Invitation to Sparsity Algorithmic aspects I

Felix Reidl Birkbeck College felix.reidl@gmail.com

CanaDAM 2021May 26 2021

Motif-counting

We want to count the number of times a given motif graph

appears in a larger host graph (network).

Motifs that appear more often than expected might play an important function in the network.

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002 Oct 25;298(5594):824-7.

Ribeiro P, Silva F, Kaiser M. **Strategies for network motifs discovery**. InE-Science, 2009. e-Science'09. Fifth IEEE International Conference on 2009 Dec 9 (pp. 80-87). IEEE.

(INDUCED) SUBGRAPH COUNTING

Input: A host graph G and a pattern graph H.

Problem: How often does H appear in G as a

(induced) subgraph?

(INDUCED) SUBGRAPH COUNTING

Input: A host graph G and a pattern graph H.

Problem: How often does H appear in G as a

(induced) subgraph?

#W[1]-hard even if the pattern is a clique

Flum J, Grohe M. **The parameterized complexity of counting problems**

#W[1]-hard even if the pattern is a path

Chen Y, Flum J. On parameterized path and chordless path problems. InTwenty-Second Annual IEEE Conference on Computational Complexity (CCC'07) 2007 Jun 13 (pp. 250-263), IEEE.

(INDUCED) SUBGRAPH COUNTING

Input: A host graph G and a pattern graph H.

Problem: How often does H appear in G as a

(induced) subgraph?

#W[1]-hard even if the pattern is a clique Flum J, Grohe M. The parameterized complexity of counting problems.

#W[1]-hard even if the pattern is a path

Chen Y, Flum J. On parameterized path and chordless path problems. InTwenty-Second Annual IEEE Conference on Computational Complexity (CCC'07) 2007 Jun 13 (pp. 250-263). IEEE.

No f(|H|) poly(|G|) algorithm unless other weird things are true.

Flum J, Grohe M. Parameterized complexity theory. Springer Science & Business Media; 2006 May 1.

(INDUCED) SUBGRAPH COUNTING

Input: A host graph G and a pattern graph H.

Problem: How often does H appear in G as a

(induced) subgraph?

Even finding a clique of size k is probably not possible in time $f(k)|G|^{o(k)}$

Chen J, Huang X, Kanj IA, Xia G. Strong computational lower bounds via parameterized complexity. Journal of Computer and System Sciences. 2006 Dec 1:72(8):1346-67.

(INDUCED) SUBGRAPH COUNTING

Input: A host graph G and a pattern graph H.

Problem: How often does H appear in G as a

(induced) subgraph?

Even finding a clique of size k is probably not possible in time $f(k)|G|^{o(k)}$

Chen J, Huang X, Kanj IA, Xia G. Strong computational lower bounds via parameterized complexity. Journal of Computer and System Sciences. 2006 Dec 1:72(8):1346-67.

Unless we make assumptions about the host graph, we cannot do much better than brute-force.

Parameterised graph invariants

A graph invariant is an isomorphism invariant function that maps graphs to \mathbb{R}^+

e.g. density, average degree, clique number, degeneracy treewidth, etc.

A parameterised graph invariant is a family of graph invariant $(f_r)_{r\in\mathbb{N}_0}$.

A graph class \mathcal{G} is f_r -bounded if there exists g s.t. $f_r(\mathcal{G}) = \limsup_{G \in \mathcal{G}} f_r(G) \leqslant g(r) \text{ for all } r.$

Bounded expansion

Nešetřil & Ossona de Mendez: Many notions of f_r -boundedness are equivalent!

Nešetřil J, Ossona de Mendez P. **Sparsity**. Algorithms and Combinatorics. 2012;28.

Bounded expansion

Size of r-reachable sets in ordering

Normalized number of traces r-neighbourhoods leave in any subset

In-degree of r-step (d)tf-augmentation

Number of colours in r-treedepth colouring

Nešetřil J, Ossona de Mendez P. **Sparsity**. Algorithms and Combinatorics. 2012;28.

splitter games

r-Dominating

Set approx.

Part I

The **big** hammer

FO checking/counting/enumeration

Theorem. Given a graph G from a BE class and a FO-sentence ϕ , one can decide whether $G \models \phi$ in time $O(f(|\phi|)|G|)$.

Dvořák Z, Král D, Thomas R. **Deciding first-order properties for sparse graphs**. In2010 IEEE 51st Annual Symposium on Foundations of Computer Science 2010 Oct 23 (pp. 133-142). IEEE.

Theorem. Given a graph G from a BE class and a FO-formula $\phi(\bar{x})$, one can count the number of tuples \bar{a} with $G \models \phi(\bar{a})$ in time $O(f(|\phi|)|G|)$.

