
Kernelization Using Structural Parameters on Sparse
Graph Classes∗

Jakub Gajarský2, Petr Hliněný2, Jan Obdržálek2, Sebastian Ordyniak2, Felix Reidl1, Peter
Rossmanith1, Fernando Sánchez Villaamil1, and Somnath Sikdar1

1Theoretical Computer Science, Department of Computer Science,
RWTH Aachen University, Aachen, Germany,

{reidl,rossmani,fernando.sanchez,sikdar}@cs.rwth-aachen.de.
2Faculty of Informatics, Masaryk University,

Brno, Czech Republic,
{gajarsky,hlineny,obdrzalek,ordyniak}@fi.muni.cz.

Abstract

Meta-theorems for polynomial (linear) kernels have been the subject of intensive
research in parameterized complexity. Heretofore, there were meta-theorems for linear
kernels on graphs of bounded genus, H-minor-free graphs, and H-topological-minor-free
graphs. To the best of our knowledge, there are no known meta-theorems for kernels for
any of the larger sparse graph classes: graphs of bounded expansion, locally bounded
expansion, and nowhere dense graphs. In this paper we prove meta-theorems for
these three graph classes. More specifically, we show that graph problems that have
finite integer index (FII) have linear kernels on graphs of bounded expansion when
parameterized by the size of a modulator to constant-treedepth graphs. For graphs of
locally bounded expansion, our result yields a quadratic kernel and for nowhere dense
graphs, a polynomial kernel. While our parameter may seem rather strong, we show
that a linear kernel result on graphs of bounded expansion with a weaker parameter will
necessarily fail to include some of the problems included in our framework. Moreover,
we only require problems to have FII on graphs of constant treedepth. This allows us
to prove linear kernels for problems such as Longest Path/Cycle, Exact s, t-Path,
Treewidth, and Pathwidth which do not have FII in general graphs.

∗Research funded by DFG-Project RO 927/12-1 “Theoretical and Practical Aspects of Kernelization”, the
Czech Science Foundation under grant P202/11/0196, and the European Social Fund and the state budget of
the Czech Republic under project CZ.1.07/2.3.00/30.0009 (S. Ordyniak).

1

1 Introduction
Data preprocessing has always been a part of algorithm design. The last decade has seen steady
progress in the area of kernelization, an area which deals with the design of polynomial-time
preprocessing algorithms. These algorithms compress an input instance of a parameterized
problem into an equivalent output instance whose size is bounded by some (small) function of
the parameter. Parameterized complexity theory guarantees the existence of such kernels for
problems that are fixed-parameter tractable. Of special interest are cases for which the size of
the output instance is bounded by a polynomial (or even linear) function of the parameter,
the so-called polynomial (or linear) kernels.

Interest in linear kernels is not new and there have been a series of meta-theorems on linear
kernels on sparse graph classes. A meta-theorem is a result that focuses on a problem class
instead of an individual problem. In the area of graph algorithms, such meta-theorems usually
have the following form: all problems that have a specific property admit an algorithm of a
specific type on a specific graph class. The first steps towards such a meta-theorem appeared
in a paper by Guo and Niedermeier who provided a prescription of how to design linear kernels
on planar graphs for graph problems which satisfy a certain distance property [22]. Their work
built on the seminal paper by Alber, Fellows, and Niedermeier who showed that Dominating
Set has a linear kernel on planar graphs [1]. This was followed by the first true meta-theorem
in this area by Bodlaender et al. [6] who showed that graph problems that have finite integer
index (FII) on bounded genus graphs and satisfy a property called quasi-compactness, admit
linear kernels on bounded genus graphs. Shortly after [6] was published, Fomin et al. [21]
proved a meta-theorem for linear kernels on H-minor-free graphs, a graph class that strictly
contains graphs of bounded genus. A rough statement of their main result states that any
graph problem that has FII, is bidimensional, and satisfies a separation property has a linear
kernel on graphs that exclude a fixed graph as minor. This result was, in turn, generalized
in [25] to H-topological-minor-free graphs, which strictly contain H-minor-free graphs. Here,
the problems are required to have FII and to be treewidth-bounding.

The keystone to all these meta-theorems is finite integer index. Roughly speaking, a
graph problem has finite integer index if there exists a finite set S of graphs such that every
instance of the problem can be “represented” by a member of S. This property is the basis
of the protrusion replacement rule whereby protrusions (pieces of the input graph satisfying
certain requirements) are replaced by members of the set S. The protrusion replacement rule
is a crucial ingredient for proving small kernels. It is important to note that FII is an intrinsic
property of the problem itself and is not directly related to whether it can be expressed in a
certain logic. In particular, MSO2 expressibility does not imply FII (see [6] for sufficiency
conditions for a problem expressible in counting MSO to have FII). As an example of this
phenomenon, Hamiltonian Path has FII on general graphs whereas Longest Path does
not, although both are EMSO-expressible. Another point about FII is that a problem may
not have FII in general graphs but may do so in restricted graph classes.

Although these meta-theorems (viewed in chronological order) steadily covered larger
graph classes, the set of problems captured in their framework diminished as the other
precondition(s) became stricter. For H-topological-minor-free graphs this precondition is to

2

be treewidth bounding. A graph problem is treewidth-bounding if yes-instances have a vertex
set of size linear in the parameter, the deletion of which results in a graph of bounded treewidth.
Such a vertex set is called a modulator to bounded treewidth. Prototypical problems that
satisfy this condition are Feedback Vertex Set and Treewidth t-Vertex Deletion1,
when parameterized by the solution size. A yes-instance (G, k) of Feedback Vertex Set
satisfies this condition since any feedback vertex set with at most k vertices bounds the
treewidth of the remaining graph by 1. Similarly, for Treewidth t-Vertex Deletion,
any k sized solution bounds the treewidth by t. While the property of being treewidth-
bounding appears to be a strong prerequisite to proving a meta-theorem, it is important to
note that the combined properties of bidimensionality and separability (used to prove the
result on H-minor-free graphs) imply that the problem is treewidth-bounding [21]. In fact,
quasi-compactness may be viewed as a relaxation of treewidth-bounding. What this shows is
that all meta-theorems on linear kernels for graph classes up until H-topological-minor-free
graphs implicitly used a property akin to treewidth-boundedness.

Another way of viewing the meta-theorem in [25] is as follows: when parameterized by a
treewidth modulator, problems that have FII have linear kernels in H-topological-minor-free
graphs. A natural problem therefore is to identify the least restrictive parameter that can
be used to prove a meta-theorem for linear kernels for the next well-known class in the
sparse-graph hierarchy, namely, graphs of bounded expansion. This class was defined by
Nešetřil and Ossona de Mendez [29] and subsumes the class of H-topological-minor-free
graphs. However, a modulator to bounded treewidth does not seem to be a useful parameter
for this class. Any graph class G can be transformed into a class G̃ of bounded expansion by
replacing every graph G ∈ G with G̃, obtained in turn by replacing each edge of G by a path
on |V (G)| vertices. This transformation changes neither the treewidth nor the feedback vertex
numbers of the graphs. Hence, if a treewidth-bounding graph problem (that additionally
has FII) has a linear kernel on graphs of bounded expansion then, in particular, Feedback
Vertex Set and Treewidth t-Vertex Deletion have linear (vertex) kernels in general
graphs. The best-known vertex kernel for Feedback Vertex Set in general graphs is
quadratic [31], for Treewidth t-Vertex Deletion in general graphs is of size kg(t), where
g is some function [20]. This strongly suggests that one would have to choose an even
more restrictive parameter to prove a meta-theorem for linear kernels on graphs of bounded
expansion. In particular, the parameter must not be invariant under edge subdivision. If we
assume that the parameter does not increase for subgraphs, it must necessarily attain high
values on paths. Treedepth [29] is precisely a parameter that enforces this property, since
graphs of bounded treedepth are essentially degenerate graphs with no long paths. Note that
bounded treedepth implies bounded treewidth.

Our contribution. We show that, assuming FII, a parameterization by the size of a
modulator to bounded treedepth allows for linear kernels in linear time on graphs of bounded
expansion. The same parameter yields quadratic kernels in graphs of locally bounded
expansion and polynomial kernels in nowhere dense graphs, both strictly larger classes. In
particular, nowhere dense graphs are the largest class that may still be called sparse [29]. In

1For problem definitions, see Appendix.

3

these results we do not require a treedepth modulator to be supplied as part of the input, as
we show that it can be approximated to within a constant factor.

Furthermore, we only need FII to hold on graphs of bounded treedepth, thus including
problems which do not have FII in general. Some problems that are included because of this
relaxation are Longest Path/Cycle, Pathwidth and Treewidth, none of which have
polynomial kernels with respect to their standard parameters, even on sparse graphs, since
they admit simple AND/OR-Compositions [5]. Problems covered by our framework include
Hamiltonian Path/Cycle, several variants of Dominating Set, (Connected) Vertex
Cover, Chordal Vertex Deletion, Feedback Vertex Set, Induced Matching,
and Odd Cycle Transversal. In particular, we cover all problems included in earlier
frameworks [6, 21, 25]. We wish to emphasize, however, that this paper does not subsume
these results because of our usage of a structural parameter.

To show that a parameterization by a treedepth modulator has merit outside the sparse-
graph hierarchy, we extend the polynomial kernel result for Longest Path in [7] parameter-
ized by the vertex cover number to the weaker treedepth-modulator parameter. Finally, notice
that a kernelization result for Treewidth, Pathwidth or Longest Cycle on graphs
of bounded expansion with a parameter closed under edge subdivision would automatically
imply the same result for general graphs. This forms the crux of our belief that any relaxation
of the treedepth parameter to prove a meta-theorem for linear kernels on graphs of bounded
expansion will exclude problems akin to these three.

We now describe how this paper is organized. The notation that we use, the main
definitions pertaining to graph classes can all be found in Section 2. Section 3 deals with
the notion of finite integer index and the protrusion machinery. In Section 4, we prove our
meta-theorems for graphs of bounded expansion, locally bounded expansion, and nowhere
dense graphs. Section 5 deals with polynomial kernels for Longest Path with the treedepth
number as parameter. We briefly discuss the parameterized ecology program and how
treedepth fits into this program in Section 6. We conclude in Section 7 with some open
problems. In the appendix, we define some of the graph-theoretic problems that we mention
in this paper.

2 Preliminaries
We use standard graph-theoretic notation (see [13] for any undefined terminology). All our
graphs are finite and simple. Given a graph G, we use V (G) and E(G) to denote its vertex
and edge sets. For convenience we assume that V (G) is a totally ordered set, and use uv
instead of {u, v} to denote the edges of G. For X ⊆ V (G), we let G[X] denote the subgraph
of G induced by X, and we define G−X := G[V (G) \X]. Since we will mainly be concerned
with sparse graphs in this paper, we let |G| denote the number of vertices in the graph G. The
distance dG(v, w) of two vertices v, w ∈ V (G) is the length (number of edges) of a shortest
v, w-path in G and ∞ if v and w lie in different connected components of G. The diameter
diam(G) of a graph is the length of the longest shortest path between all pair of vertices in
G. We denote by ω(G) the size of the largest complete subgraph of G.

4

The concept of neighborhood is used heavily throughout the paper. The neighborhood
of a vertex v ∈ V (G) is the set NG(v) = {w ∈ V (G)|vw ∈ E(G)}, the degree of v is
degG(v) = |NG(v)|, and the closed neighborhood of v is defined as NG[v] := NG(v)∪{v}. We
extend this naturally to sets of vertices and subgraphs: For S ⊆ V (G) we denote NG(S) the
set of vertices in V (G) \ S that have at least one neighbor in S, and for a subgraph H of G
we put NG(H) = NG(V (H)). Finally if X is a subset of vertices disjoint from S, then NG

X (S)
is the set NG(S) ∩X (and similarly for NG

X(H)). Given a graph G and a set W ⊆ V (G),
we also define ∂G(W) as the set of vertices in W that have a neighbor in V \W . Note that
NG(W) = ∂G(V (G) \W). A graph G is d-degenerate if every subgraph of G′ ⊆ G contains a
vertex v ∈ V (G′) with degG(v) 6 d. The degeneracy of G is the smallest d such that G is
d-degenerate.

