
PAQ compression algorithm

Krzysztof Blaszczyk
RWTH Aachen University

Supervisors:
Prof. Dr. Peter Rossmanith
Dipl-Inf. Alexander Langer

Dipl-Inf. Felix Reidl

June 11, 2012

1

Contents

1 Introduction 3

2 PAQ Algorithm 5
2.1 Recap about arithmetic coding . 5
2.2 Recap about PPM . 5
2.3 Connection to PAQ . 5

2.3.1 Contexts . 6
2.3.2 Models . 6

2.4 Context Mixing . 6
2.4.1 Mixing by weighted averaging 7
2.4.2 Mixing by adaptive model weighting 8
2.4.3 Mixing by neural networks 11

3 Optimizations 15

4 Evaluation 16

5 Summary and Outlook 17

2

Abstract

PAQ is a flexible state-of-the-art compression algorithm that beats com-
pression ratio records und pushes achievable compression ratios to new fron-
tiers. This seminar paper should provide a general understanding of that
interesting and astounding algorithm.

1 Introduction

Since the computer revolution in 1980’s data compression has become one of the
standard tools in computer science. There are several reasons why compression
is important, one of the main reasons being that physical devices can only store
limited amounts of data. Another motivation are data transfer and data storage
limitations. On the other hand, compression itself can require extensive computa-
tion and can significantly delay processing of data. However, if it is used wisely,
data compression saves resources and money, helps to overcome limits and in-
creases energy efficiency.

Interestingly, in theory, compression of data sequences where symbols are uni-
formly distributed should not be possible. For example, if there is a set of all
binary strings of length n then there is no bijective function between this set and
the set of all binary strings with length smaller than n. Obviously if there is no
bijection then the Symbol mapping is not reversible and compression is not pos-
sible. In contrast to practice, a file that has a uniform distribution of Symbols
but is compressible can be found easily. For instance when the first half of a file
consists of zeros and the second half consists of ones, the very statement about
that property, together with file size information and some fixed agreement about
the value of the central bit (when file size is odd) is sufficient to reconstruct that
file. Obviously if the file size is large enough, compression can be achieved.
Another interesting result originates form Kolmogorov’s complexity[Kol65]. It
states that compression limits are incomputable because the shortest possible de-
scription of an object is not computable. So even if data can be compressed in
practice, there is no way to tell what the theoretical compression limit is.

There are more ways to view the problem. Algorithmic probability theory for
example assumes that the larger a description of an object is, the less likely it is to
be the explanation for the structure of that object. Using that and other theories
and assumptions Hutter [Hut05] claims, that compression is an AI problem. He
suggests that the optimal behavior of a goal seeking agent in an unknown but
computable environment is to guess at each step that the environment is probably
controlled by one of the shortest programs consistent with all interaction so far.

3

He develops a powerful parameter-free theory of an optimal reinforcement learn-
ing agent, where finding such optimal behavior is done by gradually eliminating
Turing machines once they become inconsistent with the progressing history. He
emphasizes that the same is done in compression when seeking the shortest Turing
machine that generates the given data.

In 2006 Hutter announced a competition with 50,000 Euro of total funding and
paid 500 Europa for each 1% compression ratio improvement on a specific standard
file he provided. At that time, Matt Mahoney, a data compression specialist from
the IBM company had an experimental open source project running that he called
“PAQ”. His goal was to create an archiver that pushes compression to its (incom-
putable) limits while ignoring space and time complexity constraints as much as
possible. Compression ratio achieved by his version “PAQ8F” on the provided
standard file was set as the starting point for the competition. Matt Mahoney
received a pre-prize from Hutter for already achieving highest known compression
ratios. Driven by competition, PAQ continues to evolve. By 2012 there has been
over 45 different implementations of the PAQ algorithm.

So what is so special about PAQ that makes it so successful in achieving highest
compression ratios? This paper intends to explain the basic principles underlying
the algorithm.

4

2 PAQ Algorithm

2.1 Recap about arithmetic coding

In arithmetic coding [Nim12] there is a set of Symbols where each Symbol has
an assigned probability of occurrence. Interval [0,1) is recursively divided by the
probability distribution into distinct subintervals where each interval represents
a different distinct symbol. This is done recursively until a terminating symbol
occurs or until some predefined maximum recursion depth is reached.

Figure 1: Visualization of arithmetic coding by assuming fixed probability distri-
bution and fixed recursion depth

Consider that in Figure 5 the probability distribution does not have to be
fixed. It could be made adaptive and change in each recursion step. As long as
the adaptation process is deterministic the compression will be reversible.

2.2 Recap about PPM

PPM [Sew12] is strictly spoken not a compression algorithm, but a prediction
algorithm that can be used with other compression algorithms like arithmetic
coding. PPM outputs a probability distribution for the next Symbol based on a
fixed length data window (also called context) on previously seen data. Obviously
future data can not be taken into account, because the decompressor can not see it
and therefore could not deterministically reconstruct the sequence of probabilities
used. The prediction is then passed to a coder that can exploit such data in
attempt to output a more compressed sequence. The most common use of PPM
is to use it together with an arithmetic coder since arithmetic coding is known for
its optimality.

