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A bit of (hard) introspection

“About ten years ago, some computer scientists
came by and said they heard we have some
really cool problems. They showed that the
problems are NP-complete and went away!”

-Joseph Felsenstein in 1997

Downey RG, Fellows MR, Stege U. Computational tractability: The view from mars.
Bulletin of the EATCS. 1999 Oct;69:73-97.
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A communication problem

“Practical algorithm”

Polynomial time
Linear time
Short description
Logspace

Reduces to
well-known problem

Easy to understand



A communication problem

“Practical algorithm”

Polynomial time

Linear time
Short description “I just cloned it from
Logspace github and it ran fine
Reduces to on my data set.”

well-known problem
Easy to understand
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The long and winding road

R4
K%

Executable

Usable

Theory only

Implementable

Pseudocode

No tricks

Github

(or similar)




The long and winding #éad




Part Il

Background(s)

ec=




Three domains
c&\)(a‘ Spal"\?G




Four intersections




Four intersections

Sparseness
of network
models

Algorithms
exploiting
sparseness

Practical FPT algorithms



Four intersections

Algorithms Sparseness
exploiting of network
models

sparseness

Practical FPT algorithms



Four intersections

Sparseness
of network
models

Algorithms
exploiting
sparseness
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Implementable Usable

Pseudocode

Theory only No tricks Executable Github
(or similar)



FPT n real world

Criticism of trickery in algorithms (ask Mike about
the “PTAS industry”) was central in proposmg
parameterized complexity as an alternative?

Questions of practicality are encoded in the
DNA of the field, and it shows!

Downey R. Parameterized complexity for the skeptic.
InProc. 18th IEEE Annual Conference on Computational Complexity 2003 Jul 7 (Vol. 132).



FPT n real world

“The collection of methods for classifying problems as
fixed-parameter tractable, for designing FPT algorithms,
for designing better FPT algorithms and transfering
these results to practical |mplementat|ons [...] has
developed with surprising vigor.’

Fellows MR. Blow-ups, win/win'’s, and crown rules: Some new directions in FPT.
InInternational Workshop on Graph-Theoretic Concepts in Computer Science 2003
Jun 19 (pp. 1-12). Springer, Berlin, Heidelberg.

Questions of practicality are raised regularly, see e.g.

Cheetham J, Dehne F, Rau-Chaplin A, Stege U, Taillon PJ.
Solving large FPT problems on coarse-grained parallel machines.
Journal of Computer and System Sciences. 2003 Dec 31;67(4):691-706.

Langston M. Practical FPT implementations and applications.
InInternational Workshop on Parameterized and Exact Computation 2004
Sep 14 (pp. 291-291). Springer, Berlin, Heidelberg.

Abu-Khzam FN, Cai S, Egan J, Shaw P, Wang K.
Turbo-Charging Dominating Set with an FPT Subroutine:
Further Improvements and Experimental Analysis.
InInternational Conference on Theory and Applications of

Models of Computation 2017 Apr 20 (pp. 59-70). Springer, Cham.




FPT n real world

While many FPT algorithms are impractical (either
because of trickery or parameters that are not small
in practise), there is a consensus in the field that
practicality matters.

Parameterized complexity therefore not only gives us a rich
theoretical framework, we also find many past attempts
of applying said framework to real world problems.

Takeaway:

Parameterized complexity offers the
framework, the the institutions, and
the culture to investigate the
question of practicality.
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MSO-model checking
against all odds



MSO model checking
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Given an MSO, formula in the language of (annotated)
graphs and a graph, test whether the graph is a model
of the formula.



MSO model checking

Given an MSO, formula in the language of (annotated)
graphs and a graph, test whether the graph is a model
of the formula.

Not FPT for graphs of moderately unbounded treewidth!
Kreutzer S. On the Parameterised Intractability of Monadic Second-Order Logic.
INCSL 2009 Sep 7 (Vol. 9, pp. 348-363).