In the rest of the paper we often drop the index G from all the notation if it is clear which
graph is being referred to.

2.1 Minors and shallow minors
We start by defining the notion of edge contraction. Given an edge e = uv of a graph G,
we let G/e denote the graph obtained from G by contracting the edge e, which amounts
to deleting the endpoints of e, introducing a new vertex wuv, and making it adjacent to all
vertices in (N(u) ∪ N(v)) \ {u, v}. By contracting e = uv to the vertex w, we mean that
the vertex wuv is renamed as w. Subdividing an edge is, in a sense, an opposite operation to
contraction. A graph G is called a 6k-subdivision of a graph H if (some) edges of H are
replaced by paths of length at most k + 1.

A minor of G is a graph obtained from a subgraph of G by contracting zero or more
edges. If H is a minor of G, we write H �mG. A graph G is H-minor-free if H �mG.

We next introduce the notion of a shallow minor.

Definition 1 (Shallow minor [29]). For an integer d, a graph H is a shallow minor at depth d
of G if there exists a set of disjoint subsets V1, . . . , Vp of V (G) such that

1. each graph G[Vi] has radius at most d, meaning that there exists vi ∈ Vi (a center)
such that every vertex in Vi is within distance at most d in G[Vi];

2. there is a bijection ψ : V (H)→ {V1, . . . , Vp} such that for u, v ∈ V (H), uv ∈ E(H) iff
there is an edge in G with an endpoint each in ψ(u) and ψ(v).

Note that if u, v ∈ V (H), ψ(u) = Vi, and ψ(v) = Vj then dG(vi, vj) 6 (2d+ 1) · dH(u, v). The
class of shallow minors of G at depth d is denoted by GO d. This notation is extended to
graph classes G as well: G O d = ⋃

G∈G GO d.

2.2 Parameterized problems, kernels and treewidth
In this paper we deal with parameterized problems where the value of the parameter is not
explicitly specified in the input instance. This situation is slightly different from the usual

5

case where the parameter is supplied with the input and a parameterized problem is defined
as sets of tuples (x, k) as in [15]. As such, we find it convenient to adopt the definition of
Flum and Grohe [18] and we feel that this is the approach one might have to choose when
dealing with generalized parameters as is done in this paper.

Let Σ be a finite alphabet. A parameterization of Σ∗ is a mapping κ : Σ∗ → N0 that is
polynomial time computable. A parameterized problem Π is a pair (Q, κ) consisting of a set
Q ⊆ Σ∗ of strings over Σ and a parameterization κ over Σ∗. A parameterized problem Π is
fixed-parameter tractable if there exist an algorithm A, a computable function f : N → N
and a polynomial p such that for all x ∈ Σ∗, A decides x in time f(κ(x)) · p(|x|).

Definition 2 (Graph problem). A graph problem Π is a set of pairs (G, ξ), where G is a graph
and ξ ∈ N0, such that for all graphs G1, G2 and all ξ ∈ N0, if G1 ∼= G2 then (G1, ξ) ∈ Π iff
(G2, ξ) ∈ Π. For a graph class G, we define ΠG as the set of pairs (G, ξ) ∈ Π such that G ∈ G.

Definition 3 (Kernelization). A kernelization of a parameterized problem (Q, κ) over the
alphabet Σ is a polynomial-time computable function A : Σ∗ → Σ∗ such that for all x ∈ Σ∗,
we have

1. x ∈ Q if and only if A(x) ∈ Q,

2. |A(x)| 6 g(κ(x)),

where g is some computable function. The function g is called the size of the kernel. If
g(κ(x)) = κ(x)O(1) or g(κ(x)) = O(κ(x)), we say that Π admits a polynomial kernel and a
linear kernel, respectively.

Definition 4 (Treewidth). Given a graph G = (V,E), a tree-decomposition of G is an ordered
pair (T,W), where T is a tree and W = {Wx ⊆ V | x ∈ V (T)} is a collection of vertex sets
of G, with one set for each node of the tree T such that the following hold:

1. ⋃x∈V (T) Wx = V (G);

2. for every edge e = uv in G, there exists x ∈ V (T) such that u, v ∈ Wx;

3. for each vertex u ∈ V (G), the set of nodes {x ∈ V (T) | u ∈ Wx} induces a subtree.

The vertices of the tree T are usually referred to as nodes and the sets Wx are called bags.
The width of a tree-decomposition is the size of a largest bag minus one. The treewidth of G,
denoted tw(G), is the smallest width of a tree-decomposition of G.

In the definition above, if we restrict T to being a path, we obtain well-known notions of
a path-decomposition and pathwidth. We let pw(G) denote the pathwidth of G. In the sequel
we will often implicitly use the following fact about tree decompositions (which implies that
treewidth is a parameterization in the sense of our definition if it is bounded).

Proposition 1 ([3]). Given a graph G with n nodes and a constant w, it is possible to decide
whether G has treewidth at most w, and if so, to compute an optimal tree decomposition of G
in time O(n).

6

2.3 Grad and graph classes of bounded expansion
Let us recall the main definitions pertaining to the notion of graphs of bounded expansion.
We follow the recent book by Nešetřil and Ossona de Mendez [29].

Definition 5 (Greatest reduced average density (grad) [26, 30]). Let G be a graph class.
Then the greatest reduced average density of G with rank d is defined as

∇d(G) = sup
H∈G O d

|E(H)|
|V (H)| .

This notation is also used for graphs via the convention that ∇d(G) := ∇d({G}). In particular,
note that GO 0 denotes the set of subgraphs of G and hence 2∇0(G) is the maximum average
degree of all subgraphs of G. The degeneracy of G is, therefore, exactly 2∇0(G).

Definition 6 (Bounded expansion [26]). A graph class G has bounded expansion if there exists
a function f : N→ R (called the expansion function) such that for all d ∈ N, ∇d(G) 6 f(d).

If G is a graph class of bounded expansion with expansion function f , we say that G has
expansion bounded by f . An important relation we make use of later is: ∇d(G) = ∇0(GO d),
i.e. the grad of G with rank d is precisely one half the maximum average degree of subgraphs
of its depth d shallow minors.

Another important notion that we make use of extensively is that of treedepth. In this
context, a rooted forest is a disjoint union of rooted trees. For a vertex x in a tree T of a
rooted forest, the height (or depth) of x in the forest is the number of vertices in the path
from the root of T to x. The height of a rooted forest is the maximum height of a vertex of
the forest. The closure clos(F) of a rooted forest F is the graph with vertex set ⋃T∈F V (T)
and edge set {xy : x is an ancestor of y in F}. A treedepth decomposition of a graph G is a
rooted forest F such that G ⊆ clos(F).

Definition 7 (Treedepth). The treedepth td(G) of a graph G is the minimum height of any
treedepth decomposition of G.

In the sequel we will often use the following fact about treedepth decompositions.

Proposition 2 ([29]). Given a graph G with n nodes and a constant w, it is possible to decide
whether G has treedepth at most w, and if so, to compute an optimal treedepth decomposition
of G in time O(n).

We list some well-known facts about graphs of bounded treedepth. Proofs that are omitted
and can be found in [29].

1. If a graph has no path with more than d vertices, then its treedepth is at most d.

2. If td(G) 6 d, then G has no paths with 2d vertices and, in particular, any DFS-tree
of G has depth at most 2d − 1.

3. If td(G) 6 d, then G is d-degenerate and hence has at most d · |V (G)| edges.

7

Figure 1: The anatomy of a protrusion.

4. If td(G) 6 d, then tw(G) 6 pw(G) 6 d− 1.

A useful way of thinking about graphs of bounded treedepth is that they are (sparse) graphs
with no long paths.

For a graph G and an integer d, a modulator to treedepth d of G is a set of vertices
M ⊆ V (G) such that td(G−M) 6 d. The size of a modulator is the cardinality of the set
M .

Finally, we need the following well-known result on degenerate graphs.

Proposition 3 ([32]). Every d-degenerate graph G with n > d vertices has at most 2d(n−d+1)
cliques.

3 The Protrusion Machinery
In this section, we recapitulate the main ideas of the protrusion machinery developed in [6,21].

Definition 8 (r-protrusion [6]). Given a graph G, a set W ⊆ V (G) is a r-protrusion of G
if |∂G(W)| 6 r and tw(G[W]) 6 r − 1. 2 We call ∂G(W) the boundary and |W | the size of
the protrusion W . For an r-protrusion W , we call the set W ′ = W \ ∂G(W) the restricted
protrusion of W .

Thus an r-protrusion in a graph is a subgraph that is separated from the rest of the graph
by a small boundary and, in addition, has small treewidth. See Figure 1.

A t-boundaried graph is a graph G with a set bd(G) of t distinguished vertices labeled 1
through t, called the boundary3 or the terminals of G. Given a graph class G, we let Gt denote
the class of t-boundaried graphs from G. If W ⊆ V (G) is an r-protrusion in G, then we
let GW be the r-boundaried graph G[W] with boundary ∂G(W), where the vertices of ∂G(W)
are assigned labels 1 through r according to their order in B.

2We want the bags in a tree-decomposition of G[W] to be of size at most r.
3Usually denoted by ∂(G), but this collides with our usage of ∂.

8

Definition 9 (Gluing and ungluing). For t-boundaried graphs G1 and G2, we let G1 ⊕G2
denote the graph obtained by taking the disjoint union of G1 and G2 and identifying each
vertex in bd(G1) with the vertex in bd(G2) with the same label. This operation is called
gluing.

Let H ⊆ G with a boundary B of size t. The operation of ungluing H from G creates the
t-boundaried graph G	BH := G− (V (H)\B) with boundary B. The vertices of bd(G	BH)
are assigned labels 1 through t according to their order in B.

Note that the gluing operation entails taking the union of edges both of whose endpoints
are in the boundary with the deletion of multiple edges to keep the graph simple. The
ungluing operation preserves the boundary (both the vertices and the edges). For the sake of
clarity, we sometimes annotate the ⊕ and 	 operators with the boundary as well.

Definition 10 (Replacement). Let G be a graph with a t-protrusion W and let H be a
t-boundaried graph. Then replacing W by H corresponds to the operation (G	B GW)⊕B H.

We now restate the definition of one of the most important notions used in this paper.

Definition 11 (Finite integer index; FII). Let ΠG be a graph problem restricted to a class G
and let G1, G2 be two t-boundaried graphs in Gt. We say that G1 ≡ΠG ,t G2 if there exists an
integer constant ∆ΠG ,t(G1, G2) (that depends on ΠG, t, and the ordered pair (G1, G2)) such
that for all t-boundaried graphs G ∈ Gt and for all ξ ∈ N:

1. G1 ⊕G ∈ G iff G2 ⊕G ∈ G;

2. (G1 ⊕G, ξ) ∈ ΠG iff (G2 ⊕G, ξ + ∆ΠG ,t(G1, G2)) ∈ ΠG.

Note that ∆ΠG ,t(G1, G2) = −∆ΠG ,t(G2, G1). In the case that (G1⊕G, ξ) 6∈ ΠG or G1⊕G 6∈ G
for all G ∈ Gt, we set ∆ΠG ,t(G1, G2) = 0. We say that the problem ΠG has finite integer index
in the class G ′ ⊆ G if, for every integer t, there are at most g(t) equivalence classes of ≡ΠG ,t

that contain at least one member of G ′, where g is a function that depends on t, ΠG and G ′.

