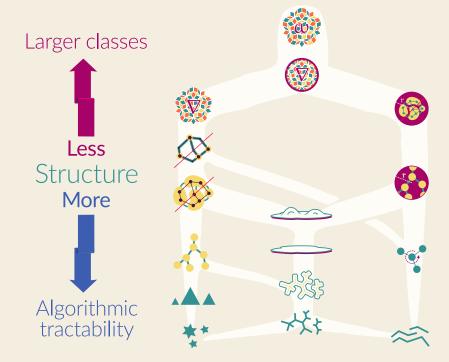
Complex networks & sparsity Part III: Application

Felix Reidl Blair D. Sullivan DOCCOURSF '18



Structural sparseness

A graph measure is an isomorphism-invariant function that maps graphs to \mathbb{R}^+

e.g. density, average degree, clique number, degeneracy treewidth, etc.

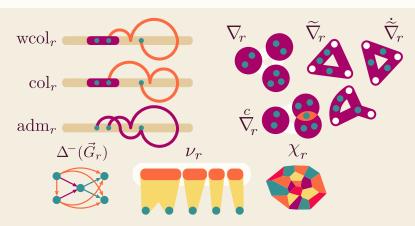
A parameterised graph measure is a family of graph measures $(f_r)_{r \in \mathbb{N}_0}$.

A graph class ${\mathcal G}$ is f_r -bounded if there exists g s.t.

$$f_r(\mathcal{G}) = \sup_{G \in \mathcal{G}} f_r(G) \leqslant g(r)$$
 for all r .

Bounded expansion

Jarik & Patrice: Many notions of f_r -boundedness are equivalent!



Nešetřil J, Ossona de Mendez P. **Sparsity**. Algorithms and Combinatorics. 2012;28.

Bounded expansion



Size of r-reachable sets in ordering

Normalized number of traces r-neighbourhoods leave in any subset

In-degree of r-step (d)tf-augmentation

Number of colours in r-treedepth colouring

Nešetřil J, Ossona de Mendez P. **Sparsity**. Algorithms and Combinatorics. 2012;28.

Close-to-Closeness Centralities C(v)

Closeness

$$\left(\sum_{u \in G} \operatorname{dist}(u, v)\right)^{-1}$$

Harmonic

$$\sum_{u \in G} \operatorname{dist}(u, v)^{-1}$$

Lin's index

$$\frac{|\{u \mid \operatorname{dist}(u, v) < \infty\}|^2}{\sum_{\substack{\operatorname{dist}(u, v) < \infty}} \operatorname{dist}(u, v)}$$

Close-to-Closeness Centralities C(v)

Closeness
$$\left(\sum_{u \in G} \operatorname{dist}(u,v) \right)^{-1}$$
 Harmonic
$$\sum_{u \in G} \operatorname{dist}(u,v)^{-1}$$
 Lin's index
$$\frac{|\{u \mid \operatorname{dist}(u,v) < \infty\}|^2}{\sum_{\operatorname{dist}(u,v) < \infty} \operatorname{dist}(u,v)}$$

All three measures can be computed quickly if we know $|N^d(v)|$ for $1 \le d \le \operatorname{rad}(G)$.

Close-to-Closeness Centralities C(v)

Closeness $\left(\sum_{u \in G} \operatorname{dist}(u,v) \right)^{-1}$ Harmonic $\sum_{u \in G} \operatorname{dist}(u,v)^{-1}$ Lin's index $\frac{|\{u \mid \operatorname{dist}(u,v) < \infty\}|^2}{\sum_{\operatorname{dist}(u,v) < \infty} \operatorname{dist}(u,v)}$

All three measures can be computed quickly if we know $|N^d(v)|$ for $1 \le d \le rad(G)$.

Can we compute this quickly in sparse graphs?

Close-to-Closeness Centralities

C(v) r-Local version $\left(\sum_{i=1}^{n} d_{i+1}(v,v)\right)^{-1}$

Closeness $\left(\sum_{u \in G} \operatorname{dist}(u, v)\right)^{-1} \quad \left(\sum_{u \in N^r[v]} \operatorname{dist}(v, u)\right)^{-1}$ Harmonic $\sum_{u \in G} \operatorname{dist}(u, v)^{-1} \quad \sum_{u \in N^r[v]} \operatorname{dist}(v, u)^{-1}$

Harmonic $\sum_{u \in G} \operatorname{dist}(u, v)^{-1} \qquad \sum_{u \in N^r[v]} \operatorname{dist}(v, u)^{-1}$ $|\{u \mid \operatorname{dist}(u, v) < \infty\}|^2 \qquad |N^r[v]|^2$ $\sum_{u \in N^r[v]} \operatorname{dist}(v, u)$

 $u \in N^r[v]$

All three measures can be computed quickly if we know $|N^d(v)|$ for $1 \le d \le r$.

