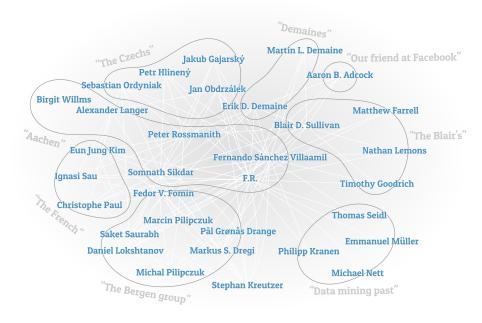
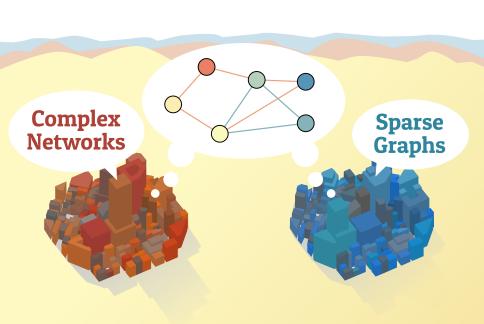
Structural Sparseness and Complex Networks

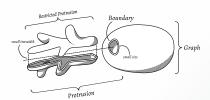
Felix Reidl

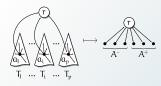
Dec 4th 2015

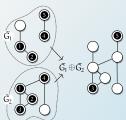












What sparse city cares about

How dense can a graph get until a complete subgraph on k vertices appears?

Can I efficiently answer questions framed in a certain logic?

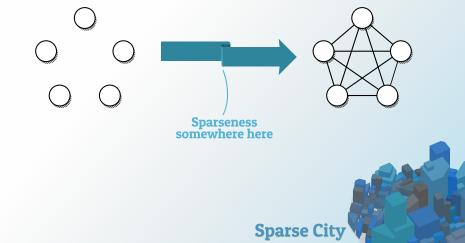
How often does this small graph fit into this large graph?

What problems are efficiently solvable?

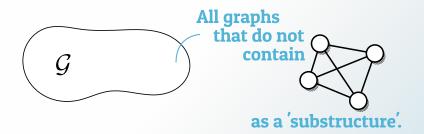
Can my graph be decomposed in a nice manner?

Sparseness

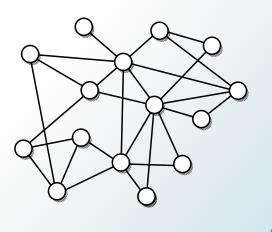
"Not too many edges"

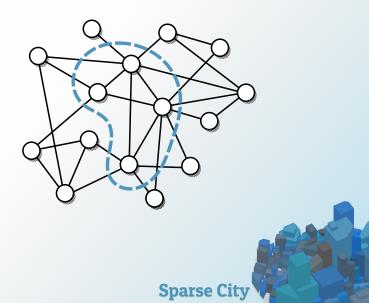


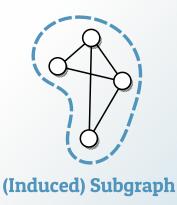
Forbidden substructures

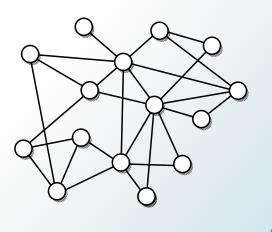


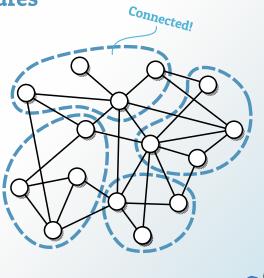
- Very nice for proofs: if we find , we have a contradiction.
- Structural sparseness!?