Thus a problem ΠG has finite integer index in the class G ′ ⊆ G iff for every integer t
the equivalence relation ≡ΠG ,t restricted to G ′ has finite index. If a graph problem has finite
integer index then its instances can be reduced by “replacing protrusions”. The technique
of replacing protrusions hinges on the fact that each protrusion of “large” size can be
replaced by a “small” gadget from the same equivalence class as the protrusion, which
consequently behaves similarly w.r.t. the problem at hand. If G1 is replaced by a gadget G2,
then ξ changes by ∆ΠG ,t(G1, G2). Many problems have finite integer index in general graphs
including Vertex Cover, Independent Set, Feedback Vertex Set, Dominating
Set, Connected Dominating Set, Edge Dominating Set. For a more complete
list see [6, 21]. Some problems that do not have finite integer index in general graphs are
Connected Feedback Vertex Set, Longest Path and Longest Cycle.

Our definition above is more general than the one in [10] in that we define a problem ΠG
to have finite integer index in a subclass G ′ ⊆ G rather than in the whole class G. The main

9

reason behind this is the following. In Section 4, we restrict our inputs to graphs of bounded
expansion but the protrusions that we replace satisfy the additional property that they have
bounded treedepth. Our technique of replacing protrusions relies on a dynamic programming
approach that takes one “large” protrusion of treedepth at most d and transforms it gradually
by replacing small pieces from it (which are themselves protrusions) by still smaller sized
representatives. We show that by systematically replacing all “large” protrusions of bounded
treedepth we obtain a linear kernel. The property of finite integer index is used only for
replacing protrusions which is why we require it to hold only for graphs of bounded expansion
of treedepth at most some fixed constant. Our prototypical problem, Longest Path, does
not have finite integer index on graph classes of bounded expansion but—as shown later—does
so when we restrict the treedepth to be at most some fixed constant. Thus, this relaxed
notion of FII allows us to deal with problems that do not necessarily have finite integer index
on graphs of bounded expansion but do so when, in addition, the treedepth is bounded.

One must, however, be careful while replacing these pieces as we have to make sure that
whatever they are replaced with must also have treedepth at most d. The following lemma
will be used to show that this procedure for replacing protrusions is valid. We state Lemma 1
and Reduction Rule 1 in a more general setting than is necessary for this paper because we
hope that, stated in this fashion, they might be more applicable elsewhere.

In this setting, we assume that there exists a function ϕ : G → N that maps members
of a graph class to the integers. In our case, we use ϕ ≡ td. We let G(d) denote the set of
graphs G ∈ G for which ϕ(G) 6 d. The problems ΠG that we consider are such that for all
d ∈ N, ΠG has finite integer index in G(d). This means that while there can be an infinite
number of equivalence classes of the relation ≡ΠG ,t, for each d ∈ N, at most g(t, d) of these
equivalence classes contain at least one graph G with ϕ(G) 6 d, where g is some function of
t, d and the problem Π. For each boundary size t and d ∈ N, we let Rt,G(d) denote a set of
graphs from G(d) that are representatives of these equivalence classes of ≡ΠG ,t that contain
at least one graph G with ϕ(G) 6 d.

Lemma 1. Fix c, d, t ∈ N. If H is a t-boundaried graph in G(c · d) such that H ≡ΠG ,t H
′ for

some t-boundaried graph H ′ in G(d), then there exists R ∈ Rt,G(d) such that R ≡ΠG ,t H.

Proof. Since H ≡ΠG ,t H
′, the equivalence class of ≡ΠG ,t containing H contains at least one

graph from G(d), namely H ′ itself. By the definition of Rt,G(d) there exists an R ∈ G(d) that
is a member of Rt,G(d) with R ≡ΠG ,t H.

For a graph problem Π that has finite integer index in the class G, we let ρΠG (t, d) denote
the size of the largest representative in Rt,G(d). Subscripts are omitted when the problem is
clear from the context. Our reduction rule may be stated formally as follows.

Reduction Rule 1 (Protrusion replacement). Let (G, ξ) ∈ ΠG and c, d, t ∈ N be constants.
Suppose that W ⊆ V (G) is a t-protrusion of G such that |W | 6 2ρ(t, cd) and suppose
that ϕ(GW) 6 cd, and G[W] ≡ΠG ,t H, where ϕ(H) 6 d. Further let R ∈ Rt,G(d) be the
representative of H. The protrusion replacement rule is the following:

Reduce (G, ξ) to (G′, ξ′) := ((G	B GW)⊕B R, ξ + ∆ΠG ,t(GW , R)).

10

The next lemma shows that this rule is indeed safe.

Proposition 4 (Safety [25]). If (G′, ξ′) is the instance obtained from one application of the
protrusion Reduction rule 1 to the instance (G, ξ) of ΠG, then

1. G′ ∈ G;

2. (G′, ξ′) is a yes-instance iff (G, ξ) is a yes-instance.

In what follows, unless otherwise stated, when applying protrusion replacement rules we
will assume that for each t ∈ N, we are given the set Rt,G of representatives of the equivalence
classes of ≡ΠG ,t. Note that this makes our algorithms of Section 4 non-uniform. However
non-uniformity is implicitly assumed in previous work that used the protrusion machinery
for designing kernelization algorithms [6, 19–21], too.

4 Linear Kernels on Graphs of Bounded Expansion
In this section we show that graph-theoretic problems that have finite integer index on
fixed-treedepth subclasses of graph classes of bounded expansion admit linear kernels, where
the parameter is the size of a modulator to constant treedepth. Recall that a treedepth-d
modulator in a graph G is a vertex set S ⊆ V (G) such that G− S has treedepth at most d.

Theorem 1. Let G be a graph class of bounded expansion and for p ∈ N, let G(p) ⊆ G be the
subclass of graphs of treedepth at most p. Let ΠG be a graph problem that has finite integer
index on G(p) for each p ∈ N and let d ∈ N be a constant. Then there is an algorithm that
takes as input (G, ξ) ∈ ΠG and, in time O(|G|), outputs an equivalent instance (G′, ξ′) such
that |G′| = O(|S|), where S is an optimum treedepth-d modulator of the graph G.

Note that we do not assume that we are given an optimal treedepth-d modulator. We
show that one can approximate this to within a constant. Our proof uses an approximate
modulator S ⊆ V (G) to decompose V (G) into vertex-disjoint sets Y0] Y1] · · ·] Y` such that

1. S ⊆ Y0 and |Y0| = O(|S|);

2. for 1 6 i 6 l, Yi induces a collection of connected components that have exactly the
same small neighborhood in Y0 (to be defined later).

We then use properties of graphs of bounded expansion to show that ` = O(|S|). Finally, we
use the protrusion replacement rule to replace each Yi by a graph of constant size. Every
time the protrusion replacement rule is applied, ξ is modified. This results in an equivalent
instance (G′, ξ′) such that |G′| = O(|S|), which is what we claim.

First let us show that one can approximate a treedepth-d modulator to within a constant.

Lemma 2. Fix d ∈ N. Given a graph G, one can in polynomial time compute a subset
S ⊆ V (G) such that td(G − S) 6 d and |S| is at most 2d times the size of an optimal
treedepth-d modulator of G. If G is from a graph class of bounded expansion, then the same
can be achieved in linear time.

11

Proof. We use the fact that any DFS-tree of a graph of treedepth d has depth at most 2d− 1.
We compute a DFS-tree of the graph G and if it has depth more than 2d− 1, then td(G) > d.
So, we take some path P from the root of the tree of length 2d− 1 and add all the 2d vertices
of P into the modulator; delete V (P) from the graph and repeat. (Clearly, at least one of
the vertices of P must be in any modulator.) At the end of this procedure, the DFS-tree of
the remaining graph has depth at most 2d − 1. This gives us a tree (path) decomposition of
the graph of width at most 2d − 2. Now use standard dynamic programming to obtain an
optimum treedepth-d modulator. Since the treewidth of the remaining graph is a constant,
the dynamic programming algorithm runs in time linear in the size of the graph. The overall
size of the modulator has size at most 2d times the optimal solution.

For a graph G from a class of bounded expansion, we modify the iterated depth-first
search. By [26], graph classes of bounded expansion admit low treedepth coloring: Given
any integer p, there exists an integer np such that any graph of the class can be properly
vertex colored using np colors such that for any set of 1 6 i 6 p colors, the graph induced by
the vertices that receive these i colors has treedepth at most i. Such a coloring is called a
p-treedepth coloring and can be computed in linear time. Here we choose p = 2d and obtain
such a coloring for G using np colors. Let G1, . . . , Gr denote the subgraphs induced by at
most 2d of these color classes where r < 2np = O(1). Note that ∑j |Gj| = O(|G|), since
every vertex of G appears in at most a constant number of subgraphs. Any path in G of
length 2d − 1 must be in some subgraph Gj , for 1 6 j 6 r. For each subgraph Gj , we simply
construct a treedepth decomposition, find all paths of length 2d − 1, add their vertices into
the solution and delete them from the graph. The time taken to do this for each subgraph Gj

is O(|Gj|). The total time taken is therefore ∑j |Gj| = O(|G|).

We will make heavy use of the following lemma to prove the kernel size.

Lemma 3. Let G = (X, Y,E) be a bipartite graph. Then there are at most

1. 2∇1(G) · |X| vertices in Y with degree greater than 2∇1(G);

2. (4∇1(G) + 2∇1(G)) · |X| subsets X ′ ⊆ X such that X ′ = N(u) for some u ∈ Y .

Proof. We construct a sequence of graphs G0, G1, . . . , G` such that Gi ∈ GO 1 for all 0 6 i 6 `
as follows. Set G0 = G, and for 0 6 i 6 `− 1 construct Gi+1 from Gi by choosing a vertex
v ∈ V (Gi) \X such that N(v) ⊆ X contains two non-adjacent vertices u,w in Gi; if no such
vertex v exists, stop with ` := i. Set ei+1 = uv and contract this edge to the vertex u to
obtain Gi+1. Recall that contracting uv to u is equivalent to deleting vertex v and adding
edges between each vertex in N(v) \ u and u. It is clear from the construction that for
0 6 i 6 `, X ⊆ V (Gi) ⊆ X ∪ Y .

This process clearly terminates, as Gi+1 has at least one more edge between vertices of X
than Gi. Note that Gi ∈ GO 1 for 0 6 i 6 `, as the edges e1, . . . , ei−1 that were contracted to
vertices in X in order to construct Gi had one endpoint each in X and Y , the endpoint in Y
being deleted after each contraction. Thus, e1, . . . , ei−1 induce a set of stars in V (G) = V (G0),
and Gi is obtained from G by contracting these stars. We therefore conclude that Gi is a
depth-one shallow minor of G. In particular, this implies G`[X] is 2∇1(G)-degenerate and

12

has at most 2∇1(G) · |X| edges. Further, note that for each 0 6 i 6 `, Y ∩ V (Gi) is, by
construction, still an independent set in Gi.

Let us now prove the first claim. To this end, assume that there is a vertex v ∈ Y ∩V (G`)
such that degree(v) > 2∇1(G). We claim that G`[N(v)] (where N(v) ⊆ X) is a clique. If
not, we could choose a pair of non-adjacent vertices in G`[N(v)] and construct a (`+ 1)-th
graph for the sequence which would contradict the fact that G` is the last graph of the
sequence. However, a clique of size |{v} ∪ N(v)| > 2∇1(G) + 1 is not 2∇1(G)-degenerate.
Hence we conclude that no vertex of Y ∩ V (G`) has degree larger than 2∇1(G) in G` (and in
G). Therefore the vertices of Y of degree greater than 2∇1(G) in the graph G, if there were
any, must have been deleted during the edge contractions that resulted in the graph G`. As
every contraction added at least one edge between vertices in X and since G`[X] contains at
most 2∇1(G) · |X| edges, the first claim follows.

For the second claim, consider the set Y ′ = Y ∩ V (G`). The neighbourhood of every
vertex v ∈ Y ′ induces a clique in G`[X]. From the degeneracy of G`[X], it follows that G`[X]
has at most 22∇1(G)|G`[X]| = 4∇1(G) · |X| cliques. Thus the number of subsets of X that are
neighbourhoods of vertices in Y in G is at most (4∇1(G) + 2∇1(G)) · |X|, where we accounted
for vertices of Y lost via contractions by the bound on the number of edges in G`[X].

