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Structural sparseness

A graph measure is an isomorphism-
invariant function that maps graphs to R+

e.g. density, average degree, clique number, degeneracy
treewidth, etc.

A parameterised graph measure is a family of graph
measures (fr)reN,.-

A graph class G is f,.-bounded if there exists g s.t.
fr(G) =sup f-(G) < g(r) foralln
Geg



Bounded expansion

Jarik & Patrice:
Many notions of f-boundedness are equivalent!
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Bounded expansion
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All three measures can be computed quickly
if we know |N4(v)| for 1 < d < rad(G).
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All three measures can be computed quickly
if we know |N4(v)| for 1 < d <rad(G).

Can we compute this
quickly in sparse graphs?



Close-to-Closeness Centralities

C(U) r-Local version
—1 1
Closeness (Z dist(u,’u)) ( Z dist(v, u )
ueG uENT[v]
Harmonic Z dist(u,v) ! Z dist(v,u)~
ueG uENT[v]
{u | dist(u,v) < oo}? [N [v]?
Lin's index ST dist(u, v) > dist(v, u)
dist(u,v)<oo uENT[v]

All three measures can be computed quickly
if we know |N4(v)| for1 <d <

Can we compute this
quickly in sparse graphs?



Counting neighbourhood sizes

For all these centrality measures, we need to
compute the size of distance r-neighbourhoods
around each vertex.

C(U) r-Local version
(Z dist u,v))_l Z dist(v, u ) B
ueG uENT[v]
Z dist (u,v) ™ Z dist(v, u)
ueG UENT[v]
|{u | dist(u, v) < 0o} [N"[v ]|

> dist(u,v) > dist(v

dist(u,v)<oco weENT[v]



Counting neighbourhood sizes
For all these centrality measures, we need to
compute the size of distance r-neighbourhoods
around each vertex.

This needs quadratic time in general! Can we
do better in sparse graphs?

C(U) r-Local version
(Z dist u,v))_1 Z dist(v, u ) B
ueG uENT[v]
Z dist (u,v) ™ Z dist(v, u)
ueG UENT[v]
|{u | dist(u, v) < 0o} [N"[v ]|

> dist(u,v) > dist(v

dist(u,v)<oco weENT[v]



Warm-up: Counting with degeneracy
Let GG be (d-1)-degenerate.

1 Compute orientation G with A~(G) < d
in linear time.

2 Initialize counter Clv]=0 forallv € G.

3 Foreveryve @G, increment Clv] and Clu|
for every in-neighbouru € N—(v).
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Generalizing degeneracy



‘Lifting’ degeneracy
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degeneracy
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dtf-augmentations
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The details

()
>
=

wn

-

O
=

Fraternal




Distances under dtf-augmentations

Let wand v be at distance d in G :

,
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Pairs at distance at most r in the original
graph have distance at most two
in the r'" augmentation.



B.E. & dtf-augmentations

There exist two (horrible) polynomials
P and Q such that:

xr(G) < P<v(2logr)r (G)>
A (G,) < Q(V (G)A(Gh))

&85 A graph class has bounded
"ﬂ. !

3" expansion iff itis A~(G,)-bounded.

We can compute dtf-augmenations in
linear time (in bounded expansion classes)



Algorithm



Degeneracy to dtf-augmentations

Thm. Given a graph G and an integer r, we
can compute the size of [N%(v)| forallv € G

and 1 < d < r in total time 0(22 (G+)p).
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Counting using dtf-augmentations
We compute the size of the r'" nbhds:

1 Compute dtf-augm. G, with smaIIA_(@r)
in linear time.



Counting using dtf-augmentations

We compute the size of the r'" nbhds:
1 Compute dtf-augm.G, with small A~(G,)
in linear time.

2 Initialize counter C[v][d] =0 for all
veGandd <



Counting using dtf-augmentations
We compute the size of the r'" nbhds:

1 Compute dtf-augm. G, with smaIIA_(@)
in linear time.

2 Initialize counter C[v][d] =0 for all
veGand d <

3 For everyv e G, increment Clv]|d] and
Clu][d] for every in-neighbouru € Ny (v).

+1
o/
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Counting using dtf-augmentations
P
o O

The counting so far takes care of the
first two cases, but what about the
indirect neighbours?

v o--o

This is where the algorithm
becomes interesting.