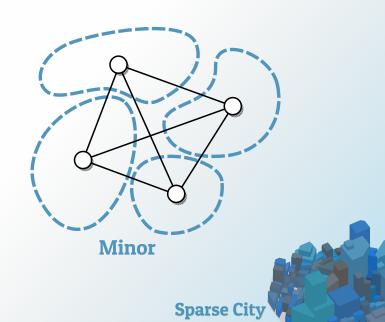


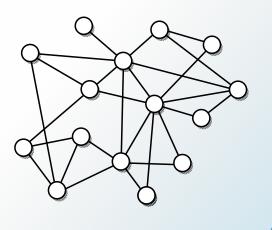


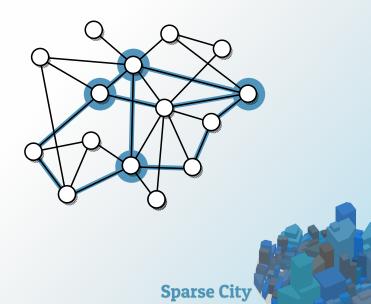




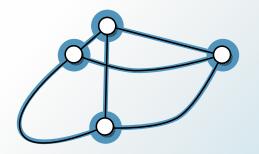






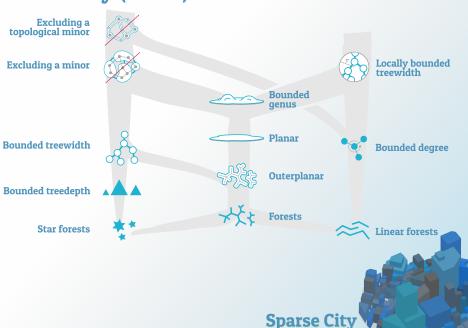




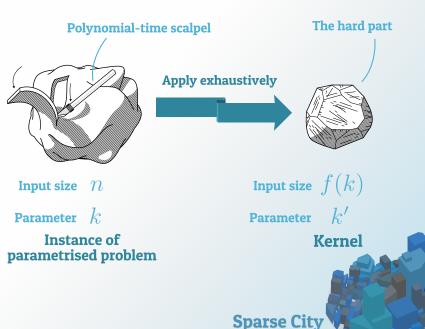


Topological minor

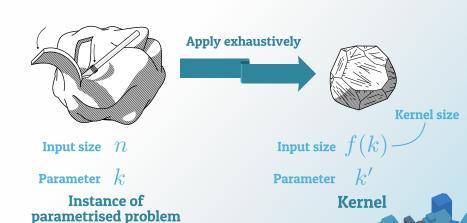
Hierarchy (Part I)



Kernelisation



Kernelisation



Kernelisation

Apply exhaustively

Linear kernel

Input size $\, n \,$

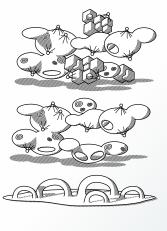
Parameter k

Instance of parametrised problem Input size $c \cdot k$

Parameter k' < k

Meta-Kernelisation

Pushing it up



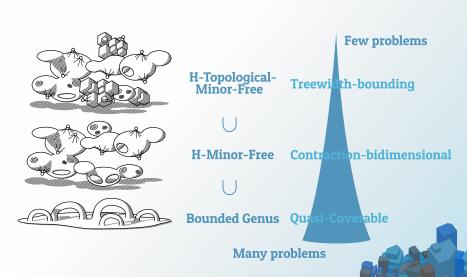
H-Topological-Minor-Free

Treewidth-bounding

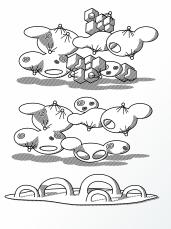
H-Minor-Free Contraction-bidimensional

Bounded Genus Quasi-Coverable

Running out of problems



Structural parametrisation

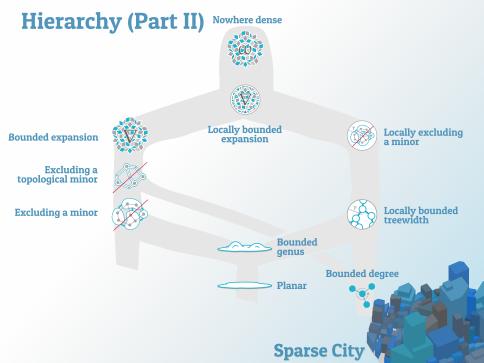


H-Topological-Minor-Free

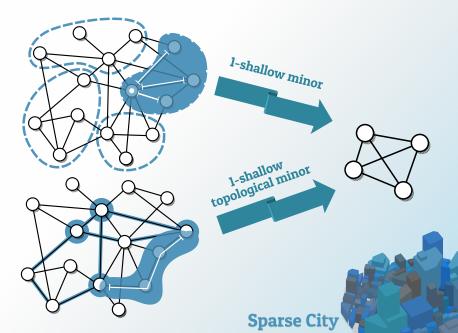
Treewidth-t modulator

H-Minor-Free Treewidth-t modulator

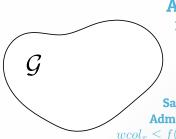
Bounded Genus Treewidth-t modulator



Shallow minors



Bounded expansion classes



All r-shallow minors appearing in this class have density at most f(r).