The following two corollaries to Lemma 3 show how it can be applied in our situation.

Corollary 1. Let G be a graph-class whose expansion is bounded by a function f : N→ R.
Suppose that for G ∈ G and S ⊆ V (G), C1, . . . , Cs are disjoint connected subgraphs of
G − S satisfying the following two conditions: for 1 6 i 6 s, diam(G[V (Ci)]) 6 δ and
|NS(Ci)| > 2 · f(δ + 1). Then s 6 2 · f(δ + 1) · |S|.

Proof. We construct an auxilliary bipartite graph G̃ with partite sets S and Y = {C1, . . . , Cs}.
There is an edge between Ci and x ∈ S iff x ∈ NS(Ci). Note that G̃ is a depth-δ shallow
minor of G with branch sets Ci, 1 6 i 6 s. By Lemma 3,

s 6 2∇1(G̃)|S| 6 2∇1(GO δ)|S| = 2∇δ+1(G)|S| 6 2f(δ + 1)|S|.

Corollary 2. Let G be a graph-class whose expansion is bounded by a function f : N→ R.
Suppose that for G ∈ G and S ⊆ V (G), C1, . . . , Ct are sets of connected components of
G − S such that for all C,C ′ ∈ ⋃

i Ci it holds that C,C ′ ∈ Cj for some j if and only if
NS(C) = NS(C ′). Let δ > 0 be a bound on the diameter of the components, i.e. for all
C ∈ ⋃i Ci, diam(G[V (C)]) 6 δ. Then there can be only at most t 6 (4f(δ+1) + 2f(δ + 1)) · |S|
such sets Ci.

Proof. As in the proof of Corollary 1, we construct a bipartite graph G̃ with partite sets S
and Y = {C1, . . . , Cr}, where the vertices Cj represent connected components in ⋃i Ci and
Cj has an edge to x ∈ S iff x ∈ NS(Cj). As before, G̃ is a shallow minor at depth δ of G

13

with branch sets Cj, 1 6 j 6 r. By Lemma 3,

t 6 |{S ′ ⊆ S | ∃Ci ∈ Y : N(Ci) = S ′}| 6 (4∇1(G̃) + 2∇1(G̃)) · |S|
6 (4∇1(GO δ) + 2∇1(GO δ)) · |S|
= (4∇δ+1(G) + 2∇δ+1(G)) · |S|
6 (4f(δ+1) + 2f(δ + 1)) · |S|.

Algorithm 1: Bag marking algorithm
Input: A graph G, a subset S ⊆ V (G) such that td(G− S) 6 d, and an integer t > 0.
SetM← ∅ as the set of marked bags;
for each connected component C of G− S such that NS(C) > t do

Choose an arbitrary vertex v ∈ V (C) as a root and construct a DFS-tree starting
at v;
Use the DFS-tree to obtain a path-decomposition PC = (PC ,BC) of width at most
2d − 2 in which the bags are ordered from left to right;

Repeat the following loop for the path-decomposition PC of every C;
while PC contains an unprocessed bag do

Let B be the leftmost unprocessed bag of PC ;
Let GB denote the subgraph of G induced by the vertices in the bag B and in all
bags to the left of it in PC .
[Large-subgraph marking step]
if GB contains a connected component CB such that |NS(CB)| > t then
M←M∪ {B} and remove the vertices of B from every bag of PC ;

Bag B is now processed;

return Y0 = S ∪ V (M);

Lemma 4. Let G be a graph class with expansion bounded by f , G ∈ G and S ⊆ V (G) be a
set of vertices such that td(G− S) 6 d (d a constant). There is an algorithm that runs in
time O(|G|) and partitions V (G) into sets Y0] Y1] · · ·] Y` such that the following hold:

1. S ⊆ Y0 and |Y0| = O(|S|);

2. for 1 6 i 6 `, Yi induces a set of connected components of G− Y0 that have the same
neighborhood in Y0 of size at most 2d+1 + 2 · f(2d);

3. ` 6
(
4f(2d) + 2f(2d)

)
· |S| = O(|S|).

14

Proof. We first construct a DFS-forest F of G− S. Assume that there are q trees T1, . . . , Tq
in this forest that are rooted at r1, . . . , rq, respectively. Since td(G− S) 6 d, the height of
every tree in F is at most 2d − 1. Next we construct for each Ti, where 1 6 i 6 q, a path
decomposition of the subgraph of G induced by the vertices in Ti. Suppose that Ti has leaves
l1, . . . , ls ordered according to their DFS-number. For 1 6 j 6 s, create a bag Bj containing
the vertices on the unique path from lj to ri and string these bags together in the order
B1, . . . , Bs. It is easy to verify that this is indeed a path decomposition Pi of G[V (Ti)], that
each bag has at most 2d− 1 vertices and that the root ri is in every bag of the decomposition.

We now use a marking algorithm similar to the one in [25] to mark O(|S|) bags in the path
decompositions P1, . . . ,Pq with the property that each marked bag can be uniquely identified
with a connected subgraph of G− S that has a large neighborhood in the modulator S. This
algorithm is described in Figure 1 in which we set t, the size of a large neighborhood in S, to
be t := 2 · f(2d) + 1. Note that there is a one-to-one correspondence between marked bagsM
and connected subgraphs with a neighborhood of size at least t in S. Moreover each connected
subgraph has treedepth at most d and hence diameter at most 2d − 1. By Corollary 1, the
number of connected subgraphs of large neighborhood and hence the number of marked bags
is at most 2 · f(2d − 1 + 1) · |S| = 2f(2d) · |S| = O(|S|). We set Y0 := V (M) ∪ S.

Now observe that each connected component in G − Y0 has less than t = 2 · f(2d) + 1
neighbors in S. This follows because for every connected subgraph C with at least t neighbors
in S, there exists a marked bag B. Importantly, the bag B was the first bag that was marked
before the number of neighbors in S of any connected subgraph reached the threshold t.
Hence each connected component of G[V (C) \ B] has degree less than t in S. Since every
component can be connected to at most two marked bags (in Y0) and since each bag is of
size at most 2d − 1, the size of the neighborhood of every component of G− Y0 in Y0 is at
most 2(2d − 1) + t 6 2d+1 + 2 · f(2d).

To complete the proof, we simply cluster the connected components of G− Y0 according
to their neighborhoods in Y0 to obtain the sets Y1, . . . , Y`. Since each connected component
of G − S is of diameter δ 6 2d − 1, by Corollary 2, the number ` of clusters is at most(
4f(2d) + 2f(2d)

)
· |S| = O(|S|), as claimed.

To prove a linear kernel, all that is left to show is that each cluster Yi, 1 6 i 6 `, can be
reduced to constant size. Note that each cluster is separated from the rest of the graph via a
small set of vertices in S and that each component of G− S has constant treedepth. These
facts enable us to use the protrusion reduction rule.

In the proof of the following lemma it will be convenient to use the following normal form
of tree decompositions: A triple (T, {Wx | x ∈ V (T)}, r) is a nice tree decomposition of a
graph G if (T, {Wx | x ∈ V (T)}) is a tree decomposition of G, the tree T is rooted at node
r ∈ V (T), and each node of T is of one of the following four types:

1. a leaf node: a node having no children and containing exactly one vertex in its bag;

2. a join node: a node x having exactly two children y1, y2, and Wx = Wy1 = Wy2 ;

3. an introduce node: a node x having exactly one child y, and Wx = Wy ∪{v} for a vertex
v of G with v 6∈ Wy

15

4. a forget node: a node x having exactly one child y, and Wx = Wy \ {v} for a vertex v
of G with v ∈ Wy.

Given a tree decomposition of a graph G of width w, one can effectively obtain in time
O(|V (G)|) a nice tree decomposition of G with O(|V (G)|) nodes and of width at most w [9].

In the context of the next lemma, let G be a graph class of bounded expansion and, for
p ∈ N, let G(p) denote the subclass of G of graphs of treedepth at most p. Let ΠG be a
graph problem that has finite integer index on G(p) for every fixed p ∈ N. Recall that ρ(t, d)
denotes the size of the largest representative in Rt,G(d), for the problem ΠG.

Lemma 5. For fixed d, h ∈ N, let (G, ξ) be an instance of ΠG and let S ⊆ V (G) be a
treedepth-d modulator of G. Let Y0] Y1] · · ·] Y` be a protrusion-decomposition of G,
where S ⊆ Y0 and for 1 6 i 6 `, |NY0(Yi)| 6 h. Then one can in O(|G|) time obtain an
equivalent instance (G′, ξ′) and a protrusion-decomposition Y ′0] Y ′1] · · ·] Y ′` of G′ where
Y ′0 = Y0, and for 1 6 i 6 ` it is |NY ′

0
(Y ′i)| 6 h and |Y ′i | 6 ρ(d+ h, d) = O(1).

Proof. Since S ⊆ Y0 is a treedepth-d modulator, for all 1 6 i 6 `, we have td(G[Yi]) 6 d and
hence tw(G[Yi]) 6 d− 1. Moreover treedepth at most d implies diameter at most 2d − 1 for
each component. For each index 1 6 i 6 `, our algorithm constructs a tree-decomposition of
G[Yi ∪N(Yi)] of width d + h that satisfies certain properties that we mention below. The
algorithm then uses this tree-decomposition to replace Yi in a systematic manner using the
protrusion replacement rule. The properties that this tree-decomposition satisfies enable
the algorithm to perform this replacement in O(|Yi ∪ N(Yi)|) time. The total time taken
to replace all sets Yi is

∑`
i=1 |Yi ∪ N(Yi)| and since by Lemma 3, ∑`

i=1 |N(Yi)| = O(|Y0|),
the running time is indeed O(|G|). It therefore suffices to describe what properties our
tree-decompositions satisfy and how each Yi is replaced.

The tree-decomposition Ti = (Ti, {Wx | x ∈ V (Ti)}) of width d+h for Gi := G[Yi∪N(Yi)]
satisfies the following conditions:

1. there is a node r ∈ V (Ti) such that N(Yi) = Wr;
2. the tree-decomposition is nice and the leaf bags contain one vertex.

The first condition can be achieved by simply modifying the graph Gi so that N(Yi) induces a
clique, and then introducing an extra node r if no such node exists. The decomposition Ti is
rooted at the node r. For x ∈ V (Ti), we let Gx denote the (d+ h)-boundaried graph induced
by the vertices in the bags of the subtree of Ti rooted at x. That is,

Gx = G
[⋃

Wy

]
,

where the union is over all y ∈ V (Ti) that are descendants of x and bd(Gx) = Wx. For x ∈
V (Ti), denote by Λ(x) the representative of Gx in Rd+h,G(d) and let µ(x) = ∆ΠG ,d+h(Λ(x), Gx).
Note that the treedepth of Gx is at most d and since ΠG has FII in G(d), such a representative
Λ(x) is indeed well founded. Moreover, |Λ(x)| 6M where M := ρ(d+ h, d) denotes the size
of the largest representative in Rd+h,G(d).

16

In order to replace Yi, it is sufficient to know Λ(r) and µ(r) which we will calculate in a
bottom-up manner in O(|Yi|) time as follows. If y ∈ V (Ti) is a leaf node then these values
can be computed in constant time. Let x ∈ V (Ti) be a node with exactly one child y whose Λ
and µ values are known. Consider the (d+h)-boundaried graph G′x := (Gx	Wy Gy)⊕Wy Λ(y)
with bd(G′x) = Wx. We claim that G′x ≡ΠG ,d+h Gx. To prove this, we need to demonstrate
that for all graphs G̃ and all ξ ∈ N,

(G′x ⊕Wx G̃, ξ) ∈ ΠG if and only if (Gx ⊕Wx G̃, ξ + µ′) ∈ ΠG,

where µ′ = ∆ΠG ,d+h(G′x, Gx). Now

(G′x ⊕Wx G̃, ξ) ∈ ΠG iff ((Gx 	Wy Gy)⊕Wy Λ(y))⊕Wx G̃, ξ) ∈ ΠG
iff ((Gx ⊕Wx G̃)	Wy Gy)⊕Wy Λ(y), ξ) ∈ ΠG
iff ((Gx ⊕Wx G̃)	Wy Gy)⊕Wy Gy, ξ + µ(y)) ∈ ΠG,

where the last step follows because of Λ(y) ≡ΠG ,d+h Gy. Since (Gx ⊕Wx G̃)	Wy Gy)⊕Wy Gy

is just the graph Gx ⊕Wx G̃, this proves our claim. In fact, µ′ = µ(y).
Observe that G′x is of constant size, bounded from above byM+ |Wx| 6M+d+h = O(1).