Kreutzer S, Tazari S. Lower bounds for the complexity of monadic second-order logic.
InLogic in Computer Science (LICS), 2010 25th Annual IEEE Symposium

on 2010 Jul 11 (pp. 189-198). IEEE.



MSO model checking

/A ?
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Given an MSO, formula in the language of (annotated)
graphs and a graph of bounded treewidth, test whether
the graph is a model of the formula.



Engineering Courcelle's Theorem

-

>

State
explosion

Pseudocode Implementable

Usable

Theory only No tricks Executable Github

| (or similar)
Courcelle B. The monadic

second-order logic of graphs.

|. Recognizable sets of finite graphs.

Information and computation.

1990 Mar 1;85(1):12-75.



Engineering Courcelle's Theorem

- B@

State DP using
explosion Hintikka games
Pseudocode Implementable Usable
Theory only No tricks Executable Github

| (or similar)
Courcelle B. The monadic

second-order logic of graphs.

|. Recognizable sets of finite graphs.

Information and computaﬁo'n

1990 Mar 1;85(1):12-75.

Kneis J, Langer A, Rossmanith P.
Courcelle’s theorem—a game-theoretic approach.
Discrete Optimization. 2011 Nov 30;8(4):568-94.



Engineering Courcelle's Theorem

- B@ OGP

State DP using Software Engineering
explosion Hintikka games & optimization
Pseudocode Implementable Usable

Theory only No tricks Executable

Github

| (or similar)
Courcelle B. The monadic Langer A.

second-order logic of graphs. Fast algorithms for decomposable graphs.
|. Recognizable sets of finite graphs. (Doctoral dissertation, Dissertation, Aachen,
Information and computation. Techn. Hochsch., 2013).

1990 Mar 1;85(1):12-75. https:/github.com/sequoia-mso/sequoia-core

Kneis J, Langer A, Rossmanith P.
Courcelle’s theorem—a game-theoretic approach.
Discrete Optimization. 2011 Nov 30;8(4):568-94.



Sequoia performance

DOMINATING SET in random subgrids

10000
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: 1t o}
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£ 1wf tr f
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= 1F ; Sequoia  +—=— .
i CPLEX +——=— U
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Grid width Grid width
2013 CONNECTED DOMINATING SET Sequoia CPLEX
Instance notw time  solution time solution gap
Hannover (small) 673 8 3min 319 — 327  41%
Hannover (large) 956 9 9min 376 — 385  42%
Berlin 2599 11 3h12min 1269 — 1342 35%

Langer A. Fast algorithms for decomposable graphs.

(Doctoral dissertation, Dissertation, Aachen,

Techn. Hochsch., 2013).

Langer A, Reidl F, Rossmanith P, Sikdar S. Evaluation of an MSO-solver.

In2012 Proceedings of the Fourteenth Workshop on Algorithm Engineering and Experiments
(ALENEX) 2012 Jan 16 (pp. 55-63). Society for Industrial and Applied Mathematics.
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Toboggan

High-throughput FPT



Flow decomposition

AGGACGTAGATAGCTAGCTAATGCTACGATCAGAGGACGTAGAT TTAT TACCAT

TACCGAATACGAACTAGGATATCGATCGATCAGAGGCCCAATAGGGAATATCCG
TACCGAATACGAACTAGGATATCGATCGAT TGATCT ATAATAGTAGAATATCCG

Shared segments between DNA/RNA strands create
ambiguity in the assembly problem.

Hartman T, Hassidim A, Kaplan H, Raz D, Segalov M. How to split a flow?.
ININFOCOM, 2012 Proceedings IEEE 2012 Mar 25 (pp. 828-836). IEEE.

Tomescu Al, Kuosmanen A, Rizzi R, Makinen V.

A novel min-cost flow method for estimating transcript expression with RNA-Seq.
BMC bioinformatics. 2013 Apr 10;14(5):S15.