Counting using dtf-augmentations
N (v)

v needs to know how

many indirect neighbours X
at distance 2 <d < r

there are.

Indirect neigh-
bours connect 0
viaN (v).




Counting using dtf-augmentations
v needs to know how N?“_(v)
many indirect neighbours X
atdistance 2 <d<r
there are.

Indirect neigh-
bours connect 0
viaN, (v).

We compute the distance betweenv,u as follows:
dist(u, v) = min (dist(v, X) + dist(u, X))



Counting using dtf-augmentations
Ny (v)

e We need to compute for

every set X C N, (v) and

every possible dist.-vector

d € [r]IXI the number of
® \ertices u such that:

1 N-(u)NN-(v) =X

SY

® 2 dist(u, X) =d



Counting using dtf-augmentations
Ny (v)

e We need to compute for

every set X C N, (v) and

every possible dist.-vector

d € [r]IXI the number of
® \ertices u such that:

p 1 N-(u)NN-(v) =X

SY

® 2 dist(u, X) =d

Let us call this number ¢(v, X, d). Our
first goal is to compute it for every vertex.



A data structure for c(v, X, d)

1 ForeveryveG,, X C N-(v)and d e [r]X],
initialize R[X][d] = 0.



A data structure for c(v, X, d)

1 ForeveryveG,, X C N-(v)and d e [r]X],
initialize R[X][d] = 0.

2 ForeveryveG,,X C N (v), increment
R[X][dist(v, X)]
by one.



A data structure for c(v, X, d)

1 ForeveryveG,, X C N-(v)and d e [r]X],
initialize R[X][d] = 0.

2 ForeveryveG,,X C N (v), increment
R[X][dist(v, X)]
by one.

Claim.

c(,X,d)= Y ()X " R[y][d].

XCYCN, (v) d:d'|x=d



A data structure for c(v, X, d)

Claim.

c@Xd= ), (O > RYE].

XQYQN’I"_(U) CZ/Z(Z/|X:J

Case 1. ) -
Assume that u satisfies {NT’ (w) NN (v) = X
u, X) =d.

/N

dist



A data structure for c(v, X, d)

Claim.
¢ (vaa CZ) - Z (—1)|Y\X| Z R[Y] [CZ’]
XngN,,,_(U) J/:J/|X:J
Case 1. ) -
Assume that u satisfies {NT’ (w) AN (v) = X
dist(u, X) = d.

Then the above sum counts it exactly once,
namely when Y = X and d’ = d, since it only
contributes to R[X][d ].



A data structure for c(v, X, d)

Claim.
c(v,X,d)= Y (-1 ¥ R[y][d].
XCYCN, (v) d:d|x=d
Case 2.

Assume that u satisfies dist(u, X) # d.



A data structure for c(v, X, d)

Claim.
c(v,X,d)= Y (-1 ¥ R[y][d].
XCYCN, (v) d:d|x=d
Case 2.

Assume that u satisfies dist(u, X) # d.

Then the above sum does not count it.



A data structure for c(v, X, d)

Claim.
c(v,X,d)= Y (-1 ¥ R[y][d].
XCYCN, (v) d:d'|x=d
Case 3.

Assume that v satisfies dist(u, X) = d but
N-(u)NN-(v) = Z where X C Z C N (v).



A data structure for c(v, X, d)

Claim.
c(v,X,d)= Y (-1 ¥ R[y][d].
XCYCN, (v) d:d|x=d
Case 3.

Assume that u satisfies dist(u, X) = d but

N-(u)NN-(v) = Z where X C Z C N (v).

Then u contributes to the following terms:
> (DMVEIRY[dist(u, Z)|v]

XCYCcz



A data structure for c(v, X, d)

Claim.
c(v,X,d)= Y (-1 ¥ R[y][d].
XCYCN, (v) d:d|x=d
Case 3.