Can we compute this quickly in sparse graphs?

 $dist(u,v) < \infty$

Counting neighbourhood sizes

For all these centrality measures, we need to compute the size of *distance r-neighbourhoods* around each vertex.

$$\begin{array}{c|c} C(v) & \text{r-Local version} \\ \hline \left(\sum_{u \in G} \operatorname{dist}(u,v)\right)^{-1} & \left(\sum_{u \in N^r[v]} \operatorname{dist}(v,u)\right)^{-1} \\ \hline \sum_{u \in G} \operatorname{dist}(u,v)^{-1} & \sum_{u \in N^r[v]} \operatorname{dist}(v,u)^{-1} \\ \hline \frac{|\{u \mid \operatorname{dist}(u,v) < \infty\}|^2}{\sum_{\operatorname{dist}(u,v) < \infty} \operatorname{dist}(u,v)} & \frac{|N^r[v]|^2}{\sum_{u \in N^r[v]} \operatorname{dist}(v,u)} \\ \hline \end{array}$$

Counting neighbourhood sizes

For all these centrality measures, we need to compute the size of distance r-neighbourhoods around each vertex.

This needs quadratic time in general! Can we do better in sparse graphs?

$$C(v) \qquad \text{r-Local version}$$

$$\left(\sum_{u \in G} \operatorname{dist}(u, v)\right)^{-1} \qquad \left(\sum_{u \in N^r[v]} \operatorname{dist}(v, u)\right)^{-1}$$

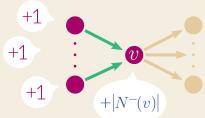
$$\sum_{u \in G} \operatorname{dist}(u, v)^{-1} \qquad \sum_{u \in N^r[v]} \operatorname{dist}(v, u)^{-1}$$

$$\frac{|\{u \mid \operatorname{dist}(u, v) < \infty\}|^2}{\sum_{d \in N^r[v]} \operatorname{dist}(v, u)} \qquad \frac{|N^r[v]|^2}{\sum_{u \in N^r[v]} \operatorname{dist}(v, u)}$$

Warm-up: Counting with degeneracy

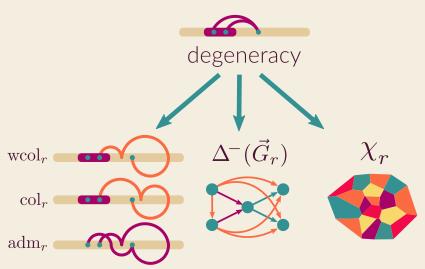
Let G be (d-1)-degenerate.

- 1 Compute orientation \vec{G} with $\Delta^-(\vec{G}) \leqslant d$ in linear time.
- 2 Initialize counter C[v] = 0 for all $v \in G$.
- 3 For every $v \in G$, increment C[v] and C[u] for every in-neighbour $u \in N^-(v)$.



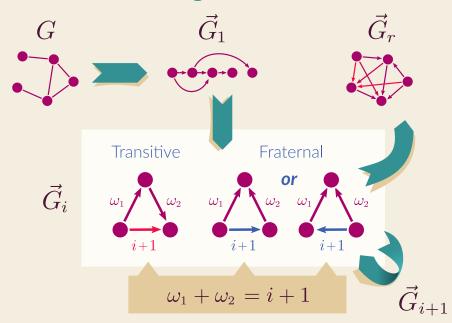
Generalizing degeneracy

'Lifting' degeneracy

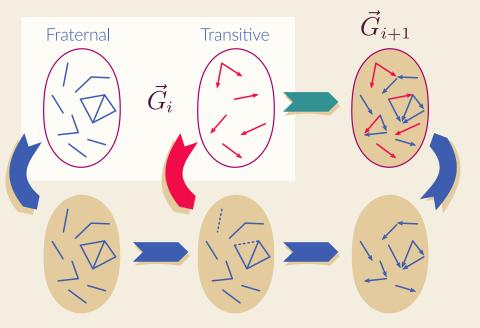


Pick your poison

dtf-augmentations

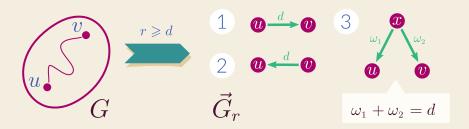


The details



Distances under dtf-augmentations

Let u and v be at distance d in G:



Pairs at distance at most r in the original graph have distance at most two in the rth augmentation.