Flow decomposition

AGGACGTAG || ATAGCTAGC || TAATGCTAC || GATCAGAGG || ACGTAGATT [ TATTACCAT

Shared segments between DNA/RNA strands create
ambiguity in the assembly problem.

Hartman T, Hassidim A, Kaplan H, Raz D, Segalov M. How to split a flow?.
ININFOCOM, 2012 Proceedings IEEE 2012 Mar 25 (pp. 828-836). IEEE.

Tomescu Al, Kuosmanen A, Rizzi R, Makinen V.

A novel min-cost flow method for estimating transcript expression with RNA-Seq.
BMC bioinformatics. 2013 Apr 10;14(5):S15.



Flow decomposition

AGGACGTAG || ATAGCTAGC || TAATGCTAC || GATCAGAGG || ACGTAGATT || TATTACCAT
TACCGAATA || CGAACTAGG | ATATCGATC | GATCAGAGG | CCCAATAGG | GAATATCCG
TACCGAATA || CGAACTAGG | ATATCGATC || GATTGATCT || ATAATAGTA | GAATATCCG

Shared segments between DNA/RNA strands create
ambiguity in the assembly problem.

Hartman T, Hassidim A, Kaplan H, Raz D, Segalov M. How to split a flow?.
ININFOCOM, 2012 Proceedings IEEE 2012 Mar 25 (pp. 828-836). IEEE.

Tomescu Al, Kuosmanen A, Rizzi R, Makinen V.
A novel min-cost flow method for estimating transcript expression with RNA-Seq.
BMC bioinformatics. 2013 Apr 10;14(5):S15.



Flow decomposition

Shared segments between DNA/RNA strands create
ambiguity in the assembly problem.

Hartman T, Hassidim A, Kaplan H, Raz D, Segalov M. How to split a flow?.
ININFOCOM, 2012 Proceedings IEEE 2012 Mar 25 (pp. 828-836). IEEE.

Tomescu Al, Kuosmanen A, Rizzi R, Makinen V.

A novel min-cost flow method for estimating transcript expression with RNA-Seq.
BMC bioinformatics. 2013 Apr 10;14(5):S15.



Flow decomposition
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Connecting overlapping segments (‘k-mers’) and
counting their frequencies (‘abundance’) yields a
DAG and a flow.

Hartman T, Hassidim A, Kaplan H, Raz D, Segalov M. How to split a flow?.
ININFOCOM, 2012 Proceedings IEEE 2012 Mar 25 (pp. 828-836). IEEE.

Tomescu Al, Kuosmanen A, Rizzi R, Makinen V.

A novel min-cost flow method for estimating transcript expression with RNA-Seq.
BMC bioinformatics. 2013 Apr 10;14(5):S15.



Flow decomposition
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Connecting overlapping segments (‘k-mers’) and
counting their frequencies (‘abundance’) yields a
DAG and a flow.

Hartman T, Hassidim A, Kaplan H, Raz D, Segalov M. How to split a flow?.
ININFOCOM, 2012 Proceedings IEEE 2012 Mar 25 (pp. 828-836). IEEE.

Tomescu Al, Kuosmanen A, Rizzi R, Makinen V.

A novel min-cost flow method for estimating transcript expression with RNA-Seq.
BMC bioinformatics. 2013 Apr 10;14(5):S15.




Flow decomposition

Our task is to split the flow into k weighted s-t-paths
in order to recover the original DNA/RNA strands.

Hartman T, Hassidim A, Kaplan H, Raz D, Segalov M. How to split a flow?.
ININFOCOM, 2012 Proceedings IEEE 2012 Mar 25 (pp. 828-836). IEEE.

