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We want to count the
number of times a given
motif graph

Motif- countln)%

appears in a larger host
graph (network).

Motifs that appear more often than expected
might play an important function in the network.

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U.

Network motifs: simple building blocks of complex networks.

Science. 2002 Oct 25;298(5594).824-7.

Ribeiro P, Silva F, Kaiser M. Strategies for network motifs discovery.

InE-Science, 2009. e-Science'09. Fifth IEEE International Conference on 2009 Dec 9 (pp. 80-87). IEEE.
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Counting subgraphs*

(INDUCED) SUBGRAPH COUNTING
Input: A host graph GG and a pattern graph H.

Problem: How often does H appear in G as a
(induced) subgraph?

#W/[1]-hard even if the pattern is a clique

#W/[1]-hard even if the pattern is a path

No f(|H]) poly(|G]) algorithm unless
other weird things are true.

Flum J, Grohe M. Parameterized complexity theory.
Springer Science & Business Media; 2006 May 1.
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Counting subgraphs*
(INDUCED) SUBGRAPH COUNTING

Input: A host graph G and a pattern graph H.

Problem: How often does H appear in G as a
(induced) subgraph?

Even finding a clique of size k is probably
not possible in time f(k)|G|°*)

Unless we make assumptions about
the host graph, we cannot do much
better than brute-force.
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The (lassic
works on
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Parameterised graph invariants

A graph invariant is an isomorphism invariant
function that maps graphs to R

e.g. density, average degree, clique number, degeneracy
treewidth, etc.

A parameterised graph invariant is a family of graph
invariant (fr)reN,.

A graph class G is f,.-bounded if there exists g s.t.

fr-(G) = limsup f-(G) < g(r) forallr
Geg



Bounded expansion

Nesetril & Ossona de Mendez:
Many notions of f-boundedness are equivalent!
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Nesetril J, Ossona de Mendez P. Sparsity.
Algorithms and Combinatorics. 2012;28.



Bounded expansion
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Size of r-reachable
sets in ordering

A™(Gy)
In-degree of
r-step (d)tf-
augmentation

Nesetril J, Ossona de Mendez P. Sparsity.
Algorithms and Combinatorics. 2012;28.
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FO checking/counting/enumeration

Theorem. Given a graph G from a BE class and a
FO-sentence ¢, one can decide whether G |= ¢ in

time O(f(l¢]) |G]).

Dvorak Z, Kral D, Thomas R. Deciding first-order properties for sparse graphs.
In2010 IEEE 51st Annual Symposium on Foundations of Computer Science 2010
Oct 23 (pp. 133-142). IEEE.

Theorem. Given a graph GG from a BE class and a FO-
formula ¢(Z), one can lcount the number of tuples @
with G k= g(a) in time O(f(|6]) IG)).

Theorem. Given a graph GG from a BE class and a FO-
formula ¢(Z), one can can compute a data structure
intime O(f(|¢]) |G]) whichlenumerates all tuples a
satisfiying G = ¢(a) with constant delay.

Kazana W, Segoufin L. Enumeration of first-order queries on classes of structures with
bounded expansion. InProceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI symposium
on Principles of database systems 2013 Jun 22 (pp. 297-308).



Similar results exist for nowhere-dense classes

Grohe M, Kreutzer S, Siebertz S. Deciding first-order properties of nowhere
dense graphs. Journal of the ACM (JACM). 2017 Jun 16;64(3):1-32.

Schweikardt N, Segoufin L, Vigny A. Enumeration for FO queries over nowhere
dense graphs. InProceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems 2018 May 27 (pp. 151-163).



Counting subgraphs in linear time

QG » ¢ ‘\@" DG
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Big hammers don't implement
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Treedepth

Def. A graph has treedepth d if it is the
subgraph of the closure of a tree of height d.



Low treedepth colourings

A vertex colouring is an r-treedepth colouring if every
set of i < r colours induce a subgraph of treedepth i.

Nesetril J, Ossona de Mendez P. Sparsity.
Algorithms and Combinatorics. 2012;28.



Low treedepth colourings

A vertex colouring is an r-treedepth colouring if every
set of i < r colours induce a subgraph of treedepth i.

DE0eY FI I
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Nesetril J, Ossona de Mendez P. Sparsity.
Algorithms and Combinatorics. 2012;28.




Low treedepth colourings

A vertex colouring is an r-treedepth colouring if every
set of i < r colours induce a subgraph of treedepth i.
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Define X,- to be the number of colours needed for an
r-treedepth colouring.

Nesetril J, Ossona de Mendez P. Sparsity.
Algorithms and Combinatorics. 2012;28.



Low treedepth colourings

A vertex colouring is an r-treedepth colouring if every
set of i < r colours induce a subgraph of treedepth i.