B.E. & dtf-augmentations

There exist two (horrible) polynomials P and Q such that:

$$\chi_r(G) \leqslant P(\tilde{\nabla}_{(2\log r)^r}(G))$$

$$\Delta^-(\vec{G}_r) \leqslant Q(\tilde{\nabla}_r(G)\Delta^-(\vec{G}_1))$$

A graph class has bounded expansion iff it is $\Delta^-(\vec{G}_r)$ -bounded.

We can compute dtf-augmenations in linear time (in bounded expansion classes)

Algorithm

Degeneracy to dtf-augmentations

Thm. Given a graph G and an integer r, we can compute the size of $|N^d(v)|$ for all $v \in G$ and $1 \le d \le r$ in total time $O(2^{\Delta^-(\vec{G}_r)}n)$.



We compute the size of the rth nbhds:

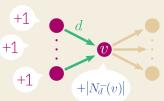
1 Compute dtf-augm. \vec{G}_r with small $\Delta^-(\vec{G}_r)$ in linear time.

We compute the size of the rth nbhds:

- 1 Compute dtf-augm. \vec{G}_r with small $\Delta^-(\vec{G}_r)$ in linear time.
- 2 Initialize counter C[v][d] = 0 for all $v \in G$ and $d \leq r$.

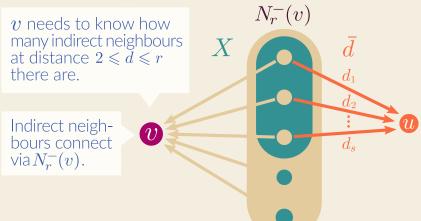
We compute the size of the rth nbhds:

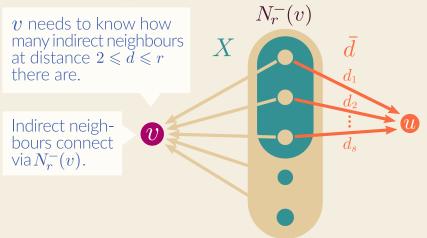
- 1 Compute dtf-augm. \vec{G}_r with small $\Delta^-(\vec{G}_r)$ in linear time.
- 2 Initialize counter C[v][d] = 0 for all $v \in G$ and $d \leq r$.
- 3 For every $v \in G$, increment C[v][d] and C[u][d] for every in-neighbour $u \in N_{\overline{d}}(v)$.



The counting so far takes care of the first two cases, but what about the *indirect* neighbours?

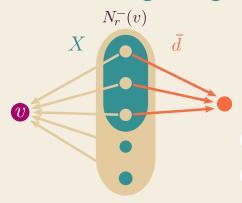
This is where the algorithm becomes **interesting**.





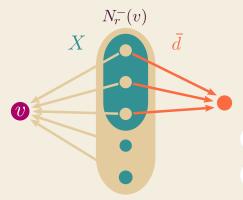
We compute the distance between \emph{v},\emph{u} as follows:

$$dist(u, v) = \min(dist(v, X) + dist(u, X))$$



We need to compute for every set $X\subseteq N_r^-(v)$ and every possible dist.-vector $\bar{d}\in [r]^{|X|}$ the number of vertices u such that:

- 1 $N_r^-(u) \cap N_r^-(v) = X$
- 2 dist $(u, X) = \bar{d}$



We need to compute for every set $X\subseteq N_r^-(v)$ and every possible dist.-vector $\bar{d}\in [r]^{|X|}$ the number of vertices u such that:

- $1 \quad N_r^-(u) \cap N_r^-(v) = X$
- $2 \operatorname{dist}(u, X) = \bar{d}$

Let us call this number $c(v, X, \bar{d})$. Our first goal is to compute it for every vertex.

1 For every $v \in \vec{G}_r, X \subseteq N_r^-(v)$ and $\bar{d} \in [r]^{|X|},$ initialize $R[X][\bar{d}] = 0.$

A data structure for c(v, X, d)

by one.

- 1 For every $v \in \vec{G}_r, X \subseteq N_r^-(v)$ and $\bar{d} \in [r]^{|X|},$ initialize $R[X][\bar{d}] = 0.$
- initialize R[X][d] = 0. 2 For every $v \in \vec{G}_r, X \subseteq N_r^-(v)$, increment $R[X][\mathrm{dist}(v,X)]$

- 1 For every $v \in \vec{G}_r, X \subseteq N_r^-(v)$ and $\bar{d} \in [r]^{|X|},$ initialize $R[X][\bar{d}] = 0.$
- 2) For every $v \in \vec{G}_r, X \subseteq N_r^-(v)$, increment $R[X][\operatorname{dist}(v,X)]$ by one.