Therefore the contribution of w cancels out!
Z (—)P\XIR[Y(dist(u, Z)|y]

XCYCz

o 2\ x
> o= s o) -

XCvyCz 0<k<|Z\ X |



Counting using dtf-augmentations

Given c(v, @, ) we can now count the number of
indirect neighbours of v. For every subset X C N~ (v)
and distance-vector d € [r]/X] apply the update:

C[v][min(d + dist(v, X))] += c(v,X,d)



Counting using dtf-augmentations

Given c(v, @ ,@) we can now count the number of
indirect neighbours of v. For every subset X C N~ (v)
and distance-vector d € [r]/X] apply the update:

C[v][min(d + dist(v, X))] += ¢ (v, X, d)

Since the above counts v as a neighbour of itself, we
apply the following correction:

Cv][min(dist(v, X) 4 dist(v, X))] —= 1

There are a few more corrections
concerning direct neighbours, see paper.



Counting using dtf-augmentations
d
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Counting using dtf-augmentations
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Counting using dtf-augmentations

— d
. - 0—o
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Counting using dtf-augmentations
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Counting using dtf-augmentations

o—
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R
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IN¢(w) 4K ®
= Clolfd]

Update C'[o][®]
using R to count
indirect neighbours
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Counting using dtf-augmentations

Thm. Given a graph G and an integer r, we
can compute the size of [N%(v)| forallv € G

and 1 < d < r in total time 0(22 (&),



Counting using dtf-augmentations

Thm. Given a graph G and an integer 7, we
can compute the size of [N%(v)| forallv € G

and 1 < d < r in total time 0(22 (&),
* Exponential vs quadratic?

* Does not scale to on®
nowhere dense graphs! "



Counting using dtf-augmentations

Thm. Given a graph G and an integer 7, we
can compute the size of [N%(v)| forallv € G

and 1 < d < r in total time 0(22 (&),

* Exponential vs quadratic?

* Does not scale to on®
nowhere dense graphs! "

Can we do better?



Some Bad News



Can we do better?
CLOSED 2-NEIGHBOURHOOD SIZES

Input: A graph G.
Output: |N?[v]| forevery v € G.



Can we do better?
CLOSED 2-NEIGHBOURHOOD SIZES

Input: A graph G.
Output: |N?[v]| forevery v € G.

Thm. Unless SETH fails, 2-CNBS cannot be
solved in time

@ O(|GI”7)
@ O<20(A_(é2))n2—6)

Gutin G, Mertzios GB, Reidl F.
Lower and Upper Bound for Computing the Size of All Second Neighbourhoods.
arXiv preprint arXiv:1805.01684. 2018 May 4



Lower bound tool: SETH

r-CNF SAT
Input: A CNF formula ¢ on n variables
and ym, clauses of size  r-

Problem: Is ¢ satisfiable?

Strong exponential time hypothesis
For every e > 0 there exists an 7z such
that r.-CNF SAT cannot be solved in
time O(2°™).
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Can we do better?
CLOSED 2-NEIGHBOURHOOD SIZES

Input: A graph G.
Output: |N?[v]| forevery v € G.

Thm. Unless SETH fails, 2-CNBS cannot be
solved in time

@ O(|GI*™)
[2) O<20(A—(é2))n2—s)

Gutin G, Mertzios GB, Reidl F.
Lower and Upper Bound for Computing the Size of All Second Neighbourhoods.
arXiv preprint arXiv:1805.01684. 2018 May 4



Reduction: SAT < 2-CNBS

We begin with a SAT formula on n variables
with m clauses: ¢(z1,...,2,) =C1 A ... ANCp,

Using the sparsification lemma, we can assume
in the following that m = O(n).
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Reduction: SAT < 2-CNBS

We begin with a SAT formula on n variables
with m clauses: ¢(zy,...,2,) =C1 A...AC)y,

Let A contain all 27/
A e e e e e e assignmentsofthe

variables 4, .. T2
c, ¢y, - C, Let C'contain all
C e o o o clauses of ¢

Let B contain all 2™/2
B o e e e e e assignmentsofthe
variables T /241+++5 Tn



Reduction: SAT < 2-CNBS

Let A contain all 27/2 Let C'contain all et B contain all 27/2
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Reduction: SAT < 2-CNBS