Although Λ(y) has treedepth at most d, G′x is not guaranteed to have treedepth at most d. In
fact, G′x can have treedepth up to d+ h. However since td(Gx) 6 d, we can use Lemma 1 to
conclude that there exists R ∈ Rd+h,G(d) with G′x ≡ΠG ,d+h R, and obtain this R in constant
time since G′x is of constant size. We set Λ(x) = R and µ(x) = µ(y) + ∆Π,d+h(G′x, R). Note
that the total time spent at node x to generate these values is a constant.

Finally consider the case when x ∈ V (Ti) has exactly two children y1 and y2 whose Λ
and µ values are known. Since our tree-decomposition is nice, we have Wy1 = Wx = Wy2

and therefore bd(Gy1) = bd(Gy2) = Wx. Consider the (d + h)-boundaried graph G′′x =
Λ(y1)⊕Wx Λ(y2) with bd(G′′x) = Wx. Similarly as in the above case, we demonstrate that for
all graphs G̃ and all ξ ∈ N,

(G′′x ⊕Wx G̃, ξ) ∈ ΠG if and only if (Gx ⊕Wx G̃, ξ + µ′′) ∈ ΠG, where µ′′ = µ(y1) + µ(y2).

Then G′′x has size at most 2M which is a constant. One can therefore, again in constant
time, calculate a representative R ∈ Rd+h,G(d) of G′′x. Set Λ(x) = R and µ(x) = ∆Π,d+h(G′′x, R).
This shows that one can in time O(|Yi|) obtain Λ(r) and µ(r), as desired.

With the help of this last lemma we can now prove the main theorem of this section.

Proof of Theorem 1. Given an instance (G, ξ) of Π with G ∈ G for a graph class G with
expansion bounded by f : N → R and having fixed a constant d ∈ N, we calculate a 2d-
approximation S of a minimal treedepth-d-modulator using Lemma 2. Then, we use the
above Algorithm 1 to obtain the decomposition Y0] Y1] · · ·] Y` as defined in Lemma 4.
Each cluster Yi, 1 6 i 6 ` forms a protrusion with boundary size |N(Yi)| 6 2d+1 + 2f(2d) =: h

17

and treedepth (and thus treewidth) at most d. Applying the protrusion reduction rule to
each individual cluster as in Lemma 5 then yields an equivalent instance (G′, ξ′) with

|V (G′)| = |Y0|+
∑̀
i=1

Y ′i 6 O(|S|) + ` · ρ(d+ 2d+1 + 2f(2d), d) = O(|S|) · O(1) = O(|S|)

where Y ′i denote the clusters obtained through applications of the reduction rule. As G is
degenerate, the above bound implies that |V (G′)|+ |E(G′)| = O(|S|), too.

Several graph problems have finite integer index on the class of all graphs and thus admit
linear kernels on graphs of bounded expansion if parameterized by a treedepth modulator.

Corollary 3. The following graph problems have finite integer index, and hence have linear
kernels in graphs of bounded expansion, when the parameter is the size of a modulator to
constant treedepth: Dominating Set, r-Dominating Set, Efficient Dominating Set,
Connected Dominating Set, Vertex Cover, Hamiltonian Path, Hamiltonian
Cycle, Connected Vertex Cover, Independent Set, Feedback Vertex Set,
Edge Dominating Set, Induced Matching, Chordal Vertex Deletion, Odd
Cycle Transveral, Induced d-Degree Subgraph, Min Leaf Spanning Tree, Max
Full Degree Spanning Tree.

For a more comprehensive list of problems that have FII in general graphs (and hence fall
under the purview of the above corollary), see [6].

Some problems do not have FII in general (see [12]) but only when restricted to graphs of
bounded treedepth, and for those we have the same conclusion in the following:

Lemma 6. Let G be any graph class and G(d) be those graphs of G that have treedepth at
most d. The problems Longest Path, Longest Cycle, Exact s, t-Path, Exact Cycle
restricted to G have FII in G(d) ⊆ G for any d ∈ N.

Proof. Let Π be any one of the mentioned problems restricted to G, and let d, t be constants.
Consider the class Gt of t-boundaried graphs over G, and let T = {0, 1, . . . , t}.

We define a configuration of Π with respect to Gt as a mutiset

C = {(s1, d1, t1), . . . , (sp, dp, tp)}

of triples from T ×N× T . We say a t-boundaried graph G ∈ Gt satisfies the configuration
C if there exists a set of (distinct) paths P1, . . . , Pp in G such that

• si, ti can only be endvertices of Pi, V (Pi)∩ bd(G) ⊆ {si, ti}, and |Pi| = di, for 1 6 i 6 p,

• V (Pi) ∩ V (Pj) ⊆ bd(G) for 1 6 i < j 6 p,

• V (Pi) ∩ V (Pj) ∩ V (Pk) = ∅ for 1 6 i < j < k 6 p.

18

Note that, for simplicity, we identify the boundary vertices in bd(G) with their labels 1, . . . , t
from T . Moreover, si, ti can take the value 0 which is not contained in bd(G): semantically
these tuples describe paths which intersect the boundary of G at only one or no vertex.
Another special case are tuples with si = ti and d = 0: those describe single vertices of the
boundary. In short, a graph satisfies a configuration if it contains internally non-intersecting
paths of length and endvertices prescribed by the tuples of the configuration, and no three
of the paths are prescribed to have the same endvertex (hence some configurations are not
satisfiable at all, but this is a small technicality).

The signature σ[G] of a graph G ∈ Gt is a function from the configurations into {0, 1}
where σ[G](C) = 1 iff G satisfies C. We claim that the equivalence relation 'σ defined via

G1 'σ G2 ⇐⇒ σ[G1] ≡ σ[G2] for G1, G2 ∈ Gt

is a refinement of ≡Π,t. We provide only a sketch for Π = Longest Path, the proofs for
the other problems work analogous. To this end we assume the contrary, that σ[G1] ≡ σ[G2]
while G1 6≡Π,t G2. Up to symmetry, this means that for all integers c there exists a graph
G3 ∈ Gt such that (G1 ⊕G3, `) ∈ Π but (G2 ⊕G3, `+ c) 6∈ Π. We choose c = 0 and show the
contradiction. Thus the graph G1 ⊕G3 contains a path P of length ` but G2 ⊕G3 does not.

Using the implicit order given through the vertex order of P we sort the subpaths of P
contained in P ∩G1 and so obtain a sequence of paths P1, . . . , Pq ⊆ G1, each with at most two
vertices – the ends, in bd(G1). By identifying each subpath Pi with the tuple (si, di, ti) where
di = |Pi| and si is the label of the start of Pi in bd(G1) (or 0 if si 6∈ bd(G1)) and ti the label of
the end of Pi in bd(G1) (ditto), we obtain a configuration CP = {(s1, d1, t1), . . . , (sq, dq, tq)}.
Now, G1 satisfies CP by the definition. Since σ[G1](CP) = σ[G2](CP), there exists a set of
paths Q1, . . . , Qq ⊆ G2 witnessing that G2 satisfies CP . But then Q1, . . . , Qq together with
P ∩G3 form a path Q of length ` in G2 ⊕G3, a contradiction.

Second, although 'σ is generally of infinite index, we claim that for every t, only a
finite number of equivalence classes of 'σ carry a representative from Gt(d) – the subclass
of treedepth at most d. This is rather easy since graphs of treedepth 6 d do not contain
paths of length 2d − 1 or longer, and so a graph G ∈ Gt(d) can satisfy a configuration
C = {(s1, d1, t1), . . . , (sp, dp, tp)} only if di ∈ {0, 1, . . . , 2d − 2} for 1 6 i 6 p. Recall, each
boundary vertex label occurs at most twice among s1, t1, . . . , sp, tp in a satisfiable configuration.
Hence only finitely many such configurations C can be satisfied by a graph from Gt(d), and
consequently, finitely many function values of σ[G] are nonzero for any G ∈ Gt(d) and the
number of the nonempty classes of 'σ restricted to Gt(d) is finite.

Lemma 7. Let G be any graph class and G(w) be those graphs of G that have treewidth at
most w. The problems Treewidth and Pathwidth restricted to G have FII in G(w) ⊆ G
for any w ∈ N.

Proof. Let Π = Treewidth (the proof works analogously for Pathwidth) restricted to
G, and let w, t be constants. Consider the class Gt of t-boundaried graphs over G, and let
U = {1, 2, . . . , t}. We again, for simplicity, identify the boundary vertices in a graph from Gt
with their labels 1, . . . , t from U .

19

We mimic the proof of Lemma 6 with some changes. We define a configuration of Π
wrt. Gt as a set C = {(X1, w1), . . . , (Xp, wp)} of pairs such that Xi ⊆ 2U and wi ∈ N for
i = 1, . . . , p. We say a t-boundaried graph G ∈ Gt satisfies the configuration C if there exists
a collection of induced subgraphs H1, . . . , Hp of G such that

• V (Hi) ∩ V (Hj) ⊆ bd(G) for 1 6 i < j 6 p, and H1 ∪ . . . ∪Hp = G,

• there exists a tree decomposition (Ti,Wi), i = 1, 2, . . . , p, of the graph Hi of width at
most wi,

• each X ∈ Xi is a bag in this decomposition, i.e., X ∈ Wi.

The signature σ[G] of a graph G ∈ Gt is a function from the configurations into {0, 1}
where σ[G](C) = 1 iff G satisfies C. We claim that the equivalence relation 'σ defined via

G1 'σ G2 ⇐⇒ σ[G1] ≡ σ[G2] for G1, G2 ∈ Gt

is a refinement of ≡Π,t. To this end we assume the contrary, that σ[G1] ≡ σ[G2] while
G1 6≡Π,t G2. Up to symmetry, this means that for all integers c there exists a graph
G3 ∈ Gt such that (G1⊕G3, k) ∈ Π but (G2⊕G3, k+ c) 6∈ Π. We choose c = 0 and show the
contradiction. Thus the graph G1⊕G3 has a tree decomposition (T,W) of width k but G2⊕G3
does not. We will set B = bd(G1) and assume for simplicity that B = bd(G2) = bd(G3) = U ,
i.e., B ⊆ G1 ⊕G3 as well as B ⊆ G2 ⊕G3. As B is a vertex-separator of G1 ⊕G3, we can
assume that no bag inW contains both vertices from G1 \B and from G3 \B. We will further
assume that each bag in W appears exactly once in the tree decomposition, that every subset
X ⊆ B which is contained in some bag also exists exclusively as a bag X ∈ W , and that for
no adjacent bags their union contains both vertices from G1 \B and from G3 \B (all three
conditions can easily be enforced without increasing the width of the decomposition).

We color the nodes of T with colors white, black and red according to the following
criterion: every x ∈ V (T) is assigned the color c(x), where c(x) is

• red if Wx ⊆ B, and otherwise

• white if Wx ⊆ V (G1) and black if Wx ⊆ V (G3).

The above conditions on the structure of (T,W) now imply that c partitions the nodes V (T)
into Twhite, Tblack, Tred, and that no white node is adjacent to a black node in T .