Same for r-shallow topological minors.
Same for r-shallow immersions.
Admits low-treedepth colourings.

$$wcol_r \leq f(r)$$

$$col_r \leq f(r)$$

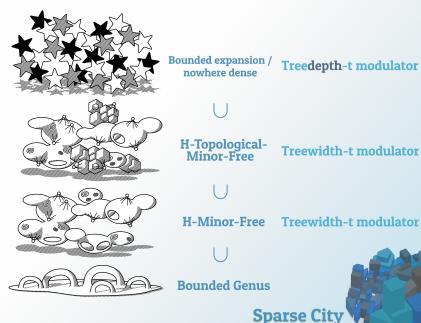
$$f(r)\text{-quasi-wide}$$

Depth-dependent sparseness

Robust!

We can do interesting things
We can do interesting the expansion
without increasing the expansion
by too much.

Structural parametrisation

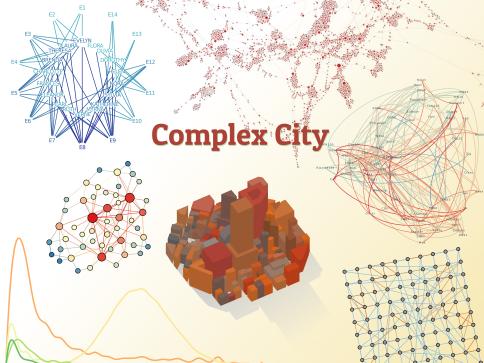


Summary

- Bounded expansion/nowhere dense classes have extremely good algorithmic properties!
- Extension of meta-kernelisation
- Linear kernel for Dominating Set

Thesis

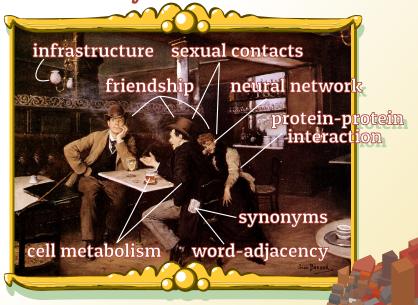
- First-Order model checking in linear time Dvořák, Král, Thomas / Grohe, Kreutzer, Siebertz
- Many nice structural properties Some new ones in my thesis...



Complex networks

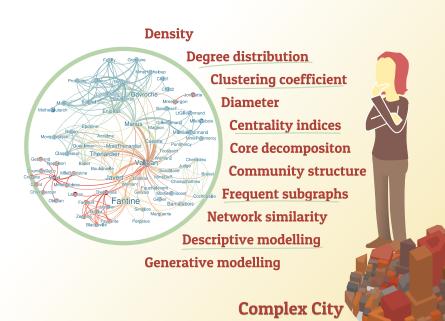
- Social networks since ~1920
- Networks are everywhere
- Very easy to collect nowadays!
- Commonalities?

Networks everywhere

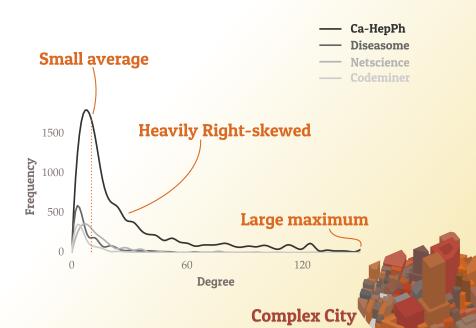


What complex city cares about

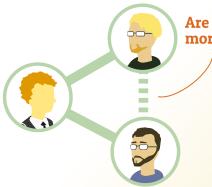
What complex city cares about



Degree distribution



Clustering coefficient



 Most networks exhibit high clustering

Are friends of mine more likely to be friends?