Claim.

$$c(v, X, \bar{d}) = \sum_{X \subseteq Y \subseteq N_r^-(v)} (-1)^{|Y \setminus X|} \sum_{\bar{d}': \bar{d}'|_X = \bar{d}} R[Y][\bar{d}'].$$

Claim.

$$c\left(v,X,\bar{d}\right) = \sum_{X \subseteq Y \subseteq N_r^-(v)} (-1)^{|Y \setminus X|} \sum_{\bar{d}':\bar{d}'\mid_X = \bar{d}} R[Y][\bar{d}'].$$

Case 1. Assume that
$$u$$
 satisfies $\begin{cases} N_r^-(u) \cap N_r^-(v) = X \\ \operatorname{dist}(u, X) = d. \end{cases}$

Claim.

$$c(v, X, \bar{d}) = \sum_{X \subseteq \underline{Y} \subseteq N_r^-(v)} (-1)^{|Y \setminus X|} \sum_{\underline{d'}: \bar{d'}|_X = \bar{d}} \underline{R[Y][\bar{d'}]}.$$

Case 1. Assume that
$$u$$
 satisfies
$$\begin{cases} N_r^-(u) \cap N_r^-(v) = X \\ \operatorname{dist}(u,X) = d. \end{cases}$$

Then the above sum counts it exactly once, namely when Y=X and $\bar{d}'=\bar{d}$, since it only contributes to $R[X][\bar{d}]$.

Claim.

$$c\left(v,X,\bar{d}\right) = \sum_{X \subseteq Y \subseteq N_r^-(v)} (-1)^{|Y \setminus X|} \sum_{\bar{d}':\bar{d}'\mid_X = \bar{d}} R[Y][\bar{d}'].$$

Case 2.

Assume that u satisfies $dist(u, X) \neq d$.

Claim.

$$c\;(v,X,\bar{d}) = \sum_{X\subseteq Y\subseteq N_r^-(v)} (-1)^{|Y\setminus X|} \sum_{\bar{d}':\bar{d}'\mid_X = \bar{d}} R[Y][\bar{d}'].$$

Case 2.

Assume that u satisfies $dist(u, X) \neq d$.

Then the above sum does not count it.

A data structure for $c(v, X, \bar{d})$

Claim.

$$c\left(v,X,\bar{d}\right) = \sum_{X \subseteq Y \subseteq N_r^-(v)} (-1)^{|Y \setminus X|} \sum_{\bar{d}':\bar{d}'|_X = \bar{d}} R[Y][\bar{d}'].$$

Case 3.

Assume that u satisfies $\operatorname{dist}(u,X)=d$ but $N_r^-(u)\cap N_r^-(v)=Z$ where $X\subsetneq Z\subseteq N_r^-(v)$.

A data structure for $c(v, X, \bar{d})$

Claim.

Case 3.

Assume that u satisfies $\operatorname{dist}(u,X)=d$ but $N_r^-(u)\cap N_r^-(v)=Z$ where $X\subsetneq Z\subseteq N_r^-(v)$. Then u contributes to the following terms:

$$\sum_{X \subseteq Y \subseteq Z} (-1)^{|Y \setminus X|} R[Y] [\operatorname{dist}(u, Z)|_{Y}]$$

A data structure for $c(v, X, \bar{d})$

Claim.

$$c (v, X, \overline{d}) = \sum_{X \subseteq Y \subseteq N_r^-(v)} (-1)^{|Y \setminus X|} \sum_{\overline{d}' : \overline{d}'|_X = \overline{d}} R[Y][\overline{d}'].$$

Case 3.