Theorem. Given a graph G from a BE class and a FO-formula $\phi(\bar{x})$, one can compute a data structure in time $O(f(|\phi|)|G|)$ which enumerates all tuples \bar{a} satisfying $G \models \phi(\bar{a})$ with constant delay.

Kazana W, Segoufin L. Enumeration of first-order queries on classes of structures with bounded expansion. InProceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI symposium on Principles of database systems 2013 Jun 22 (pp. 297-308).

FO checking/counting/enumeration

Theorem. Given a graph G from a BE class and a FO-sentence ϕ , one can decide whether $G \models \phi$ in time $O(f(|\phi|)|G|)$

Similar results exist for nowhere-dense classes

Grohe M, Kreutzer S, Siebertz S. Deciding first-order properties of nowhere dense graphs. Journal of the ACM (JACM). 2017 Jun 16;64(3):1-32.

Schweikardt N, Segoufin L, Vigny A. Enumeration for FO queries over nowhere dense graphs. InProceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems 2018 May 27 (pp. 151-163).

Theorem. Given a graph G from a BE class and a FO-formula $\phi(\bar{x})$, one can can compute a data structure in time $O(f(|\phi|)|G|)$ which enumerates all tuples \bar{a} satisfiving $G \models \phi(\bar{a})$ with constant delay.

Kazana W, Segoufin L. Enumeration of first-order queries on classes of structures with bounded expansion. InProceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI symposium on Principles of database systems 2013 Jun 22 (pp. 297-308).

Counting subgraphs in linear time

Big hammers don't implement

Part II

The **medium** hammer

Treedepth

Def. A graph has treedepth d if it is the subgraph of the closure of a tree of height d.

A vertex colouring is an **r-treedepth colouring** if every set of i < r colours induce a subgraph of treedepth i.

Nešetřil J, Ossona de Mendez P. **Sparsity**. Algorithms and Combinatorics. 2012;28.

A vertex colouring is an **r-treedepth colouring** if every set of i < r colours induce a subgraph of treedepth i.

A vertex colouring is an **r-treedepth colouring** if every set of i < r colours induce a subgraph of treedepth i.

Define χ_r to be the number of colours needed for an r-treedepth colouring.

A vertex colouring is an **r-treedepth colouring** if every set of i < r colours induce a subgraph of treedepth i.

Define χ_r to be the number of colours needed for an r-treedepth colouring.

A graph class has bounded expansion iff it is χ_r -bounded.

Nešetřil J, Ossona de Mendez P. **Sparsity**. Algorithms and Combinatorics. 2012;28.

Medium hammers don't scale

O'Brien MP, Sullivan BD.

Experimental evaluation of counting subgraph isomorphisms in classes of bounded expansion.

arXiv preprint arXiv:1712.06690. 2017 Dec 18.

Part III

The **small*** hammer

Degeneracy

A graph G is d-degenerate if there exists a linear ordering \mathbb{G} of G such that every vertex has at most d neighbours to its left.

Weak colouring & bounded expansion

 $oldsymbol{u}$ is weakly r-reachable from v if there exists a path from v to $oldsymbol{u}$ of length at most r such that $oldsymbol{u}$ is the path's leftmost vertex.

Weak colouring & bounded expansion

 $oldsymbol{u}$ is weakly r-reachable from v if there exists a path from v to $oldsymbol{u}$ of length at most r such that $oldsymbol{u}$ is the path's leftmost vertex.

$$\operatorname{wcol}_r(G) := \min_{\mathbb{G} \in \Pi(G)} \max_{v \in G} |W_{\mathbb{G}}^r(v)|$$

Weak colouring & bounded expansion

 $oldsymbol{u}$ is weakly r-reachable from v if there exists a path from v to v of length at most v such that v is the path's leftmost vertex.

$$\operatorname{wcol}_r(G) := \min_{\mathbb{G} \in \Pi(G)} \max_{v \in G} |W_{\mathbb{G}}^r(v)|$$

Let's start with something easy!

We count cliques in a d-degenerate graph.

Observation: every clique is contained in the left-neighbourhood of its *last* vertex.

Let's start with something easy!

We count cliques in a d-degenerate graph.

Observation: every clique is contained in the left-neighbourhood of its *last* vertex.

$$H \simeq K_q \quad v$$

$$V(H) \subseteq N_{\mathbb{G}}^-(v)$$

Therefore we can enumerate all cliques by enumerating all cliques in $N^-(v)$ for all $v \in G$!

$$O(2^d n)$$
 time!