Tomescu Al, Kuosmanen A, Rizzi R, Makinen V.
A novel min-cost flow method for estimating transcript expression with RNA-Seq.
BMC bioinformatics. 2013 Apr 10;14(5):S15.
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Engineering flow decomposition

20(k*)p,
FPT algorithm

No poly kernel

Implementable Usable

Pseudocode

Theory only No tricks Executable Github
(or similar)

Kloster K, Kuinke P, O'Brien MP, Reidl F,
Sanchez Villaamil F, Sullivan BD, van der Poel A.
A practical fpt algorithm for Flow Decomposition and transcript assembly.

arXiv preprint arXiv:1706.07851. 2017 Jun 23.



Engineering flow decomposition

<0
FPT algorithm

DP using ILPs*
to encode

No poly kernel constraints

Implementable Usable

Pseudocode

No tricks Executable Github

(or similar)

Theory only

Kloster K, Kuinke P, O'Brien MP, Reidl F,
Sanchez Villaamil F, Sullivan BD, van der Poel A.
A practical fpt algorithm for Flow Decomposition and transcript assembly.

arXiv preprint arXiv:1706.07851. 2017 Jun 23.

*More precisely: systems of Diophantine equations



Engineering flow decomposition

2 §
FPT algorithm
DP using ILPs*

to encode Prepr(_)cessing, e;_arl_yfogt
o pelly e constraints heuristics and optimization

Pseudocode Implementable Usable

Github

(or similar)

Theory only No tricks Executable

DOI 10.5281/zenodo.821633
https://github.com/TheorylnPractice/toboggan
Kloster K, Kuinke P, O'Brien MP, Reidl F,

Sanchez Villaamil F, Sullivan BD, van der Poel A.

A practical fpt algorithm for Flow Decomposition and transcript assembly.

arXiv preprint arXiv:1706.07851. 2017 Jun 23.

*More precisely: systems of Diophantine equations



Toboggan vs Catfish

A comparison over ~4 million instances
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By B catfish
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Kloster K, Kuinke P, O'Brien MP, Reidl F, Sa'nc\j@ Villaamil F, SL_JHivan BD, van der Poel A.

A practical fpt algorithm for Flow Decomposition and transcript assembly.

arXiv preprint arXiv:1706.07851. 2017 Jun 23.
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Once more,
with sparsity



Elevator pitch: structural sparseness

A graph measure is an isomorphism
invariant function that maps graphs to R+

e.g. density, average degree, clique number, degeneracy
treewidth, etc.

A parameterised graph measure is a family of graph
measures (fr)reN,.

A graph class G is f,.-bounded if there exists g s.t.
fr(G) = sup f(G) < g(r) forallr
Geg



Elevator pitch: structural sparseness

Nesetril & Ossona de Mendez:
Many notions of f-boundedness are equivalent!

wcol,. ‘O Vi . v, \VA
col, .(\() e L D

i, ﬂ@ vr.' 3
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@. D e e e

@

e 6 o o o

We call classes in which these measures
are bounded classes of bounded expansion



Sparsity N FPT

In “Fixed-Parameter Tractability and Completeness”?, the
first technique Mike and Rod put of forward is the O(n®)
minor-testing routine by Robertson and Seymour.

If practicality in the DNA of the field, the graph
minor theorem is its stem cell.

'Downey RG, Fellows MR. Fixed-parameter tractability and completeness.
Cornell University, Mathematical Sciences Institute; 1992.



Sparsity N FPT: big hammers

MSO-Model checking in graphs of bounded treewidth

Arnborg S, Lagergren J, Seese D. Easy problems for tree-decomposable graphs.
Journal of Algorithms. 1991 Jun 1;12(2):308-40.

FO-Model checking in nowhere-dense graphs

Grohe M, Kreutzer S, Siebertz S. Deciding first-order properties of nowhere dense graphs.
Journal of the ACM (JACM). 2017 Jun 16;64(3):17.