Therefore the contribution of u cancels out!

$$\sum_{X \subseteq Y \subseteq Z} \frac{(-1)^{|Y \setminus X|}}{R[Y][\operatorname{dist}(u, Z)|_Y]}$$
$$\sum_{X \subseteq Y \subseteq Z} (-1)^{|Y \setminus X|} = \sum_{0 \leqslant k \leqslant |Z \setminus X|} (-1)^k \binom{|Z \setminus X|}{k} = 0$$

Given $c(v, \bullet, \bullet)$ we can now count the number of indirect neighbours of v. For every subset $X \subseteq N_r^-(v)$ and distance-vector $\bar{d} \in [r]^{|X|}$, apply the update:

$$C[v][\min(\bar{d} + \operatorname{dist}(v, X))] += c(v, X, \bar{d})$$

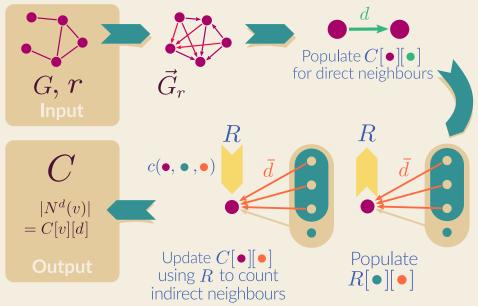
Given $c(v, \bullet, \bullet)$ we can now count the number of indirect neighbours of v. For every subset $X \subseteq N_r^-(v)$ and distance-vector $\bar{d} \in [r]^{|X|}$, apply the update:

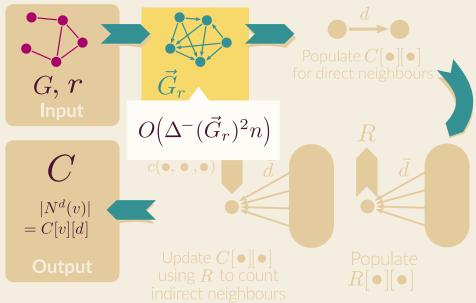
$$C[v][\min(\bar{d} + \operatorname{dist}(v, X))] \ += \ c\left(v, X, \bar{d}\right)$$

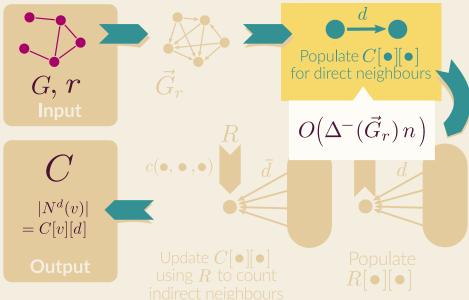
Since the above counts $\,v\,$ as a neighbour of itself, we apply the following correction:

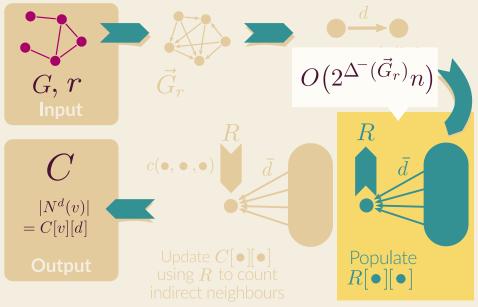
$$C[v][\min(\operatorname{dist}(v,X) + \operatorname{dist}(v,X))] = 1$$

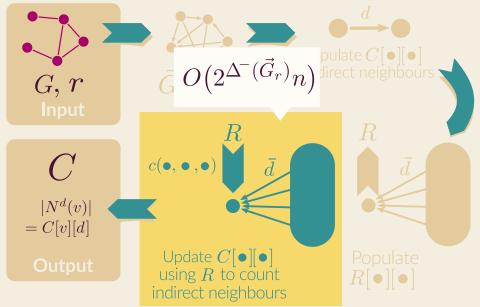
There are a few more corrections concerning direct neighbours, see paper.











Thm. Given a graph G and an integer r, we can compute the size of $|N^d(v)|$ for all $v \in G$ and $1 \le d \le r$ in total time $O(2^{\Delta^-(\vec{G}_r)}n)$.

Thm. Given a graph G and an integer r, we can compute the size of $|N^d(v)|$ for all $v \in G$ and $1 \le d \le r$ in total time $O(2^{\Delta^-(\vec{G}_r)}n)$.

- Exponential vs quadratic?
- Does not scale to nowhere dense graphs!

Thm. Given a graph G and an integer r, we can compute the size of $|N^d(v)|$ for all $v \in G$ and $1 \le d \le r$ in total time $O(2^{\Delta^-(\vec{G}_r)}n)$.

- Exponential vs quadratic?
- Does not scale to nowhere dense graphs!

Can we do **better**?

Some Bad News

Can we do better?

CLOSED 2-NEIGHBOURHOOD SIZES

Input: A graph G.

Output: $|N^2[v]|$ for every $v \in G$.

Can we do better?

CLOSED 2-NEIGHBOURHOOD SIZES

Input: A graph G.

Output: $|N^2[v]|$ for every $v \in G$.