Let A contain all 27%/2 Let C'contain all | et B contain all 27/2

assighments of the  clauses of ¢ assignments of the

variables g . s T /2 variables Ly /3410 -5 En
A e e o\ o/o
Ch CoN- G
C @ o ] {

does not
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Reduction: SAT < 2-CNBS

A o o \
01 Cz /
does not
satlsfy
. @

| satisfiable iff there exist two vertices
€A, e BwithN(a)NN(B) =92



Reduction: SAT < 2-CNBS
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@ is satisfiable iff there exists a vertex
v € AU B with |[N?[v]|< 22" +m +2.
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Reduction: SAT < 2-CNBS

@ is satisfiable iff there exists a vertex
v € AU B with |[N?[v]|< 22" +m +2.

Assume we can solve 2-CNBS in time O(|G|*~#).
The output consists of |G| numbers, thus in time

O@ER+ |c1*~* + (GlisgE)
=022m+ (22T + m+2)279)
_ 2n(1—s/2)m0(1) _ 25'nm0(1)

we can check whether @ is satisfiable,
contradicting SETH.



Can we do better?
CLOSED 2-NEIGHBOURHOOD SIZES

Input: A graph G.
Output: |N?[v]| forevery v € G.

Thm. Unless SETH fails, 2-CNBS cannot be
solved in time

@ O(G*)
@ O(zo(A_(éz))n2—6)

Gutin G, Mertzios GB, Reidl F.
Lower and Upper Bound for Computing the Size of All Second Neighbourhoods.
arXiv preprint arXiv:1805.01684. 2018 May 4



Reduction: SAT < 2-CNBS
How big is A= (G,.) ?
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Reduction: SAT < 2-CNBS
How big is A= (G,.) ?

A (Gy) <m+1 A (G,) <m+2



Reduction: SAT < 2-CNBS

Assume we can solve 2-CNBS in time
O(2°4 (@) p2=2)  Thus in time

0228 (ED|GI~2 + |G log |G))

we can check whether ¢ is satisfiable,
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Assume we can solve 2-CNBS in time
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we can check whether ¢ is satisfiable,



Reduction: SAT < 2-CNBS

Assume we can solve 2-CNBS in time
O(2°4 (G p2=2)  Thus in time

0(2°% (@G~ + |G| log |G])
= 0(2°M23(2=¢) L 23 p)
=0

(2(1—%)n+0(n) + Q%n)
we can check whether @ is satisfiable,



Reduction: SAT < 2-CNBS

Assume we can solve 2-CNBS in time
O(2°4 (G p2=2)  Thus in time

0292 (@2D)|G|2* + |G| log |G))
= 0(2°M23(2=¢) L 23 p)
_ 0(2(1—%)n+0(n) + 2%?7,) _ 0(25’71)

we can check whether @ is satisfiable,
contradicting SETH.



Reduction: SAT < 2-CNBS

Assume we can solve 2-CNBS in time
O(2°4 (E)p2=¢)  Thusin time

0(2°% (@G~ + |G| log |G])
= 0(2°M23(2=¢) L 23 p)
= 0(2(1_%)n+0(”) + 2%?7,) _ O(Qs’n)

we can check whether ¢ is satisfiable,
contradicting SETH.

Unless the SETH fails, 2-CNBS cannot be
solved in time 0(20(A (G2)) 2~ 2y



Reduction: SAT < 2-CNBS

What about other parameters?
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Reduction: SAT < 2-CNBS

What about other parameters?

Unless the SETH fails, 2-CNBS cannot be
solved in time O(QO(VC Nn2-e).

Unless the SETH fails, 2-CNBS cannot be
solved in time O(2°Y@)n2=¢) for any
f € {wcoly, ve, td, pw, tw, V1, V1 }.



The process so far

O(2A_(6T)n)
algorithm

Centrality Localized
measures variants



The process so far

algorithm
Centrality Localized
measures variants

Should we implement
this algorithm?