Does it blend?

Can we 'lift' this algorithm to wcol?

Does it blend?

Can we 'lift' this algorithm to wcol?

- 1) What is the 'last' vertex of H? Enumerate all orderings \mathbb{H} of H.
- 2 Does $\mathbb{H} \subseteq W^r_{\mathbb{G}}(v)$ actually hold? Only sometimes!

Two ways to order a P_6

Decomposition!

We can count linear pieces!

Progress! These pieces are linear!

How do we count these graphs?

Counting P_4 s using $wcol_3$

Lemma 6. Let $\mathbf{H} \in \mathcal{H}$ be a (non-linear) pattern relaxation and let $\mathbf{H}_1 \oplus_{\bar{x}} \mathbf{H}_2 = \mathbf{H}$. Fix an ordered vertex set $\bar{y} \in \mathbb{G}$ such that $\mathbf{H}[\bar{x}] \simeq \mathbb{G}[\bar{y}]$. Then

$$\underset{x \mapsto \bar{y}}{\#}(\mathbf{H}, \mathbb{G}) = \underset{\bar{x} \mapsto \bar{y}}{\#}(\mathbf{H}_1, \mathbb{G}) \underset{x \mapsto \bar{y}}{\#}(\mathbf{H}_2, \mathbb{G}) - \sum_{\mathbf{D} \in \mathcal{D}(\mathbf{H}_1, \mathbf{H}_2)} \frac{\underset{x \mapsto \bar{x}}{\#}(\mathbf{H}, \mathbf{D} \mid \mathbf{H}_1, \mathbf{H}_2) \underset{x \mapsto \bar{y}}{\#}(\mathbf{D}, \mathbb{G})}{\underset{x \mapsto \bar{x}}{\#}(\mathbf{D}, \mathbf{D})}.$$

Counting P₄s using wcol₃

Lemma 6. Let $\mathbf{H} \in \mathcal{H}$ be a (non-linear) pattern relaxation and let $\mathbf{H}_1 \oplus_{\bar{x}} \mathbf{H}_2 = \mathbf{H}$. Fix an ordered vertex set $\bar{y} \in \mathbb{G}$ such that $\mathbf{H}[\bar{x}] \simeq \mathbb{G}[\bar{y}]$. Then

$$\underset{\bar{x} \mapsto \bar{y}}{\#}(\mathbf{H}, \mathbb{G}) = \underset{\bar{x} \mapsto \bar{y}}{\#}(\mathbf{H}_1, \mathbb{G}) \underset{\bar{x} \mapsto \bar{y}}{\#}(\mathbf{H}_2, \mathbb{G}) - \sum_{\mathbf{D} \in \mathcal{D}(\mathbf{H}_1, \mathbf{H}_2)} \frac{\# \left(\mathbf{H}, \mathbf{D} \mid \mathbf{H}_1, \mathbf{H}_2\right) \underset{\bar{x} \mapsto \bar{y}}{\#}(\mathbf{D}, \mathbb{G})}{\# \left(\mathbf{D}, \mathbf{D}\right)}.$$

$$4 \quad \bigcirc = \bigcirc \times \bigcirc \times \bigcirc - \bigcirc + \bigcirc \bigcirc$$

$$7 \quad \bigcirc = \bigcirc \times \bigcirc - \bigcirc + \bigcirc \bigcirc$$

Subgraph counting using $wcol_r$ Count linear patterns directly $\frac{2\pi}{100} = \frac{1}{2} (\bullet - \bullet \times \bullet - \bullet) - (\bullet - \bullet + 2 \bullet - \bullet)$ Compute composite Aggregate pattern counts

Small hammers might just work!

Nadara W, Pilipczuk M, Rabinovich R, Reidl F, Siebertz S. Empirical evaluation of approximation algorithms for generalized graph coloring and uniform quasi-wideness.

Journal of Experimental Algorithmics (JEA). 2019 Dec 10;24:1-34.

Brown CT, Moritz D, O'Brien MP, Reidl F, Reiter T, Sullivan BD. Exploring neighborhoods in large metagenome assembly graphs using spacegraphcats reveals hidden sequence diversity. Genome biology. 2020 Dec;21(1):1-6.

Reidl F, Sullivan BD. A color-avoiding approach to subgraph counting in bounded expansion classes. arXiv preprint arXiv:2001.05236. 2020 Jan 15.

github.com/ spacegraphcats/ spacegraphcats

github.com/ theoryinpractice/ mandoline

splitter games

r-Dominating

Set approx.

Applications & Algorithms

THANKS! Questions?

Next up:

Michał tells you how to use sparsity without using sparsity!