Thm. Unless SETH fails, 2-CNBS cannot be solved in time

- $\bullet O(|G|^{2-\varepsilon})$
- **2** $O(2^{o(\Delta^{-}(\vec{G}_{2}))}n^{2-\varepsilon})$

Lower bound tool: SETH

r-CNF SAT

Input: A CNF formula ϕ on n variables

and m clauses of size $\leqslant r$.

Problem: Is ϕ satisfiable?

Strong exponential time hypothesis

For every $\varepsilon > 0$ there exists an r_{ε} such that r_{ε} -CNF SAT cannot be solved in time $O(2^{\varepsilon n})$.

Lower bound tool: SETH

r-CNF SAT

Input: A CNF formula ϕ on n variables

and m clauses of size $\leqslant r$.

Problem: Is ϕ satisfiable?

Strong exponential time hypothesis

For every $\varepsilon > 0$ there exists an r_{ε} such that r_{ε} -CNF SAT cannot be solved in time $O(2^{\varepsilon n})$.

Can we do better?

CLOSED 2-NEIGHBOURHOOD SIZES

Input: A graph G.

Output: $|N^2[v]|$ for every $v \in G$.

Thm. Unless SETH fails, 2-CNBS cannot be solved in time

- **2** $O(2^{o(\Delta^{-}(\vec{G}_{2}))}n^{2-\varepsilon})$

We begin with a SAT formula on n variables with m clauses: $\phi(x_1, \ldots, x_n) = C_1 \wedge \ldots \wedge C_m$ Using the sparsification lemma, we can assume

in the following that m = O(n).

We begin with a SAT formula on n variables with m clauses: $\phi(x_1, \ldots, x_n) = C_1 \wedge \ldots \wedge C_m$

$$A \bullet \bullet \bullet \bullet \bullet \bullet$$

Let A contain all $2^{n/2}$ assignments of the variables $x_1, \ldots, x_{n/2}$

We begin with a SAT formula on n variables with m clauses: $\phi(x_1, \ldots, x_n) = C_1 \wedge \ldots \wedge C_m$

$$A \bullet \bullet \bullet \bullet \bullet \bullet$$
 Let A contain all $2^{n/2}$ assignments of the variables $x_1, \ldots, x_{n/2}$

$$B \bullet \bullet \bullet \bullet \bullet \bullet$$

Let B contain all $2^{n/2}$ assignments of the variables $x_{n/2+1}, \dots, x_n$

We begin with a SAT formula on n variables with m clauses: $\phi(x_1, \ldots, x_n) = C_1 \wedge \ldots \wedge C_m$

$$A \bullet \bullet \bullet \bullet \bullet \bullet \bullet$$
 Let A contain all $2^{n/2}$ assignments of the variables $x_1, \ldots, x_{n/2}$

$$C$$
 C_1 C_2 \cdots C_m Let C contain all clauses of ϕ

$$B \bullet \bullet \bullet \bullet \bullet \bullet$$
 Let B contain all $2^{n/2}$ assignments of the variables $x_{n/2+1},\dots,x_n$

Let A contain all $2^{n/2}$ Let C contain all assignments of the clauses of ϕ variables $x_1, \ldots, x_{n/2}$

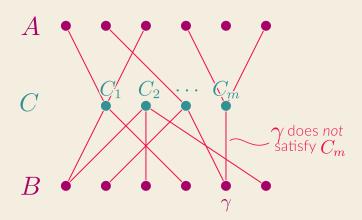
Let B contain all $2^{n/2}$ assignments of the variables $x_{n/2+1},...,x_n$

 C_1 C_2 \cdots C_m

Let A contain all $2^{n/2}$ Let C contain all assignments of the variables $x_1, \ldots, x_{n/2}$

clauses of ϕ

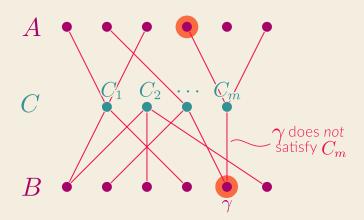
Let B contain all $2^{n/2}$ assignments of the variables $x_{n/2+1},...,x_n$



Let A contain all $2^{n/2}$ Let C contain all assignments of the variables $x_1, \ldots, x_{n/2}$

clauses of ϕ

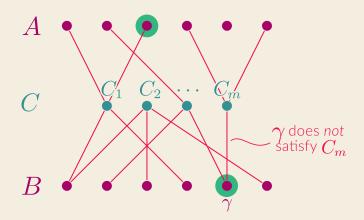
Let B contain all $2^{n/2}$ assignments of the variables $x_{n/2+1},...,x_n$