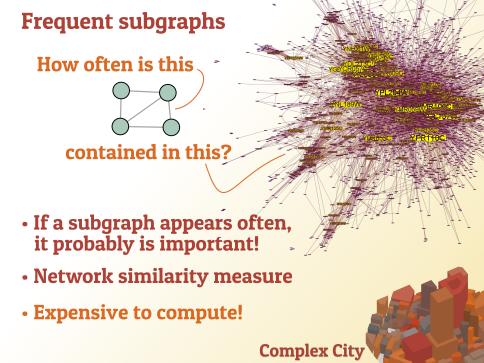
#edges between friends
pairs of friends

Centrality indices

Which node in hereis important?

- Only use network!
- Many different measures, no consensus
- Several measures based around neighbourhood sizes, e.g.

$$c_H(v) = \sum_{u \in G} d(v, u)^{-1}$$



Descriptive modelling

 $Pr[\|G\| \ge \xi k] \le \left(\frac{e\beta D^2}{2n\xi ke^{D^2/2n}}\right)^{\xi k}$

Network instances

Descriptive modelling

$$Pr[\|G\| \ge \xi k] \le \left(\frac{e\beta D^2}{2n\xi k e^{D^2/2n}}\right)^{\xi k}$$

Mathematical
Theory

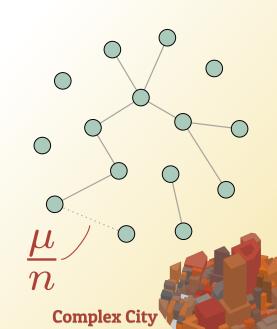
Network model

- Random network
- Tunable parameters
- Replicates <u>some</u> statistics

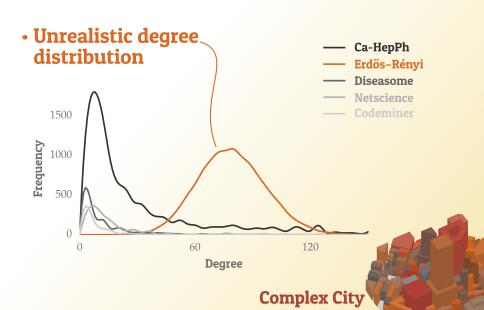
Network instances

The Erdös-Rényi model

- Well-understood
- Nice properties
- No clustering
- Unrealistic degree distribution



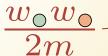
The Erdös-Rényi model



The Chung-Lu model

- Close to E.-R.
- Prescribe degree distribution
- No "further assumptions"

No clustering



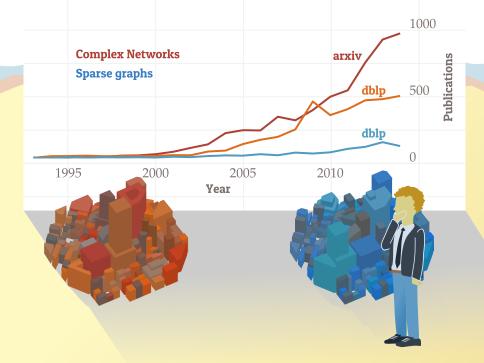
Summary

- Very large data sets (millions of nodes)
- From very different areas
- A lot of algorithmic questions
- Need very efficient algorithms!

Hey wait, we have those...

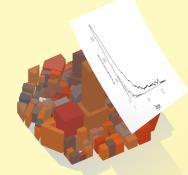
- Work with sparse graphs
- Need efficient algorithms
- Have interesting problems

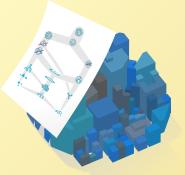
- Work with sparse graphs
- Have efficient algorithms
- Like interesting problems

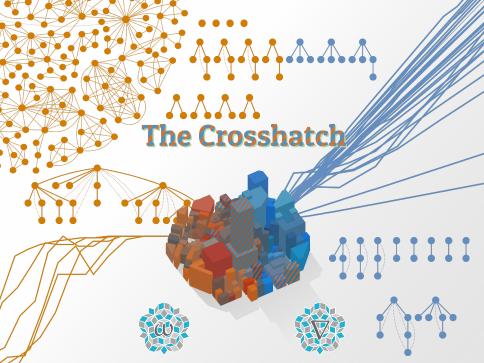


Sparse

Structurally sparse







A small overlap

Sparse Erdös-Rényi

• $G(n,\mu/n)$ has bounded expansion a.a.s. Nešetřil, Ossona de Mendez, Wood

Maybe Chung-Lu does, too?

