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Distribute information ~ Out-branching
from node s = with root s
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Aggregate information ~ In-branching
at node ¢ == withroot {
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Distribute/Aggregate ~ In- and Out-branching
with little crosstalk == with few common arcs
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Distinct Branchings

An out-branching T"and and in-branching T
are called k-distinct if |A(T*)\A(T")| = k.

k-DISTINCT BRANCHINGS

Input:  Adigraph D, an integer k.
Question: Does D contain k-distinct in- and
out-branchings?



Previous work

= NP-complete to decide whether arc-disjoint
in- and out-branchings exist

Bang-Jensen J. Edge-disjoint in-and out-branchings in tournaments and
related path problems.
Journal of Combinatorial Theory, Series B. 1991 Jan 1;51(1):1-23.

= FPT in strong digraphs, parameterized by k

Bang-Jensen J, Saurabh S, Simonsen S. Parameterized algorithms for
non-separating trees and branchings in digraphs.
Algorithmica. 2016 Sep 1;76(1):279-96.

= FPT in general digraphs?
« FPT if =1 ? (SINGLE ROOT k-DISTINCT BRANCHINGS)

Bang-Jensen J, Yeo A. The minimum spanning strong subdigraph problem
is fixed parameter tractable.
Discrete Applied Mathematics. 2008 Aug 6;156(15):2924-9.



Our result

ROOTED k-DISTINCT BRANCHINGS
Input: A digraph D, integer k, vertices s, t.
Question: Does D contain k-distinct in- and

out-branchings rooted at s and £
respectively?

Theorem.
ROOTED k-DISTINCT BRANCHINGS is in FPT.



Schematic of our result
= Preprocessing:

= Every arc appears in some rooted in- or
out-branching ey

n Dar aCZ'Or

« D is strongly connected, thus we ca/ Mete?
search for rooted in- and out-trees
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= If D has a rooted out-tree with many leaves,
it is a YES-instance

= If D has no out-tree with many leaves, it has
bounded pathwidth



Schematic of our result
= Preprocessing:

= Every arc appears in some rooted in- or
out-branching ey

i /Dar aCZ‘Or

« D is strongly connected, thus we ca/ Mete?
search for rooted in- and out-trees

= If D has a rooted out-tree with many leaves,
it is a YES-instance

= If D has no out-tree with many leaves, it has
bounded pathwidth

Remaining case:
Out-tree with many leaves, but incorrect root



Good case: Many leaves

Lemma.

Assume D contains an in- and out-branching.

If D contains an out-branching T with at least
k+1 leaves, then every in-branching T of D is
k-distinct from T
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(Good case: high connectivity

Toy Lemma.

Let T be an out-tree rooted at v with [ leaves
and assume that every vertex is bi-reachable
from S. Then there exists on out-tree rooted
at s with at least [/2 leaves.



(Good case: high connectivity

Toy Lemma.

Let T be an out-tree rooted at v with [ leaves
and assume that every vertex is bi-reachable
from S. Then there exists on out-tree rooted
at s with at least [/2 leaves.

S bi-reachable O



(Good case: high connectivity

Toy Lemma.

Let T be an out-tree rooted at v with [ leaves
and assume that every vertex is bi-reachable
from S. Then there exists on out-tree rooted
at s with at least [/2 leaves.

4N
s Aﬂ‘> 4_7><—0v



(Good case: high connectivity

Toy Lemma.

Let T be an out-tree rooted at v with [ leaves
and assume that every vertex is bi-reachable
from S. Then there exists on out-tree rooted
at s with at least [/2 leaves.
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Decomposing along biconnectvity

Definition (Diblock).
The diblock of a vertex 7 is the union of N'(7)
and all vertices that are bi-reachable from 7.

R,



Decomposing along biconnectvity

Definition (Diblock).
The diblock of a vertex 7 is the union of N'(7)
and all vertices that are bi-reachable from 7.

R,



Decomposing along biconnectvity

Definition (Cut decomposition).
Recursively decompose into diblocks and
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Definition (Cut decomposition).
Recursively decompose into diblocks and
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Decomposing along biconnectvity

Definition (Cut decomposition).
Recursively decompose into diblocks and
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Re-rooting an out-tree
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Lemma.
If out-tree had | leaves, then re-rooted tree has

(I-d)/2 leaves where d is the height of the cut
decomposition.



Almost a win-win
If the cut-decomposition is low...
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Almost a win-win
If the cut-decomposition is low, we can re-root
any out-tree without losing too many leaves
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Almost a win-win
If the cut-decomposition is high...



Almost a win-win

If the cut-decomposition is high, we should find
an out-tree with many leaves!



Obstacle: degenerate blocks

A diblock of size two is called degenerate.
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Obstacle: degenerate blocks

A diblock of size two is called degenerate.
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If there exists more than 14k+3 degenerate
diblocks in sequence, we either

1) Apply one of three reduction rules, or
2) construct an in-tree that avoids many arcs.



Schematic of our result (cont'd)

= If D has a rooted out-tree with many leaves,
itis a YES-instance

= If D has no out-tree with many leaves, it has
bounded pathwidth

ol

= If cut decomposition is high: either find a
rooted out-tree with many leaves or reduce

= If cut decomposition is low: re-root out-tree
with many leaves, keeping many leaves



Summary

» We show that SINGLE ROOT k-DISTINCT BRANCHINGS,
ROOTED k-DISTINCT BRANCHINGS & k-DISTINCT BRANCHINGS
are FPT in general digraphs

- Assuming that a 20" 9 PW)

algorithm runs in time 2
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O(k*log* k), O



Summary

» We show that SINGLE ROOT k-DISTINCT BRANCHINGS,
ROOTED k-DISTINCT BRANCHINGS & k-DISTINCT BRANCHINGS
are FPT in general digraphs

O(pw log PW)aIgorithm exists, our

= Assuming thata 2
O(k*log* k), O

algorithm runs in time 2

. 20(klog ), 00)

= Other applications for cut decomposition!

with more careful analysis..?

= Generalise to larger cut size!

= Faster in special graph classes? Cf. sensor
network application!
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