From this coloring we create a collection of subtrees T1, . . . , Tq – the connected components
of T − Tblack. Let Hi, i = 1, . . . , q, be the subgraph of G1 induced by ⋃x∈V (Ti) Wx, and let
(Ti,Wi) denote the corresponding tree decomposition of Hi. We denote by wi the width of
(Ti,Wi) and set Xi = {Wx ∈ Wi : x ∈ V (Tred)}. Now, the subgraphs H1, . . . , Hq witness that
the graph G1 satisfies the configuration CT = {(X1, w1), . . . , (Xq, wq)} by definition.

Since σ[G1](CT) = σ[G2](CT), there exists a collection of induced subgraphs H ′1, . . . , H ′q
of G2, and their tree decompositions (T ′1,W ′1), . . . , (T ′q,W ′q) witnessing that also G2 satisfies
CT (particularly with the same widths w1, . . . , wq, respectively). Moreover, for each x ∈

20

V (Tred), the bag W ′
x ∈ W ′i (for the appropriate i such that Wx ∈ Wi above) is the same as

W ′
x = Wx ∈ W on the boundary B. We make T ′ as the union, by identification of nodes in

V (Tred), of T − V (Twhite) with T ′1 ∪ . . . ∪ T ′q, and set W ′ to be the union of W restricted to
the nodes of Tblack ∪ Tred with W ′1 ∪ . . . ∪W ′q. But then (T ′,W ′) is a tree decomposition of
width k in G2 ⊕G3, a contradiction.

Second, although 'σ is generally of infinite index, we claim that for every t, only a
finite number of equivalence classes of 'σ carry a representative from Gt(w) – the sub-
class of treewidth at most w. For this we claim that a graph G of treewidth 6 w can
satisfy a configuration C = {(X1, w1), . . . , (Xp, wp)} only if G satisfies also the configuration
{(X1, w

′
1), . . . , (Xp, w′p)} where w′i = min(wi, w + t) for 1 6 i 6 p. To see this, notice that

one can take a tree decomposition of whole G restricted to witness subgraphs Hi (notation
as above) and add suitable subsets of the boundary to (some) bags, to form the witness
tree decomposition for (Xi, w′i). Moreover, p 6 22t as every combination of subsets of the
boundary can appear at most once. Therefore, finiteness of 'σ restricted to Gt(w) follows as
at the end of Lemma 6.
Corollary 4. The problems Longest Path, Longest Cycle, Exact s, t-Path, Exact
Path, Treewidth, and Pathwidth have linear kernels in graphs of bounded expansion
with the size of a modulator to constant treedepth as the parameter.

4.1 Extension to larger graph classes
We can extend our result to classes of graphs of locally bounded expansion and furthermore
to graphs that are nowhere dense.
Definition 12 (Locally bounded expansion [16]). A graph class G has locally bounded
expansion if there exists a function f : N ×N → R (called the expansion function) such
that for every graph G ∈ G and all r, d ∈ N and every vertex v ∈ V (G), it holds that
∇r(G[Nd(v)]) 6 f(d, r).
Definition 13 (Nowhere dense [27,28]). A graph class G is nowhere dense if for all r ∈ N it
holds that ω(G O r) <∞.

In the above definition we use the natural extension of ω to classes of graphs via ω(G) =
supG∈G ω(G). Note that both graph classes are closed under taking shallow minors in the
sense that G O r has locally bounded expansion (is nowhere dense) if G has locally bounded
expansion (is nowhere dense), albeit with a different expansion function (a different bound
on the clique size of r-shallow minors).

We claim the following two kernelization result for the above classes, which in particular
apply to all problems listed in Section 4.
Theorem 2. Let G be a graph class of locally bounded expansion and for p ∈ N, let G(p) ⊆ G
be the subclass of graphs of treedepth at most p. Let ΠG be a graph problem that has finite
integer index on G(p) for all p ∈ N and let d ∈ N be a constant. Then there is an algorithm
that takes as input (G, ξ) ∈ ΠG and, in polynomial time, outputs an equivalent instance (G′, ξ′)
such that |G′| = O(|S|2), where S is an optimum treedepth-d modulator of the graph G.

21

Theorem 3. Let G be a nowhere-dense graph class for p ∈ N, let G(p) ⊆ G be the subclass
of graphs of treedepth at most p. Let ΠG be a graph problem that has finite integer index
on G(p) for all p ∈ N and let d ∈ N be a constant. Then there is an algorithm that takes
as input (G, ξ) ∈ ΠG and, in polynomial time, outputs an equivalent instance (G′, ξ′) such
that |G′| = O(|S|c) for some constant c, where S is an optimum treedepth-d modulator of the
graph G.

The proofs of Theorems 2 and 3 follow analogously to the proof of Theorem 1 using
Lemma 8 (see below) in place of Lemma 3. We need additional notation. Let #ω(G)
denote the number of complete subgraphs of G. For a graph class G and an integer ` we let
G6` := {H ∈ G | |H| 6 `} denote those graphs of G which have at most ` vertices.

Definition 14 (Greatest reduced average clique density). For a graph G and integer r we
define �r(G) = maxH∈GO r(#ω(H)/|H|) to be the greatest reduced clique density (clique-
grad) with rank r of G. For a graph class G the clique expansion with rank r is defined as
�r(G) = supG∈G �r(G).

Lemma 8. Let G = (X, Y,E) be a bipartite graph let HX = (GO 1)6|X|. Then there are at
most

1. 2∇0(HX) · |X| vertices in Y with degree larger than ω(HX);

2.
(
�0(HX) + 2∇0(HX)

)
· |X| subsets X ′ ⊆ X such that X ′ = N(u) for some u ∈ Y .

Proof. We construct a sequence of graphs G0, G1, . . . , G` analogous to the proof of Lemma 3
Note that, by construction, we have that Gi[X] ∈ HX for 1 6 i 6 `. In particular, this
implies that G`[X] has at most 2∇0(HX) · |X| edges.

Let us now prove the first claim. To this end, assume that there is a vertex v ∈ Y ∩V (G`)
such that deg(v) > ω(HX). We claim that G`[N(v)] (where N(v) ⊆ X) is a clique. If not,
we could choose a pair of non-adjacent vertices in G`[N(v)] and construct a (`+ 1)-th graph
for the sequence which would contradict the fact that G` is the last graph of the sequence.
However, the set N(v) then induces a clique of size larger than ω(HX), a contradiction.

Hence we conclude that no vertex of Y ∩ V (G`) has degree > ω(HX) in G` (and thus
in G). Therefore the vertices of Y of degree > ω(HX) in the graph G, if there were any,
must have been deleted during the edge contractions that resulted in the graph G`. As every
contraction added at least one edge between vertices in X and since G`[X] contains at most
2∇0(HX) · |X| edges, the first claim follows.

For the second claim, consider the set Y ′ = Y ∩ V (G`). As observed above, the neighbor-
hood of every vertex v ∈ Y ′ induces a clique in G`[X]. The number such sets therefore can be
upper bounded by the number of cliques in G`[X], which in turn can be bounded as follows:

#ω(G`[X]) = �0(G`[X])|X| 6 �0((GO 1)6|X|)|X| = �0(HX)|X|

In total then the number of subsets of X that are neighborhoods of vertices in Y in G is at
most (�0(HX) + 2∇0(HX))|X|, where we accounted for vertices of Y lost via contractions by
the bound on the number of edges in G`[X].

22

The following two corollaries are analogs of Corollary 1 and 2 and will be used in a similar
fashion.

Corollary 5. Let G be a graph-class. Suppose that for G ∈ G and S ⊆ V (G), C1, . . . , Cs
are disjoint connected subgraphs of G− S satisfying the following two conditions: for 1 6
i 6 s, diam(G[V (Ci)]) 6 δ and |NS(Ci)| > ω(HS) where HS = (GO(δ + 1))6|S|. Then
s 6 2∇0(HS) · |S|.

Proof. We construct an auxiliary bipartite graph G̃ with partite sets S and Y = {C1, . . . , Cs}.
There is an edge between Ci and x ∈ S iff x ∈ NS(Ci). Note that G̃ is a shallow minor at
depth δ of G by the assumption, and therefore (G̃O 1)6|S| ⊆ HS. By Lemma 8,

s 6 2∇0((G̃O 1)6|S|)|S| 6 2∇0(HS)|S|.

Corollary 6. Let G be a graph-class. Suppose that for G ∈ G and S ⊆ V (G), C1, . . . , Ct are
sets of connected components of G− S such that for all C,C ′ ∈ ⋃i Ci it holds that C,C ′ ∈ Cj
for some j if and only if NS(C) = NS(C ′). Let δ > 0 be a bound on the diameter of the
components, i.e. for all C ∈ ⋃i Ci, diam(G[V (C)]) 6 δ. Then there can be only at most
t 6 (�0(HS) + 2∇0(HS)) · |S| such sets Ci where again HS = (GO(δ + 1))6|S|.

Proof. As in the proof of Corollary 5, we construct a bipartite graph G̃ with partite sets S
and Y = {C1, . . . , Cr}, where the vertices Cj represent connected components in ⋃i Ci and
Cj has an edge to x ∈ S iff x ∈ NS(Cj). As before, G̃ is a shallow minor at depth δ of G and
therefore (G̃O 1)6|S| ⊆ HS. By Lemma 8,

t 6 |{S ′ ⊆ S | ∃Ci ∈ Y : N(Ci) = S ′}|
6 (�0((G̃O 1)6|S|) + 2∇0((G̃O 1)6|S|)) · |S|
6 (�0(HS) + 2∇0(HS)) · |S|.

Note that, using the notation of Lemma 8, we have the trivial bounds 2∇0(HX) 6 |X|
and �0(HX) 6 |X|ω(HX)−1. For graphs of locally bounded expansion this second bound can
be improved as follows.

Lemma 9. Let G be a graph class with local expansion bounded by f : N×N→ R. Then for
any graph G ∈ G, any constant c and any integer 0 6 ` 6 |V (G)|, �0

(
(GO c)6`

)
6 4f(1+c,0)`.

Proof. Consider any H ∈ (GO c)6`. Note that H ∈ (GO c)6` ⊆ GO c, and thus H has local
expansion bounded by f ′(d, r) = f(d+ c, r).

We upper-bound the cliques in H iteratively as follows: pick a vertex v, count all cliques
that contain v and add those to the number of cliques in H − v. Now, all cliques that
contain a fixed vertex v must be contained in N [v]. As G[N [v]] is a radius-one subgraph
of H, it has bounded expansion with expansion function f ′(1, r) = f(1 + c, r) and thus is

23

2f(1 + c, 0)-degenerate. We can now apply the result of [32], stating that every d-degenerate
graph G with n > d vertices has at most 2d(n− d+ 1) cliques. Doing so we see that G[N [v]]
contains at most 22f(1+c,0)|N [v]| 6 4f(1+c,0)|H| 6 4f(1+c,0)` cliques. Iterating this counting
over all vertices of H then yields a generous bound of 4f(1+c,0)`2 and therefore we obtain the
desired bound for the clique density through division by `.

The following generalization of Lemma 4 follows easily using the above two corollaries.

Lemma 10. Let G be a graph class, G ∈ G and S ⊆ V (G) be a set of vertices such that
td(G− S) 6 d (d a constant). Let HS = (GO 2d)6|S|. If ω(HS) is a constant, then there is
an algorithm that runs in time linear in |G| and partitions V (G) into sets Y0] Y1] · · ·] Y`
such that the following hold:

1. S ⊆ Y0 and |Y0| 6 2∇0(HS) · |S|;

2. for 1 6 i 6 `, Yi induces a set of connected components of G− Y0 that have the same
neighborhood in Y0 of size at most ω(HS);

3. ` 6
(
�0(HS) + 2∇0(HS)

)
· |S|.

Proof. We proceed exactly as in the proof of Lemma 4 using t := ω(HS) and the bounds
from Corollary 5 and 6

We are now ready to prove the two theorems.