Meta-Kernelization in sparse classes

Bodlaender HL, Fomin FV, Lokshtanov D, Penninkx E, Saurabh S, Thilikos DM. (Meta) kernelization.
InFoundations of Computer Science, 2009. FOCS'09. 50th Annual IEEE Symposium on
2009 Oct 25 (pp. 629-638). |IEEE.

Fomin FV, Lokshtanov D, Saurabh S, Thilikos DM. Bidimensionality and kernels.
InProceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms 2010
Jan 17 (pp. 503-510). Society for Industrial and Applied Mathematics.

Gajarsky J, Hlinény P, Obdrzélek J, Ordyniak S, Reidl F, Rossmanith P, Sanchez Villaamil F,
Sikdar S. Kernelization using structural parameters on sparse graph classes.
Journal of Computer and System Sciences. 2017 Mar 31;84:219-42.

Kim EJ, Langer A, Paul C, Reidl F, Rossmanith P, Sau |, Sikdar S. Linear
kernels and single-exponential algorithms via protrusion decompositions.
ACM Transactions on Algorithms (TALG). 2016 Feb 12;12(2):21.




Real world n sparsity

The big question:
Are real-world graphs (networks) sparse?

B



Real world n sparsity

The big question:
Are real-world graphs (networks) sparse?
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Graph classes vs. networks

Network Mathematical
Instances Theory

Theorem.
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Graph classes vs. networks

Network Mathematical
Instances Theory

Theorem.

2 &k
iG] 2 ¢k < (5:22)

ng




Graph classes vs. networks

Network \ Mathematical
Instances i Theory
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Structurally sparse random graphs

Sparse Erd6s-Rényi graphs are structurally sparse

Nesetfil J, de Mendez PO, Wood DR.
Characterisations and examples of graph classes with bounded expansion.
European Journal of Combinatorics. 2012 Apr 30;33(3):350-73.

Random graphs with fixed degree distribution that have

quickly vanishing tails are structurally sparse

Demaine ED, Reidl F, Rossmanith P, Sdnchez Villaamil F, Sikdar S, Sullivan BD.
Structural sparsity of complex networks: Bounded expansion in random models and real-world graphs.
arXiv preprint arXiv:1406.2587. 2014 Jun 10.

Random intersection graphs (in certain regimes) are

structurally sparse.

Farrell M, Goodrich TD, Lemons N, Reidl F, Sdnchez Villaamil F, Sullivan BD.
Hyperbolicity, degeneracy, and expansion of random intersection graphs.
InInternational Workshop on Algorithms and Models for the Web-Graph 2015

Dec 10 (pp. 29-41). Springer, Cham.




Structurally sparse random graphs

Sparse Erd6s-Rényi graphs are structurally sparse

Nesetril J, de Mendez PO, Wood DR.
Characterisations and examples of graph classes with bounded expansion.
European Journal of Combinatorics. 2012 Apr 30;33(3):350-73.

Random graphs with fixed degree distribution that have

quickly vanishing tails are structurally sparse

Demaine ED, Reidl F, Rossmanith P, Sdnchez Villaamil F, Sikdar S, Sullivan BD.
Structural sparsity of complex networks: Bounded expansion in random models and real-world graphs.
arXiv preprint arXiv:1406.2587. 2014 Jun 10.

Random intersection graphs (in certain regimes) are

structurally sparse.

Farrell M, Goodrich TD, Lemons N, Reidl F, Sanchez Villaamil F, Sullivan BD.
Hyperbolicity, degeneracy, and expansion of random intersection graphs.
InInternational Workshop on Algorithms and Models for the Web-Graph 2015

Dec 10 (pp. 29-41). Springer, Cham.

Are these models in these regimes
representative of real world graphs?
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Real structural sparseness

Tail looks
subcubic

. ’ Statistical test Cannot
of degree distribution decide

Tail looks

supercubic

@ Denser than
Chung-Lu
Compare density

to Chung-Lu w/ same
degree distribution

Sparser than
@ Chung-Lu

Structurally sparse!

