k-Distinct In- and Out-Branchings

Gregory Gutin¹ Felix Reidl^{1,2} Magnus Wahlström¹

¹Royal Holloway University of London, UK

²North Carolina State University, USA

Distinct Branchings

An out-branching T^+ and and in-branching T^- are called k-distinct if $|A(T^+) \setminus A(T^-)| \ge k$.

k-DISTINCT BRANCHINGS

Input: A digraph D, an integer k.

Question: Does D contain k-distinct in- and

out-branchings?

Previous work

NP-complete to decide whether arc-disjoint in- and out-branchings exist

Bang-Jensen J. Edge-disjoint in-and out-branchings in tournaments and related path problems. Journal of Combinatorial Theory, Series B. 1991 Jan 1;51(1):1-23.

ullet FPT in strong digraphs, parameterized by k

Bang-Jensen J, Saurabh S, Simonsen S. Parameterized algorithms for non-separating trees and branchings in digraphs. Algorithmica. 2016 Sep 1;76(1):279-96.

- FPT in general digraphs?
- FPT if s = t? (SINGLE ROOT k-DISTINCT BRANCHINGS)

Bang-Jensen J, Yeo A. The minimum spanning strong subdigraph problem is fixed parameter tractable.

Discrete Applied Mathematics. 2008 Aug 6;156(15):2924-9.

Our result

ROOTED *k*-DISTINCT BRANCHINGS

Input: A digraph D, integer k, vertices s, t.

Question: Does D contain k-distinct in- and

out-branchings rooted at \emph{s} and \emph{t}

respectively?

Theorem.

ROOTED k-DISTINCT BRANCHINGS is in FPT.

Schematic of our result

- Preprocessing:
 - Every arc appears in some rooted in- or out-branching
 - D is strongly connected, thus we can search for rooted in- and out-trees

Schematic of our result

- Preprocessing:
 - Every arc appears in some rooted in- or out-branching
 - D is strongly connected, thus we can search for rooted in- and out-trees
- If D has a rooted out-tree with many leaves, it is a YES-instance
- If D has no out-tree with many leaves, it has bounded pathwidth

Schematic of our result

- Preprocessing:
 - Every arc appears in some rooted in- or out-branching
 - D is strongly connected, thus we can search for rooted in- and out-trees
- If D has a rooted out-tree with many leaves, it is a YES-instance
- If D has no out-tree with many leaves, it has bounded pathwidth

Remaining case:

Out-tree with many leaves, but incorrect root

Good case: Many leaves

Lemma.

Assume D contains an in- and out-branching. If D contains an out-branching T^+ with at least k+1 leaves, then every in-branching T of D is k-distinct from T^+

Good case: Many leaves

Lemma.

Assume D contains an in- and out-branching. If D contains an out-branching T^{\dagger} with at least $k\!+\!1$ leaves, then every in-branching T of D is $k\!-\!$ distinct from T^{\dagger} .

Good case: Many leaves

Lemma.

Assume D contains an in- and out-branching. If D contains an out-branching T^+ with at least $k\!+\!1$ leaves, then every in-branching T of D is $k\!-\!$ distinct from T^+

Toy Lemma.

Toy Lemma.

Toy Lemma.

Toy Lemma.

Definition (Diblock).

The **diblock** of a vertex r is the union of $N^+(r)$ and all vertices that are bi-reachable from r.

Definition (Diblock).

The **diblock** of a vertex r is the union of $N^+(r)$ and all vertices that are bi-reachable from r.

Decomposing along biconnectvity

Definition (Cut decomposition).Recursively decompose into diblocks and bottlenecks.

Lemma.

If out-tree had l leaves, then re-rooted tree has (l-d)/2 leaves where d is the **height** of the cut decomposition.

If the cut-decomposition is low...

If the cut-decomposition is low, we can re-root any out-tree without losing too many leaves

If the cut-decomposition is high...

If the cut-decomposition is high, we should find an out-tree with many leaves!

Obstacle: degenerate blocks

A diblock of size two is called degenerate.

Obstacle: degenerate blocks

A diblock of size two is called degenerate.

Obstacle: degenerate blocks

A diblock of size two is called degenerate.

If there exists more than 14k+3 degenerate diblocks in sequence, we either

- 1) Apply one of three reduction rules, or
- 2) construct an in-tree that avoids many arcs.

Schematic of our result (cont'd)

- If D has a rooted out-tree with many leaves,
 it is a YES-instance
- If D has no out-tree with many leaves, it has bounded pathwidth

- If cut decomposition is high: either find a rooted out-tree with many leaves or reduce
- If cut decomposition is low: re-root out-tree with many leaves, keeping many leaves

Summary

- We show that SINGLE ROOT k-DISTINCT BRANCHINGS, ROOTED k-DISTINCT BRANCHINGS & k-DISTINCT BRANCHINGS are FPT in general digraphs
- Assuming that a $2^{O(pw \log pw)}$ algorithm exists, our algorithm runs in time $2^{O(k^2 \log^2 k)} n^{O(1)}$

Summary

- We show that SINGLE ROOT k-DISTINCT BRANCHINGS, ROOTED k-DISTINCT BRANCHINGS & k-DISTINCT BRANCHINGS are FPT in general digraphs
- Assuming that a $2^{O(pw \log pw)}$ algorithm exists, our algorithm runs in time $2^{O(k^2 \log^2 k)} n^{O(1)}$
- $2^{O(k \log k)} n^{O(1)}$ with more careful analysis..?
- Other applications for cut decomposition!
- Generalise to larger cut size!
- Faster in special graph classes? Cf. sensor network application!

THANKS! Questions?