Proof of Theorem 2. Analogously to the proof of Theorem 1 we use Lemma 10 to obtain
a protrusion-decomposition Y0] Y1] · · ·] Y` in place of Lemma 4. Let G be a graph
from a class of locally bounded expansion and let d be an integer and S ⊂ V (G) be a
treedepth-d modulator of G. It is left to show that for HS = (GO 2d)6|S| the bounds of
Lemma 10 are indeed quadratic in |S|. Clearly, ∇0(G) 6 |G|, thus ∇0(HS) 6 |S| and
therefore |Y0| = O(|S|2). The bound �0(HS) = O(|S|) was proved in Lemma 9 and therefore
` 6 (�0(HS) + 2∇0(HS))|S| = O(|S|2) and the claim follows.

Proof of Theorem 3. Analogously to the proof of Theorem 1 we use Lemma 10 to obtain a
protrusion-decomposition Y0] Y1] · · ·] Y` in place of Lemma 4. Let G be a graph from a
nowhere-dense graph class and let d be an integer and S ⊂ V (G) a treedepth-d modulator
of G. It is left to show that for HS = (GO 2d)6|S| the bounds of Lemma 10 are indeed
polynomial in |S|. Clearly, ∇0(G) 6 |G|, thus ∇0(HS) 6 |S| and therefore |Y0| = O(|S|2).

For �0(HS) we use the trivial bound of �0(HS) 6 |S|ω(HS)−1, so it is left to show that
ω(HS) is a constant. As HS ⊆ GO 2d and per definition of nowhere-dense graph classes,
ω(GO r) <∞ for every constant r, the claim follows.

24

5 Structural Parameterizations of Longest Path
In this section we show that the problem Longest Path has a polynomial kernel when
parameterized by a modulator to constant treedepth. Our result almost entirely closes the
gap between the polynomial kernel of Longest Path when parameterized by the size of a
vertex cover and the no polynomial kernel result for Longest Path when parameterized by
the size of a modulator to pathwidth two [7].

It is well-known that Longest Path can be solved in linear time if the treewidth of the
input graph is bounded by some constant [4]. Because of the relationship between treewidth
and treedepth (see Section 2) this result carries over to treedepth.

Proposition 5. Longest Path can be solved in linear time if the treedepth of the input
graph is bounded by some constant.

The following lemma is at the very core of our result.

Lemma 11. For fixed d ∈ N, d > 1, let S ⊆ V (G) be a treedepth-d modulator of a graph G
and let k = |S|. Then there is an induced subgraph G′ of G and a set S ′ ⊆ V (G′) such that:
(1) G and G′ are equivalent instances of Longest Path (for the same path length), (2) G′
and S ′ can be computed from G and S in time O(k2 · |V (G)|), and (3) S ′ is a treedepth-(d−1)
modulator of G′ of size |S ′| 6 (k + 1)3.

Proof. Let U be the family of vertex sets of all connected components of G− S. Since for
each U ∈ U the graph G[U] has treedepth at most d, there exists rU ∈ U (the root of some
treedepth d decomposition) such that G[U − {rU}] has treedepth d − 1. Therefore if we
can find in time O(k2 · |V (G)|) a subfamily U ′ ⊆ U of size at most (k + 1)3 − k such that
G′ = G[S ∪ ⋃U∈U ′ U] is an equivalent instance of Longest Path, the claim of the lemma
follows. To see this, notice that we can use vertices rU , one for each U ∈ U ′, together with
vertices from S to form treedepth-(d−1) modulator S ′ of G′. The modulator S ′ will therefore
consist of k vertices from S and at most (k + 1)3 − k new vertices, one from each component
of U ′, and so |S ′| 6 (k + 1)3, as claimed.

In the rest of the proof, we show that we can find the family U ′ with the aforementioned
properties in desired time.

Assume |U| > k + 1. For all U ∈ U and x, y ∈ S with x 6= y we denote

i. by LP(U) a longest path in the graph G[U] (we choose any one if not unique), and by
U0 ∈ U a representative achieving maximum value |LP(U0)| over U ;

ii. by LP(x, U) a longest path starting from x in the graph G[{x} ∪ U], and by Ux ⊆ U a
subfamily of |Ux| = k + 1 (“top k + 1 representatives” by |LP(x, U)|) such that for any
U1 ∈ Ux, U2 ∈ U \ Ux it is |LP(x, U1)| > |LP(x, U2)|;

iii. by LP(x, y, U) a longest path between x and y in the graphG[{x, y}∪U], or LP(x, y, U) = ∅
if no such path exists, and analogously by Ux,y ⊆ U a subfamily of |Ux,y| = k + 1 (“top
k + 1 representatives” by |LP(x, y, U)|) such that for any U1 ∈ Ux,y, U2 ∈ U \ Ux,y it is
|LP(x, y, U1)| > |LP(x, y, U2)|.

25

Because td(G[U]) 6 td(G[{x} ∪ U]) 6 td(G[{x, y} ∪ U]) 6 d + 2 (a constant), it follows
from Proposition 5 that LP(U), LP(x, U), LP(x, y, U) can each be computed in linear time,
and hence the whole computation of U0,Ux,Ux,y can be done in O(k2 · |V (G)|) time.

We claim that the family U ′ = {U0} ∪
⋃
x∈S Ux ∪

⋃
x,y∈S,x6=y Ux,y together with S induces

graph G′ which satisfies the conclusion of the lemma. Clearly, |U ′| 6
(
k
2

)
(k+1)+k(k+1)+1 =

1
2k(k + 1)2 + 1 6 (k + 1)3. It remains to show that if G has a path of length at least ` then
so does G′ = G[S ∪ ⋃U∈U ′ U].

Let P be a path of length at least ` in G and let q = |V (P) ∩ S| 6 k. Then S “cuts”
P into q + 1 sections, i.e., we can write P = P0 ∪ P1 ∪ . . . ∪ Pq where Pi, i = 0, . . . , q are
mutually edge-disjoint paths disjoint from S except possibly at their ends. Suppose that
P 6⊆ G′. There are three cases to consider for the subpaths Pi:

I. q = 0 and P = P0. Then the length of P is at most |LP(U0)| by the definition, and
hence we can choose P ′ := LP(U0) ⊆ G′ straight away.

II. q > 1 and P0 6⊆ G′ or Pq 6⊆ G′. Consider, without loss of generality, the latter case
Pq 6⊆ G′ and let {x} = V (Pq) ∩ S. Then the length of Pq is at most |LP(x, U)| for any
U ∈ Ux by the definition. Notice that each of the q 6 k paths Pi, i = 0, . . . , q − 1, can
intersect only at most one component from U by connectivity (and Pq is disjoint from
all of Ux). Hence, at least k + 1− q > 1 component(s) in Ux, say U1, is disjoint from
whole P . Then in P we replace Pq with LP(x, U1).

III. q > 1 and Pi 6⊆ G′ where 0 < i < q. Let {x, y} = V (Pi) ∩ S. Then the length of Pi is
at most |LP(x, y, U)| for any U ∈ Ux,y by the definition. For the same reason as above
there exists a component U2 ∈ Ux,y not intersected by P , and we then in P replace Pi
with LP(x, y, U2).

Repeating II, III for all sections of P , the resulting path P ′ ⊆ G′ has length at least |P | > `,
and this concludes the proof of the lemma.

Theorem 4. Let d ∈ N be a constant, and let the function g be defined as follows; g(0, k) = k

and g(i, k) = g
(
i − 1, (k + 1)3

)
. Then Longest Path has a polynomial kernel of size at

most g(d, k) parameterized by the size k of a modulator to treedepth d where, asymptotically,
g(d, k) = O(k3d). This kernel is computable in time O(k2 · |V (G)|).

Proof. Let G be a graph, and S ⊆ V (G) a treedepth-d modulator of G. We proceed by
induction on d > 0: For d = 0 we necessarily have S = V (G) (cf. Lemma 11) and hence
immediately a kernel of size k = g(0, k). For d > 0, we apply Lemma 11 to obtain an
equivalent instance G′ with modulator S ′ of size k′ = |S ′| 6 (k + 1)3. Then G′ can be
kernelized to an instance of size at most g(d − 1, k′) by the inductive assumption, and
g(d− 1, k′) 6 g(d, k) as desired.

26

6 On the Ecology of Structural Parameters
A primary goal of parameterized complexity is to study how different parameters affect
the complexity of classical problems. In particular, one aims to discover the boundaries
of tractability by finding the weakest parameterization for which a problem is in FPT or
admits polynomial kernels. It also provides further insight into what exactly does make hard
problems hard. This study of how different parameters influence fixed-parameter tractability
or polynomial kernelizability is referred to as parameterized ecology [17]. A surge in the
interest of parameterized ecology has helped to make headway in the parameterized ecology
program (see [8, 23,24]).

In the quest for polynomial kernels one often has to consider two types of structural
restrictions: restrictions on the input instances and restrictions on the parameters. Some
problems are way too difficult in general to be tractable. For instance, Dominating Set is
W[2]-complete and Independent Set is W[1]-complete, but both problems admit linear
kernels on planar graphs [1]. This raises the question of whether these problems are tractable
in more general graph classes under stronger parameterizations4 such as e.g. the vertex cover
number. It turns out that both these problems are indeed in FPT when parameterized
by the vertex cover number. Other problems exist that seem to be much harder, such as
Dominating Set, which does not admit a polynomial kernel even when parameterized by
the solution size and the vertex cover number [14]. It is clear that if we wish to identify the
boundary of polynomial kernelizability for problems that are as difficult as Dominating
Set, we must necessarily restrict ourselves to special graph classes.

Another illustrative example is Longest Path. The standard parameterized version
of this problem is in FPT in general graphs but has no polynomial kernel [2, 5]. When
parameterized by the size of a vertex cover, it admits a quadratic kernel [7]. This leads us
to the question as to whether there exist parameters weaker than vertex cover for which
Longest Path has a polynomial kernel. One possibility is to use the treewidth as the
parameter. But as was implicitly shown in [7], Longest Path does not admit a polynomial
kernel even when parameterized by a modulator to a graph of pathwidth two.

In fact, we conjecture that Longest Path does not have a polynomial kernel in general
graphs with respect to a modulator to a single path. Therefore if we want a polynomial
kernel for this problem with respect to a parameter that modulates some graph property,
then it seems that this property must not admit long paths. This is one reason why we chose
to parameterize problems by the size of a modulator to bounded treedepth, as graphs of
bounded treedepth have a bound on the longest path. In this case, we do indeed have a
polynomial kernel, as was shown in Section 5. If we restrict the input instances by requiring
that they are members of a graph class of bounded expansion then we obtain a linear kernel.
On general graphs, the degree of the polynomial is a function of the treedepth. It is an
interesting question whether this dependency can be removed.

4We use adjectives such as “strong” in the sense that they impose a greater structural restriction on the
input instance. As a case in point, the vertex cover number of a graph is a stronger parameter than say, the
feedback vertex number, since in the former case the “rest of the graph” is an independent set, whereas in
the latter case it is a forest.

27

At first glance, a modulator to bounded treedepth seems to be a severely restricting param-
eter. But note that a vertex cover is a modulator to a treedepth-1 graph and hence our param-
eter is certainly less restrictive than the vertex cover number. If our conjecture for Longest
Path holds, this is essentially the best parameter that we can hope for if we want a polynomial
kernel. But the connection between treedepth and graphs of bounded expansion is deeper.

