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The story so far



Kernelization

• Problem is fixed-parameter tractable iff it has a
kernelization algorithm

• Goal: to obtain polynomial or even linear kernels.

Basic technique of kernelization:
Devise reduction rules that preserve equivalence of instances;
apply exhaustively, prove kernel size.

Algorithmic meta-results: nail down as many
problems as possible



Previous work
• Framework for planar graphs

Guo and Niedermeier: Linear problem kernels for NP-hard problems on planar
graphs

• Meta-result for graphs of bounded genus
Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta)
Kernelization

• Meta-result for graphs excluding a fixed graph as a minor
Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels

• Meta-result for graphs excluding a fixed graph as a
topological minor
Kim, Langer, Paul, R., Rossmanith, Sau and Sikdar: Linear kernels and
single-exponential algorithms via protrusion decompositions

• Our contribution: Meta-result for graphs of bounded
expansion, local bounded expansion and nowhere-dense
graphs using structural parameterization
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Why we must run into trouble
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Bidimensionality does not help
(probably)

Dichotomy: either easy instance
or no grid of size O(k)

⇒ Bounded treewidth gives enough structure to make
reduction rule work (more on that later)

• Need to rely on improvement of the grid minor theorem for
graphs beyond H-minor-free

• Known lower bound in general graphs: graphs of treewidth
Ω(r2 log r) with no r × r-grid

⇒ At least not much hope for linear kernels



Beyond excluded minors



Minors, top-minors



Shallow minors, top-minors



Bounded expansion

For a graph G we denote by G O r the set of its r-shallow
minors.

Definition (Grad, Expansion)
For a graph G, the greatest reduced average density is defined
as

∇r(G) = max
H∈G O r

|E(H)|
|V (H)|

For a graph class G the expansion of G is defined as

∇r(G) = sup
G∈G
∇r(G)

A graph class G has bounded expansion if there exists a
function f such that ∇r(G) ≤ f(r) for all r ∈ N.



Excluded minors Bounded expansion

d-degenerate (depening on ex-
cluded minor)

f(0)-degenerate (depening on ex-
pansion)

Linear number of edges Linear number of edges
No large cliques No large cliques
No large clique-minors Can contain large clique minors
Closed under taking minors “Closed” under taking shallow mi-

nors

Degeneracy of every minor is d Degeneracy of minors depends on
its “size”

Techniques from result on H-topological-minor-free graphs stop
working because they use large (non-shallow) topological
minors.



The exemplary obstacle:
Treewidth-t-Deletion



The problem

Treewidth-t Deletion

Input: A graph G, an integer k
Problem: Is there a set X ⊆ V (G) of size at most k such that

tw(G−X) ≤ t?

• Treewidth-1 Deletion = Feedback Vertex Set

• Model problem for previous results
• kf(t)-kernel on general graphs
⇒ Probably none of size O(f(t)kc) (c independent of t)

Kernel on bounded expansion graphs implies same
kernel on general graphs



From general to sparse

1 Treewidth closed under subdivision of edges
⇒ Treewidth-modulator closed under subdivision of edges
⇒ Instances of Treewidth-t Deletion closed under

subdivision of edges
2 Subdividing each edge of a graph |G| yields a graph of

bounded expansion

General kernel from sparse kernel:
Reduce (G, k) to (G̃, k) by subdividing every edge |G| times,
output kernel of (G̃, k).

If we want a kernel, we need a parameter that is not
closed under edge subdivision



Structural parameterization to the
rescue



The natural view
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The structural view
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The structural view

Bounded Genus

H-Minor-Free

H-Topological-
Minor-Free

Bounded Expansion

Treewidth-t Modulator

Treewidth-t Modulator

Treewidth-t Modulator

(implied by Lemma 3.2)
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Treedepth-d Modulator



Treedepth?

For a graph G with td(G) ≤ d:
• G embeddable in closure of tree (forest) of depth d

• Graph does not contain path of length 2d

• tw(G) ≤ pw(G) ≤ d− 1

Not closed under subdivision!

If X is a treedepth-d-modulator, G−X does not
contain long paths



Protrusion anatomy

Definition
X ⊆ V (G) is a t-protrusion if

1 |∂(X)| = |N(X) \X| ≤ t (small boundary)

2 tw(G[X]) ≤ t (small treewidth)



The magic reduction rule

• We want to replace a large protrusion by something
smaller

• Possible if problem has finite integer index
• Recursive structure of graphs of small treewidth (i.e.

protrusion) helps
• Lots of technicalities omitted. . .



Find approximate

treedepth-d-modulator
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Using sparseness

• Yi, 1 ≤ i ≤ ` have constant size after protrusion reduction
• |Y0| = O(|X|) (follows from degeneracy of 2d-shallow minors)

• ` = O(|Y0|) = O(|X|) (ditto)

• Hidden constants depend on expansion ∇2d(G) ≤ f(2d)



The result
Theorem
Any graph-theoretic problem that has finite integer index on
graphs of constant treedepth∗admits linear kernels on graphs
of bounded expansion if parameterized by a modulator to
constant treedepth.

• Kernelization possible in linear time
∗ Structural parameter enables us to relax the FII condition
⇒ Kernels for problems like Treewidth and Longest Path

• Structural parameter helps to include decision problems
like 3-Colorability and Hamiltionian Path

• Quadratic kernels on graphs of locally bounded expansion
• Polynomial kernels on nowhere dense graphs



Consequences
The problems. . .
Dominating Set, Connected Dominating Set, r-Dominating Set,
Efficient Dominating Set, Connected Vertex Cover, Hamiltonian
Path/Cycle, 3-Colorability, Independent Set, Feedback Vertex

Set, Edge Dominating Set, Induced Matching, Chordal Vertex
Deletion, Interval Vertex Deletion, Odd Cycle Transversal,
Induced d-Degree Subgraph, Min Leaf Spanning Tree, Max Full

Degree Spanning Tree, Longest Path/Cycle, Exact s, t-Path,
Exact Cycle, Treewidth, Pathwidth

. . . parameterized by a treedepth-modulator have . . .

• . . . linear kernels on graphs of bounded expansion

• . . . quadratic kernels on graphs of locally bounded expansion

• . . . polynomial kernels on nowhere-dense graphs



Conclusion



Our interpretation:
• Underlying reason for previous result is existence of a

small treewidth modulator:
Quasi-compactness and bidimensionality are tangible
properties which guarantee this on the respective graph
classes

• Larger graph classes need stronger parameters
• Treedepth-modulator is a useful parameter (also works well

on general graphs as a relaxation of vertex cover)
Open questions:
• Which problems still admit polynomial kernels on these

classes using their natural parameter?
• Problem categories: closed under subdivision vs. not

closed. Weaker parameterization for latter?
• Linear kernels for graphs with locally bounded treewidth?
• Lower bounds!

Thanks!
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