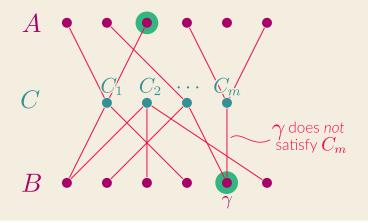


Let A contain all $2^{n/2}$ Let C contain all assignments of the variables $x_1, \ldots, x_{n/2}$

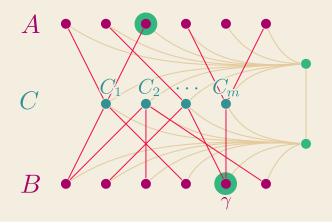
clauses of ϕ

Let B contain all $2^{n/2}$ assignments of the variables $x_{n/2+1},...,x_n$





 ϕ is satisfiable iff there exist two vertices $\alpha \in A, \ \beta \in B$ with $N(\alpha) \cap N(\beta) = \emptyset$.



 ϕ is satisfiable iff there exists a vertex $\gamma \in A \cup B$ with $|N^2[\gamma]| < 2^{\frac{n}{2}+1} + m + 2$.

 ϕ is satisfiable iff there exists a vertex $\gamma \in A \cup B$ with $|N^2[\gamma]| < 2^{\frac{n}{2}+1} + m + 2$.

Assume we can solve 2-CNBS in time $O(|G|^{2-\varepsilon})$.

 ϕ is satisfiable iff there exists a vertex $\gamma \in A \cup B$ with $|N^2[\gamma]| < 2^{\frac{n}{2}+1} + m + 2$.

Assume we can solve 2-CNBS in time $O(|G|^{2-\varepsilon})$. The output consists of |G| numbers, thus in time

$$O(2^{\frac{n}{2}}m + |G|^{2-\varepsilon} + |G|\log|G|)$$

 ϕ is satisfiable iff there exists a vertex $\gamma \in A \cup B$ with $|N^2[\gamma]| < 2^{\frac{n}{2}+1} + m + 2$.

Assume we can solve 2-CNBS in time $O(|G|^{2-\varepsilon})$. The output consists of |G| numbers, thus in time

$$O(2^{\frac{n}{2}}m + |G|^{2-\varepsilon} + |G|\log|G|)$$

$$= O(2^{\frac{n}{2}}m + (2^{\frac{n}{2}+1} + m + 2)^{2-\varepsilon})$$

$$= 2^{n(1-\varepsilon/2)}m^{O(1)} = 2^{\varepsilon'n}m^{O(1)}$$

we can check whether ϕ is satisfiable, contradicting SETH.

Can we do better?

CLOSED 2-NEIGHBOURHOOD SIZES

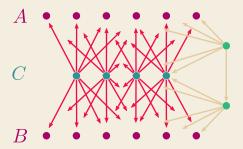
Input: A graph G.

Output: $|N^2[v]|$ for every $v \in G$.

Thm. Unless SETH fails, 2-CNBS cannot be solved in time

- $\bullet O(|G|^{2-\varepsilon})$
- **2** $O(2^{o(\Delta^{-}(\vec{G}_{2}))}n^{2-\varepsilon})$

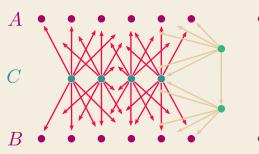
How big is $\Delta^-(\vec{G}_r)$?

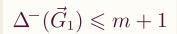


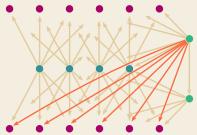
How big is $\Delta^-(\vec{G}_r)$?

$$\Delta^{-}(\vec{G}_1) \leqslant m+1$$

How big is $\Delta^-(\vec{G}_r)$?







$$\Delta^-(\vec{G}_r) \leqslant m+2$$

Assume we can solve 2-CNBS in time $O(2^{o(\Delta^-(\vec{G}_2))}n^{2-\varepsilon})$. Thus in time

$$O(2^{o(\Delta^{-}(\vec{G}_{2}))}|G|^{2-\varepsilon} + |G|\log|G|)$$

Assume we can solve 2-CNBS in time $O(2^{o(\Delta^-(\vec{G}_2))}n^{2-\varepsilon})$. Thus in time

$$O(2^{o(\Delta^{-}(\vec{G}_{2}))}|G|^{2-\varepsilon} + |G|\log|G|)$$

$$= O(2^{o(m)}2^{\frac{n}{2}(2-\varepsilon)} + 2^{\frac{n}{2}}n)$$

Assume we can solve 2-CNBS in time $O(2^{o(\Delta^-(\vec{G}_2))}n^{2-\varepsilon})$. Thus in time

$$O(2^{o(\Delta^-(\vec{G}_2))}n^{2-arepsilon}).$$
 Thus in time $O(2^{o(\Delta^-(\vec{G}_2))}|G|^{2-arepsilon}+|G|\log|G|) = O(2^{o(m)}2^{rac{n}{2}(2-arepsilon)}+2^{rac{n}{2}}n) = O(2^{(1-rac{arepsilon}{2})n+o(n)}+2^{rac{n}{2}}n)$