Reidl F. Structural sparseness and complex networks.
(Doctoral dissertation, Dissertation, Aachen, Techn. Hochsch., 2015).




Real world n sparsity

All experiments so far as well as properties of several
important network models point towards complex
networks being structurally sparse.

Some of these results directly contradict some 4
widely held assumptions about networks!

There are good reasons to dismiss these assumptions.

Don't ask me about that unless you want a half-hour rant. -

Takeaway:

Many real-world networks are
structurally sparse.




Exhibit C

§ CONCUSS

Combatting Network Complexity
Using Structural Sparsity

Motif counting using
low-treedepth colourings



Motif-counting

We want to count the
number of times a given
motif graph

appears in a larger host
graph.

Motifs that appear more often than expected probably
play an important role in the network

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U.

Network motifs: simple building blocks of complex networks.

Science. 2002 Oct 25:298(5594):824-7. -
-

Ribeiro P, Silva F, Kaiser M. Strategies for network motifs discovery.
InE-Science, 2009. e-Science'09. Fifth IEEE International Conference on 2009 Dec 9 (pp. 80-87). IEEE.




Engineering motif-counting
F(h)-20)p

f(h)-hO(h)n

Pseudocode Implementable Usable

Executable Github

(or similar)

No tricks

Theory only

Nesetril J, De Mendez PO.
Sparsity: graphs, structures, and algorithms.
Springer Science & Business Medla 2012 Apr 24,

Demaine ED, Reidl F, Rossmanith P,

Sanchez Villaamil F, Sikdar S, Sullivan BD.

Structural sparsity of complex networks:

Bounded expansion in random models and real-world graphs.
arXiv preprint arXiv:1406.2587. 2014 Jun 10.



Engineering motif-counting

tf-augmentations dtf-augmentations

=

Absolutely Test colouring
impractical after each step
Pseudocode Implementable Usable
Theory only No tricks Executable Github
(or similar)
Nesetril J, De Mendez PO.

Sparsity: graphs structures, and algorithms.
Springer Science & Business Medla 2012 Apr 24.

|
Reidl F. Structural sparseness
and complex networks.
(Doctoral dissertation, Dissertation,
Aachen, Techn. Hochsch., 2015).



Engineering motif-counting

tf-augmentations dtf-augmentations

= = =@#%

Absolutely Test colouring Good engineering &
impractical after each step heuristical improvements

Pseudocode Implementable Usable

Theory only No tricks Executable Github
(or similar)

Nesetfil J, De Mendez PO. Theory in Practice Group (NCSU)

Sparsity: graphs structures, and algorithms. i

Springer Science & Business Medla 2012 Apr 24.

with great help from students

| Clayton G. Hobbs & Brandon Mork
Reidl F. Structural sparseness https:/github.com/TheorylnPractice/CONCUSS
and complex networks.

(Doctoral dissertation, Dissertation,

Aachen, Techn. Hochsch., 2015).



Exhibit D
CATLAS

Metagenome exploration
using hierarchical domination
of de-Bruijn graphs



Metagenomics




Metagenomics




Metagenomics




Metagenomics




De-Bruijn graphs
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De-Bruijn graphs
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De-Bruijn graphs
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CATLAS Overview
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CATLAS Overview
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CATLAS Overview
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Engineering Dvorak's algorithm

-

WCOIQT

Approximation is
terrible in practise

Pseudocode Implementable

Usable

Theory only No tricks Executable (Gith!.‘,lf.?
or similar,

Dvorak Z. Constant-factor approximation

of the domination number in sparse graphs.

European Journal of Combinatorics.

2013 Jul 31;34(5):833-40.



Engineering Dvorak's algorithm

=2

wcolg, A (Gyy)

Approximation is Approximation is
terrible in practise terrible in practise

Pseudocode Implementable Usable
Theory only No tricks Executable Github
(or similar)
Dvorék Z. Constant-factor approximation

of the domination number in sparse graphs.
European Journal of Combinatorics.
2013 Jul 31;34(5):833-40.