. 11
-

Define X,- to be the number of colours needed for an

r-treedepth colouring.
A graph class has bounded expansion iff it is

Xr-bounded.
Nesetril J, Ossona de Mendez P. Sparsity. Xr e

Algorithms and Combinatorics. 2012;28.




Subgraph cognting using X

Inclusion-  Count in graphs
exclusion  w/ small treedepth
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Medium hammers don't scale

O'Brien MP, Sullivan BD.

Experimental evaluation of counting subgraph isomorphisms
in classes of bounded expansion.

arXiv preprint arXiv:1712.06690. 2017 Dec 18.



Part Il

The small® hammer

¥F

*small-ish



Degeneracy

A graph (G is d-degenerate if there exists a linear
ordering G of G such that every vertex has at
most d neighbours to its left.



Weak colouring & bounded expansion

Wg(v) ST
. D X
» UU \

Uu is weakly r-reachable from v if there exists a
path from v to u of length at most r such that
U is the path's leftmost vertex.



Weak colouring & bounded expansion

Wg(v) ST
. D X
» UU \

u is weakly r-reachable from v if there exists a
path from v to w of length at most 7 such that
U is the path's leftmost vertex.

weol,.(G) := Génﬂl(nG) max (We(v))



Weak colouring & bounded expansion

Wg(v) ST
. D X
» UU \

u is weakly r-reachable from v if there exists a
path from v to u of length at most r such that
U is the path's leftmost vertex.

weol,. (G) = Génﬂl(nG) meac);dWG( v)|

':"" A graph class has bounded
k-e expansion iff itis wcol,-bounded.



Let's start with something easy!

We count cliques in a d-degenerate graph.

Observation: every clique is contained in the left-
neighbourhood of its last vertex.

H~K,
(@ G )

V(H) € Ng (v)



Let's start with something easy!

We count cliques in a d-degenerate graph.

Observation: every clique is contained in the left-
neighbourhood of its last vertex.

H~K,
(@ G )

V(H) € Ng (v)

Therefore we can enumerate all cliques by
enumerating all cliques in N—(v) forallv € G'!

O(2%n) time!



Does it blend?
Can we ‘lift" this algorithm to wcol?

H~K,
G e |/ (H) C Ng (v)
G e H C W((v)



Does it blend?
Can we ‘lift" this algorithm to wcol?

H~K,
G e |/ (H) C Ng (v)
G e H C W((v)
H

@ \\/hat is the ‘last’ vertex of H?
Enumerate all orderings H of H.

@ Does H C W (v) actually hold?
Only sometimes!



Two ways to order a P,
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Two ways to order a P,
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Two ways to order a P,

a bcdef W) v
o000 0 ° L
WE{?G (f)! L = N
adbcef H_—
P S
O O 060 0 ° G
N XS



Two ways to order a P,

b C d e ]C WE(v) v
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Decomposition!
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We can count
linear pieces!

Progress! These
pieces are linear!



Count & combine!
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Count & combine!
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Count & combine!
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Count & combine!

C1 a d e f
G ® 000
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a d/ a d/ How do we count
.M .i\\‘ these graphs?



Counting P,s using wcols

Lemma 6. Let H € H be a (non-linear) pattern relaxation and let Hy &z Hy =

H. Fiz an ordered vertex set § € G such that H[T] ~ G[g].

# (H,G) = # (H1,G) # (Hy,G)— Y
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Counting P,s using wcols

Lemma 6. Let H € H be a (non-linear) pattern relaxation and let Hy &z Hy =
H. Fiz an ordered vertex set § € G such that H[T| ~ G[g]. Then

7#7(Hy D | le H?) 7#7(D7 G)
T T—=y

# (D,D)

T—=T

# (H.G)= # (H, G)#(Hz G- Y.
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Compute composite
pattern counts

Subgraih counting using wcol,.

Aggregate



Small hammers might just work!

Nadara W, Pilipczuk M, Rabinovich R, Reidl F, Siebertz S.

Empirical evaluation of approximation algorithms for generalized graph
coloring and uniform quasi-wideness.

Journal of Experimental Algorithmics (JEA). 2019 Dec 10;24:1-34.

Brown CT, Moritz D, O’Brien MP, Reidl F, Reiter T, Sullivan BD. github.com/
Exploring neighborhoods in large metagenome assembly spacegraphcats/
graphs using spacegraphcats reveals hidden sequence spacegraphcats
diversity. Genome biology. 2020 Dec;21(1):1-6.

Reidl F, Sullivan BD. A color-avoiding approach to subgraph github.com/
counting in bounded expansion classes. theoryinpractice/
arXiv preprint arXiv:2001.05236. 2020 Jan 15. mandoline
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Applications & Algorithms

splitter games wcol,.
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THANKS!
Questions?

Next up: 1

Michat tells you how to
use sparsity without

using sparsi%’n.t iss it