=0(2 - 10)

Assume we can solve 2-CNBS in time $O(2^{o(\Delta^-(\vec{G}_2))}n^{2-\varepsilon})$. Thus in time

$$O(2^{o(\Delta^{-}(\vec{G}_{2}))}|G|^{2-\varepsilon} + |G|\log|G|)$$

$$= O(2^{o(m)}2^{\frac{n}{2}(2-\varepsilon)} + 2^{\frac{n}{2}}n)$$

$$= O(2^{(1-\frac{\varepsilon}{2})n+o(n)} + 2^{\frac{n}{2}}n) = O(2^{\varepsilon'n})$$

we can check whether ϕ is satisfiable, contradicting SETH.

Assume we can solve 2-CNBS in time $O(2^{o(\Delta^-(\vec{G}_2))}n^{2-\varepsilon})$. Thus in time

$$O(2^{o(\Delta^{-}(\vec{G}_{2}))}|G|^{2-\varepsilon} + |G|\log|G|)$$

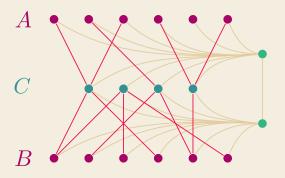
$$= O(2^{o(m)}2^{\frac{n}{2}(2-\varepsilon)} + 2^{\frac{n}{2}}n)$$

$$= O(2^{(1-\frac{\varepsilon}{2})n+o(n)} + 2^{\frac{n}{2}}n) = O(2^{\varepsilon'n})$$

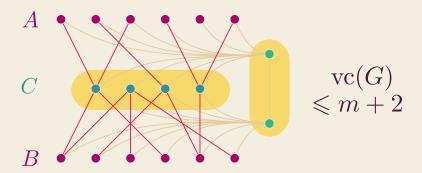
we can check whether ϕ is satisfiable, contradicting SETH.

Unless the SETH fails, 2-CNBS cannot be solved in time $O(2^{o(\Delta^-(\vec{G}_2))}n^{2-\varepsilon})$.

What about other parameters?

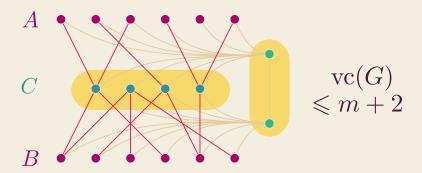


What about other parameters?



Unless the SETH fails, 2-CNBS cannot be solved in time $O(2^{o(\text{vc}(G))}n^{2-\varepsilon})$.

What about other parameters?



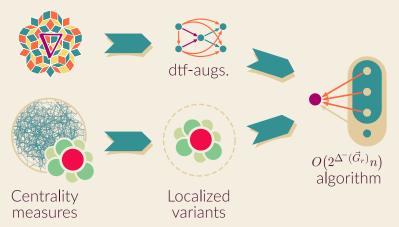
Unless the SETH fails, 2-CNBS cannot be solved in time $O(2^{o(\text{vc}(G))}n^{2-\varepsilon})$.

What about other parameters?

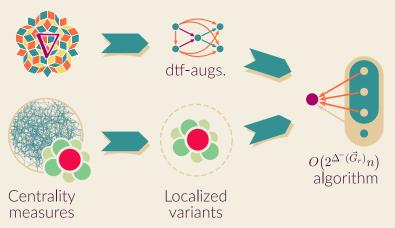
Unless the SETH fails, 2-CNBS cannot be solved in time $O(2^{o(\text{vc}(G))}n^{2-\varepsilon})$.

Unless the SETH fails, 2-CNBS cannot be solved in time $O(2^{o(f(G))}n^{2-\varepsilon})$ for any $f \in \{\text{wcol}_2, \text{vc}, \text{td}, \text{pw}, \text{tw}, \nabla_1, \nabla_1\}.$

The process so far



The process so far



Should we implement this algorithm?