Graph class Parameter

natural tw-modulator td-modulator

Dominating Set
General graphs W[2] W[2] no polya

Nowhere dense ? ? O(kc)
Locally bnd. exp. ? ? O(k2)
Bounded expansion ? ? O(k)
Top. H-minor-free O(k) O(k) O(k)
H-minor-free O(k) O(k) O(k)
Planar O(k) O(k) O(k)

Longest Path
General graphs no poly no polyb O(k3d)
Nowhere dense no poly no polyb O(kc)
Locally bnd. exp. no poly no polyb O(k2)
Bounded expansion no poly no polyb O(k)
Top. H-minor-free no poly ? O(k)
H-minor-free no poly ? O(k)
Planar no poly ? O(k)

Treewidth-t Vertex Deletion
General graphs O(kf(t)) no polyc ?
Nowhere dense O(kf(t)) ? O(kc)
Locally bnd. exp. O(kf(t)) ? O(k2)
Bounded expansion O(kf(t)) ? O(k)
Top. H-minor-free O(k) O(k) O(k)
H-minor-free O(k) O(k) O(k)
Planar O(k) O(k) O(k)

Figure 2: Overview of known kernelization results for selected
problems on sparse graph classes. The gray fields highlight results
from this paper.

aeven if parameterized by the solution size plus the size of a
minimal vertex cover

beven if parameterized by a modulator to pathwidth-2
cAssuming that d > t

Dvořák and Král showed that for
any graph class G of bounded ex-
pansion and any positive integer p,
there exists q ∈ N such that ev-
ery graph G ∈ G has a vertex col-
oring with q colors such that for
any i color classes, 1 6 i 6 p, in-
duce a subgraph of treedepth at
most i [26]. That is, any G ∈ G
can be partitioned into a constant
number of subgraphs each of con-
stant treedepth.

The existence of a polynomial
kernel is not the only relevant
question. It is desirable for the
kernel to be as small as possible.
For problems with FII on graphs
of bounded treedepth, we have
shown the existence of a linear
kernel on graphs of bounded ex-
pansion, which is obviously the
best we can hope for. But is there
a weaker parameter that still al-
lows one to obtain linear kernels
on graphs of bounded expansion
for the same set of problems? One
possibility is to use the size of a
modulator to bounded treewidth
as parameter. This is not likely
to yield linear kernels for the fol-
lowing reason: Firstly, any graph
class G can be transformed into
a graph class G̃ of bounded ex-
pansion by replacing every G ∈ G
by G̃ obtained by replacing each
edge in G by a path on |V (G)| vertices. It is easy to verify that the operation of subdividing
edges does not change the treewidth. Now let us consider Treewidth-t Vertex Deletion

28

which is the prototypical problem parameterized by a modulator to constant treewidth. An
input to this problem consists of a graph G and parameter k. The question is whether there
exist at most k vertices whose deletion from G results in a subgraph of treewidth at most t.
Two special cases of this problem are Vertex Cover, where t = 0, and Feedback Vertex
Set, where t = 1. It is well-known that Vertex Cover has an O(k) vertex-kernel [11]
and that the best-known kernel for Feedback Vertex Set has O(k2) vertices [31], both
of which hold for general graphs. Fomin et al. [20] showed that Treewidth-t Vertex
Deletion admits a kernel of size kf(t) in general graphs. Improving this result to a kernel
of size g(t) · kO(1) has proven to be a significant challenge. If we manage to obtain a linear
kernel on graphs of bounded expansion using a modulator to a bounded treewidth graph as
parameter, then it would directly follow that Treewidth-t Vertex Deletion has a linear
kernel in general graphs. This seems too good to be true.

Finally, many purely decision problems, such as Hamiltonian Path/Cycle and 3-
Colorability, which have no natural parameter, are covered by our framework. It was
already shown in [25] that these problems have a linear kernel on H-topological-minor-free
graphs when parameterized by a modulator to bounded treewidth for H-topological minor
free graphs. Taking a modulator to treedepth allowed us to extend this result to the class of
bounded expansion graphs by choosing a modulator to bounded treedepth as a parameter.

7 Conclusions and Further Research
In this paper we presented kernelization results on graphs of bounded expansion, locally
bounded expansion, and nowhere dense graphs. To the best of our knowledge, these are the
very first kernelization results on these graph classes. The parameter that we use is the size
of a modulator to constant treedepth graphs. Evidence suggests that any meta-theorem on
linear kernels on graphs of bounded expansion that includes all the problems in Corollary 3
necessarily requires a parameter that cannot be weaker than what we have. However for
problems whose solution sizes are not invariant under edge subdivisions, such as Dominating
Set and Hamiltonian Cycle, it might be possible to obtain such a result.

There are some interesting open questions regarding the polynomial kernelizability of
Longest Path. We conjecture that Longest Path has no polynomial kernel in general
graphs with the size of a modulator to a single path (of arbitrary length) as parameter. This
would show that if we use the size of a modulator to a (subgraph closed) graph property as
parameter, then in general graphs there exists a dichotomy for Longest Path: If the graph
property excludes long paths, there is a polynomial kernel; otherwise not. The polynomial
kernel presented here has size kg(d), where k is the size of a treedepth-d modulator and
g(d) = 3d. Is there a kernel of size g(d) · kO(1), for some function g?

29

References
[1] J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data reduction for

Dominating Set. J. ACM, 51:363–384, 2004.

[2] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

[3] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25:1305–1317, 1996.

[4] H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In MFCS’97, volume
1295 of LNCS, pages 19–36. Springer, 1997.

[5] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without
polynomial kernels. Journal of Computer and System Sciences, 75(8):423–434, 2009.

[6] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M.
Thilikos. (Meta) Kernelization. In Proc. of 50th FOCS, pages 629–638. IEEE Computer
Society, 2009.

[7] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Kernel bounds for path and cycle
problems. In IPEC’11, number 7112 in LNCS, pages 145–158. Springer, 2011.

[8] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Kernel bounds for structural
parameterizations of pathwidth. In SWAT, number 7357 in LNCS, pages 352–363.
Springer, 2012.

[9] H. L. Bodlaender and T. Kloks. Better algorithms for the pathwidth and treewidth of
graphs. In ICALP’91, volume 510 of LNCS, pages 544–555. Springer, 1991.

[10] H. L. Bodlaender and B. van Antwerpen-de Fluiter. Reduction algorithms for graphs of
small treewidth. Information and Computation, 167(2):86–119, 2001.

[11] J. Chen, I. A. Kanj, and W. Jia. Vertex cover: Further observations and further
improvements. Journal of Algorithms, 41:280–301, 2001.

[12] B. de Fluiter. Algorithms for Graphs of Small Treewidth. PhD thesis, Utrecht University,
1997.

[13] R. Diestel. Graph Theory. Springer, Heidelberg, 4th edition, 2010.

[14] M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through colors and IDs. In
Proc. of 36th ICALP, number 5555 in LNCS, pages 378–389. Springer, 2009.

[15] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[16] Z. Dvořák and D. Král. Algorithms for classes of graphs with bounded expansion. In
WG’09, volume 5911 of LNCS, pages 17–32. Springer, 2009.

30

[17] M. R. Fellows, B. M. P. Jansen, and F. Rosamond. Towards fully multivariate algorith-
mics: Parameter ecology and the deconstruction of computational complexity. European
J. Combin., 2012. In press.

[18] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[19] F. V. Fomin, D. Lokshtanov, N. Misra, G. Philip, and S. Saurabh. Hitting forbidden
minors: Approximation and kernelization. In Proc. of 28th STACS, volume 9 of LIPIcs,
pages 189–200. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2011.

[20] F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh. Planar F-Deletion: Approxi-
mation and Optimal FPT Algorithms. In FOCS’12, pages 470–479. IEEE Computer
Society, 2012.

[21] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and
kernels. In Proc. of 21st SODA, pages 503–510. SIAM, 2010.

[22] J. Guo and R. Niedermeier. Linear problem kernels for NP-hard problems on planar
graphs. In Proc. of 34th ICALP, volume 4596 of LNCS, pages 375–386. Springer, 2007.

[23] B. M. P. Jansen and H. L. Bodlaender. Vertex cover kernelization revisited: Upper and
lower bounds for a refined parameter. In Proc. of 28th STACS, volume 9 of LIPIcs,
pages 177–188. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2011.

[24] B. M. P. Jansen and S. Kratsch. On polynomial kernels for structural parameterizations
of odd cycle transversal. In IPEC’11, number 7112 in LNCS, pages 132–144. Springer,
2011.

[25] E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, and S. Sikdar. Linear
kernels and single-exponential algorithms via protrusion decomposition. Available at:
http://arxiv.org/abs/1207.0835.

[26] J. Nešetřil and P. Ossona de Mendez. Grad and classes with bounded expansion I.
Decompositions. European J. Combin., 29(3):760–776, 2008.

[27] J. Nešetřil and P. Ossona de Mendez. First order properties on nowhere dense structures.
The Journal of Symbolic Logic, 75(3):868–887, 2010.

[28] J. Nešetřil and P. Ossona de Mendez. On nowhere dense graphs. European J. Combin.,
32(4):600–617, 2011.

[29] J. Nešetřil and P. Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms,
volume 28 of Algorithms and Combinatorics. Springer, 2012.

[30] J. Nešetřil, P. Ossona de Mendez, and D. R. Wood. Characterisations and examples of
graph classes with bounded expansion. Eur. J. Comb., 33(3):350–373, 2012.

31

[31] S. Thomassé. A quadratic kernel for feedback vertex set. In SODA, pages 115–119.
SIAM, 2009.

[32] D. Wood. On the maximum number of cliques in a graph. Graphs and Combinatorics,
23:337–352, 2007.

32

8 Appendix
In this appendix, we define some of the problems that we mention in this paper.

Longest Path
Input: A graph G and a positive integer `.
Problem: Does G contain a simple path of length at least `?

Longest Cycle
Input: A graph G and a positive integer `.
Problem: Does G contain a simple cycle of length at least `?

Exact s, t-Path
Input: A graph G, two special vertices s, t ∈ V (G) and a positive integer `.
Problem: Is there a simple path in G from s to t of length exactly `?

Exact Cycle
Input: A graph G and a positive integer `.
Problem: Is there a simple cycle in G of length exactly `?

Feedback Vertex Set
Input: A graph G and a positive integer `.
Problem: Is there a vertex set S ⊆ V (G) with at most ` vertices such that G− S

is a forest?

Treewidth
Input: A graph G and a positive integer `.
Problem: Is the treewidth of G at most `?

33

Pathwidth
Input: A graph G and a positive integer `.
Problem: Is the pathwidth of G at most `?

Treewidth-t Vertex Deletion
Input: A graph G and a positive integer `.
Problem: Is there a vertex set S ⊆ V (G) with at most ` vertices such that the

treewidth of G− S is at most t?

Dominating Set
Input: A graph G = (V,E) and a positive integer `.
Problem: Is there a vertex set S ⊆ V with at most ` vertices such that for all

u ∈ V \ S there exists v ∈ S such that uv ∈ E?

If in addition, we require that G[S] is a connected graph then the problem is called
Connected Dominating Set.

r-Dominating Set
Input: A graph G = (V,E) and a positive integer `.
Problem: Is there a vertex set S ⊆ V with at most ` vertices such that for all

u ∈ V \ S there exists v ∈ S such that d(u, v) 6 r?

Efficient Dominating Set
Input: A graph G = (V,E) and a positive integer `.
Problem: Is there an independent set S ⊆ V with at most ` vertices such that for

every u ∈ V \ S there exists exactly one v ∈ S such that uv ∈ E?

Edge Dominating Set
Input: A graph G = (V,E) and a positive integer `.
Problem: Is there an edge set S ⊆ E of size at most ` such that for every e ∈ E \S

there exists e′ ∈ S such that e and e′ share an endpoint?

34

Induced Matching
Input: A graph G = (V,E) and a positive integer `.
Problem: Is there an edge set S ⊆ E of size at least ` such that S is a matching

and for all u, v ∈ V (S), if uv ∈ E then uv ∈ S?

Chordal Vertex Deletion
Input: A graph G = (V,E) and a positive integer `.
Problem: Is there a vertex set S ⊆ V of size at most ` such that G− S is chordal?

35

	Introduction
	Preliminaries
	Minors and shallow minors
	Parameterized problems, kernels and treewidth
	Grad and graph classes of bounded expansion

	The Protrusion Machinery
	Linear Kernels on Graphs of Bounded Expansion
	Extension to larger graph classes

	Structural Parameterizations of Longest Path
	On the Ecology of Structural Parameters
	Conclusions and Further Research
	Appendix

