hamiltonian Path/Cycle cannot be expressed in MSO\textsubscript{1} with vertex labels.

Results such as Courcelle’s Theorem and Courcelle, Makowski and Rotics’s Theorem for rankwidth can be extended to vertex-labeled graphs.

- Extending C,M,R’s Theorem for rankwidth from MSO\textsubscript{1} to MSO\textsubscript{2} would imply $\text{EXP} = \text{NEXP}$.
On the Constructibility Clause

Our definition of polylogarithmically unbounded treewidth:

Definition

The treewidth of a graph class \mathcal{C} is **polylogarithmically unbounded** if there is a constant γ s.t. for all $c > 1$ the following holds. For all $n \in \mathbb{N}$ there exists $G_n \in \mathcal{C}$ with

- $\log^c(|G_n|) \leq \text{tw}(G_n)$ (unboundedness);
- $n \leq \text{tw}(G_n) \leq n^{\gamma}$ (density).

Note: $|G_n| \leq 2^{n^{\gamma/c}}$.

- No constructibility requirement.
- At the expense of a stronger complexity-theoretic assumption: Nonuniform ETH.
ETH versus Nonuniform ETH (NETH)

Exponential Time Hypothesis [Impagliazzo, Paturi, and Zane, 2001]:
- n-variable 3-SAT cannot be solved in $2^{o(n)}$ time.
- Can be formulated using other problems such as Vertex Cover or 3-Colorability.

NETH: n-variable 3-SAT not solvable in $2^{o(n)}$ time using:
- a family of algorithms, one for each input length;
- a circuit-family \mathcal{F} s.t. for each input length n, $\exists C_n \in \mathcal{F}$ with $|C_n| \leq 2^{o(n)}$;
- an algorithm that receives oracle advice which depends only on the input length n and has $2^{o(n)}$ bits.

Can be formulated in terms of Vertex Cover or 3-Colorability.
Main Theorem II

Our result can be strengthened by assuming that the label set is arbitrary but finite.

Theorem

Let L be a finite label set and let $\varphi \in \text{MSO}_1[L]$. Let C be a graph class s.t.

- C is closed under subgraphs;
- the treewidth of C is polylogarithmically unbounded.

Then the MSO_1 model-checking problem on vertex labeled graphs from C is not in XP, unless all problems in PH can be solved in time $2^{o(n)}$ with subexponential advice.
Main Theorem I

Theorem

Let \mathcal{C} be a graph class s.t.

- \mathcal{C} is closed under subgraphs;
- the treewidth of \mathcal{C} is polylogarithmically unbounded.

Then the MSO$_1$ model-checking problem on vertex labeled graphs from \mathcal{C} is not in XP, unless 3-Colorability is in time $2^{o(n)}$ with subexponential advice.

Proof. A multistage reduction from 3-Colorability.
Proof Idea: Stage I

Let \(\varphi' \in \text{MSO}_1 \) express \textbf{3-Colorability} and let \(H' \) be an instance of this problem.

\textbf{Reduce} \((H', \varphi') \rightarrow (H, \varphi) \) in polynomial time s.t.

- \(H \) is \(\{1, 3\} \)-planar;
- \(\varphi \) depends only on \(\varphi' \) and \(|\varphi| = O(|\varphi'|) \).
- \(H' \models \varphi' \) iff \(H_{sub} \models \varphi \) for every subdivision \(H_{sub} \) of \(H \).

\textbf{Note that}

- \(\varphi \) is an “interpretation” of \textbf{3-Colorability} closed under edge subdivisions;
- \(|H'| = n \) and \(|H| \leq n^b \) for some constant \(b \).
Proof Idea: Grid-Like Subgraphs

Polylogarithmic Unboundedness of $\text{tw}(C)$

- $\exists G_n \in C$ s.t. $\text{tw}(G_n) \geq \log^c(|G_n|)$ and $n^{5b} \leq \text{tw}(G_n) \leq n^{5b\gamma}$.
- $|G_n| \leq 2^{n^{5b\gamma}/c}$ for $c > 5b\gamma$.

Grid-Like Subgraphs [Reed and Wood, 2008]

- $\text{tw}(G_n) \geq n^{5b}$ implies G_n contains a grid-like subgraph Γ_{n^b} of order n^b.
- Γ_{n^b} “contains” a subdivision H_{sub} of H.

Closure of C **under Subgraphs**

- $\Gamma_{n^b} \in C$.
Proof Idea: Stage II

Lemma

Let Γ_n “contain” K and let $\varphi \in \text{MSO}_1$. There is a fixed finite set L s.t. one can in poly time construct a labeling $\lambda : V(\Gamma_n) \to L$ and $\psi \in \text{MSO}_1[L]$ (depends only on φ) s.t.

$$K \models \varphi \iff (\Gamma_n, \lambda) \models \psi.$$

- Since Γ_n “contains” H_{sub}, we have:

$$H' \models \varphi' \iff H \models \varphi \iff H_{sub} \models \varphi \iff (\Gamma_n, \lambda) \models \psi.$$

- $|\Gamma_n| \leq 2^{n^{5b/c}}$; supplied as advice of subexponential size.

Time taken to decide $H' \models \varphi'$ is $|\Gamma_n|^{f(|\psi|)} = 2^{o(n)}$.
Outline

1. Motivation
2. Main Theorem
3. Proof Overview
4. Consequences
Consequences for Directed Width Measures

Extension of [Ganian et al., 2010].

Theorem

Unless NETH fails, there exists no *directed width measure* δ satisfying following three properties:

1. δ is *closed under subdigraphs*;
2. \exists *digraph class* \mathcal{C} of *bounded δ-width* with $\text{tw}(\mathcal{C})$ *polylogarithmically unbounded*;
3. for L-vertex-labeled digraphs D and $\varphi \in \text{MSO}_1[L]$, *deciding $D \models \varphi$ is in time* $O(|D|^{f(\delta(D),|\varphi|)})$.
Summary

Main Contribution
- Strengthen and simplify Kreutzer and Tazari’s impressive result.

Extending to Unlabeled MSO$_1$?
- **Open.** Is there a (nontrivial) graph class where model-checking MSO$_1$ is easy but MSO$_1[L]$ is hard?
- This indicates that the result might be extendable to unlabeled MSO$_1$.
Thank You!