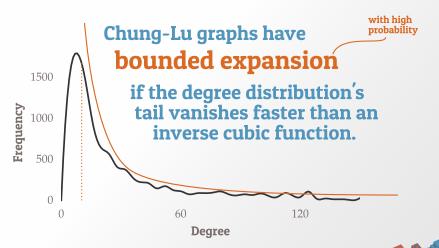
What about other models?

\ For which degree distributions?

Do those appear in the real world?

Can we even test that?

A tale of tails



• Proof idea: couple occurences of shallow top. minors to subgraphs in a different Chung-Lu graph, bound probability of dense subgraph in that graph.

The Crosshatch

Phase transition of Chung-Lu

• Degree distribution with tail-bound $\frac{1}{h(d)}$:

$$h(d) = \begin{cases} \Omega(d^{3+\epsilon}) & \text{bounded expansion} \\ \Theta(d^{3+o(1)}) & \text{nowhere dense} \\ O(d^{3-\epsilon}) & \text{somewhere dense} \end{cases}$$

- Proof idea for lower bounds: more coupling.
- The same works for the so-called 'configuration model'
- Also works for similar models with non-vanishing clustering

Tail-bounds for real networks?

 Famous claim: real degree distributions follow power law $\sim \frac{1}{d\gamma}$ does not vanish

 Rigorous statistical tests: almost never pure power law, but exponential cut-off

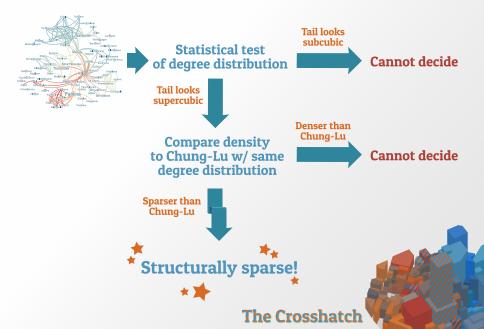
Clauset, Shalizi, Newman

tail vanishes quick enough

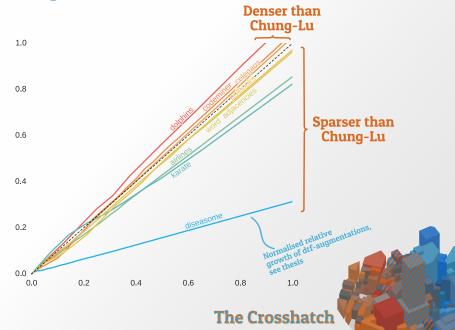
fast enough

Let's see for ourselves!

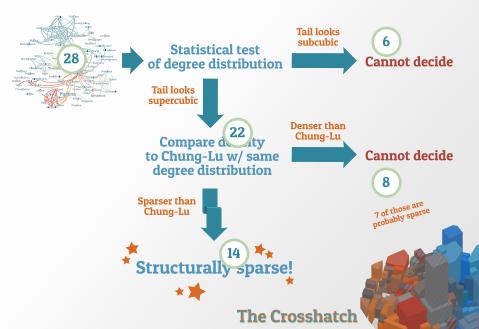
Real structural sparseness



Chung-Lu vs. real network

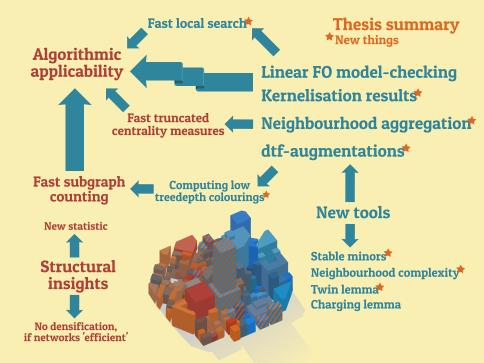


Real structural sparseness



I think most complex networks are structurally sparse.

Hello?



Open questions and future work

Apply low treedepth colourings to practical problem.

What about other network models?

Fix attachment models.

Collect interesting network problems!

Kernel for r-Dominating Set in nowhere dense classes?

Kernel for other problems under natural parametrisation.

Neighbourhood complexity of nowhere dense classes?

Better bounds for dtf-augmentations.

THANKS Questions?