Reidl F. Structural sparseness
and complex networks.
(Doctoral dissertation, Dissertation,
Aachen, Techn. Hochsch., 2015).



Engineering Dvorak's algorithm

=0

wcola,. (Gor) G)
Approximation is Approxmahon is Approxma‘uon is
terrible in practise terrible in practise tunable (heuristic)

Pseudocode Implementable Usable

Theory only

No tricks Executable

Dvorak Z. Constant-factor approximation  Barnraising for

of the domination number in sparse graphs. Data-Intensive Discovery
European Journal of Combinatorics. at MDI Biological Laboratory
2013 Jul 31;34(5):833-40. in Salisbury Cove, Maine.

Github

(or similar)

Reidl F. Structural sparseness Ongoing collaboration with
and complex networks. Theory in Practice Group (NCSU) and
(Doctoral dissertation, Dissertation, Lab for Data Intensive Biology (UC Davis)

Aachen, Techn. Hochsch., 2015). https:/github.com/spacegraphcats/spacegraphcats



Orders of magnitude

10M 7th augmentation, s
c L 60Mnodes N\
£ 1M —
5 L
< 100K —
> L
i
= 10K
3 L
8 1K —
- 1H B 5th augmentation,

\/ 500 nodes
Pseudocode Implementable Usable

Theory only No tricks Executable <Gith%1t;
or similar,
Dvorak Z. Constant-factor approximation  Barnraising for
of the domination number in sparse graphs. Data-Intensive Discovery
European Journal of Combinatorics. at MDI Biological Laboratory
2013 Jul 31;34(5):833-40. in Salisbury Cove, Maine.
Reidl F. Structural sparseness Ongoing collaboration with
and complex networks. Theory in Practice Group (NCSU) and
(Doctoral dissertation, Dissertation, Lab for Data Intensive Biology (UC Davis)

Aachen, Techn. Hochsch., 2015). https://github.com/spacegraphcats/spacegraphcats
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Future research
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Graph measures v

Measures often NP-hard even for very low r

Muzi |, O'Brien MP, Reidl F, Sullivan BD. Being even slightly shallow makes life hard. e
Accepted at MFCS'17

Z. Dvorak. Asymptotical Structure of Combinatorial Objects.
(PhD thesis, Charles University, Faculty of Mathematics and Physics, 2007).

Polynomial-time computable measure (for some r > 0)?

A eV > Find fast exact algorithms or (good) approximations

mﬁ Find new bounded expansion characterisations
Further map out relationship between measures

Find ‘typical’ values of measures in networks

Design heuristic taylored to real-world instances

Template: Bodlaender's Algorithm, treewidth heuristics



Meta-theorems & algorithms

Approximation in bounded expansion classes

: : 8 V. Polynomial-time algorithms in sparse classes
DTN, Hand-design algorithms for selected problems

Template: FPT running time/kernel size races
FO model-checking ‘without tricks’
Identify suitable FO-fragment
‘ Make logic approachable for normal folks

Implement more algorithms (student projects!)

Template: Courcelle's Theorem vs. hand-crafted DP



A sparse theory of density

A theory of dense graphs with underlying
sparse structure

AA@a A matching algorithmic meta-theory

Template: Treewidth/Rankwidth, Sparsity programme,
FO-model checking in nowhere dense graphs

@ | Hand-crafted FPT algorithms in such graphs

Apply to biocomp problems in e.g
protein-protein interaction networks

Template: None yet?



mﬁ

Takeaway

The combination of structural sparseness and
parameterized algorithms has the potential to
deliver practical algorithms.

The challenge of making theoretical results
applicable in practise usually generates
theoretical follow-up questions.

Aiming for practicality imposes restraints
(no tricks!), but that is
not necessarily a bad thing.



THANKS!

Questions?
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