2.3 Connection to PAQ

PAQ Algorithm is an evolution of PPM and combined with a standard arithmetic
coder as well. PAQ mainly differs from PPM in following areas:

5

• Context becomes an arbitrary complex function of already seen data

• Instead of only one model (predictor) there are many different models

2.3.1 Contexts

Except for taming memory complexity, there is no other obvious reasons to re-
strict or fix the context size. Instead of limiting which past data can be accessed,
maximal possible freedom is given. When predictions can be made more accurate
by making more past data usable, then it should be allowed to do so. And because
a context is a function of that data, it can be used as a filter or modifier to extract
information that is relevant to prediction while ignoring parts that are known for
not correlating with future data.

One context example is to select higher order bits only which can be advanta-
geous for prediction in data formats where these bits relate to each other. Another
example could be a N-gram which is a selection of n most recently seen bits, A
Context could also be some kind of a hash function or even a constant. Only
usefulness matters here.

2.3.2 Models

PAQ calls its predictors “models”. A model is always connected to a context
which defines the input on which the prediction should be based on. Models make
predictions by assuming some specific information patterns in what they can see
through their contexts. One specific model can occur many times but be connected
to different contexts and one specific context can be used many times in different
models. A more advanced example could be a model which assumes that values
follow some sinus-like pattern and perform prediction by approximating the data
with some sinus function. This might be the case in analog data such as audio
files. In this light it might be interesting to mention that Jeff Hawkins theorizes
in his book “On intelligence”[Haw04] that intelligence is just the ability to predict
the future by learning from past data.

2.4 Context Mixing

Arithmetic coding always needs one single prediction at a time. Having many dif-
ferent models connected to many different contexts that output many individual
predictions is incompatible with an arithmetic coder at first. A way to combine
all the predictions into one single prediction is needed. In addition there is hope
that this final, single prediction, which can easily be based on much wider world
knowledge, will be more accurate than the single probability distributions on their

6

own. The “art” of combining these multiple predictions into one single probability
distribution is called “context mixing”. The word “context” in “context mixing” is
not to being confused with the definition of contexts for models. A more accurate
name would probably be “prediction mixing” but this unfortunately is not the
standard phrase used.

Through time, PAQ evolved the way of performing context mixing to be more
and more sophisticated. In this paper three major steps of that evolution will be
described.

In all cases, context mixing involves assigning weights to all models used before
combining them together. Since PAQ always predicts exactly one bit, the alphabet
is ΣPAQ = {0, 1}, where J0K = 0 , J1K = 1 and the final prediction is always a pair
of numbers, one of them representing the probability for the next symbol being 0
and the other representing the probability for the next symbol being 1. In detail,
context mixers differ in expressing and managing these weights and in using them
to calculate the final prediction. The way probability is expressed may also differ
as it will be shown in the following sections.

2.4.1 Mixing by weighted averaging

The very first context mixing method that PAQ used was simple model weighting.
Here, each model m ∈ {1, ..., n}, n ∈ N, n is number of models has a fixed weight
wm ∈ N and the probabilities are expressed as a pair of natural numbers. Normal-
ization of weights or probabilities is not needed, because it is the ratio between
the weights that matters. In all following formulas it is implicitly assumed that
contexts are associated to models. Reason for such simplification is that formaliz-
ing contexts does not change the basic structure of any formula used in this paper
and can therefore be left out. Further, a lower case p will stand for the normalized
probability p ∈ [0, 1] and an upper case P will stand for the raw representation of
that probability (i.e as natural number).

Let the probability distribution/prediction by a model m be the tuple

Pm = (Pm(0), Pm(1)),

then the symbol 0 has the probability

pm(0) =
Pm(0)

Pm(0) + Pm(1)

7

and the symbol 1 has the probability

pm(1) =
Pm(1)

Pm(0) + Pm(1)

Calculation of the final probability P∗ is simply the weighted sum:

P∗ =
n∑

m=1

Pmwm = (P∗(0), P∗(1))

The values of fixed model weights wm were arbitrarily assigned by program-
mers. However, it usually meant that if context had length k, the weight was
set to k2 This is based on the argument that greater contexts would deliver more
knowledge to models and models using these contexts would be able to predict
more accurately.

Mixing by weight averaging is a relatively primitive form of context mixing. The
argument mentioned above that more input means better prediction must not be
necessary true. Above all, when using fixed weights some local data patterns might
have been predicted much better with different weight values. This inflexibility
was later solved as described in following chapters.

2.4.2 Mixing by adaptive model weighting

The obvious evolution of context mixing by weighted averaging is to make the
weights wm adaptive in order to gain local flexibility. The weights must change
deterministically in each step to provide a deterministic sequence of predictions.
As before, the weights and probabilities are expressed as natural numbers and the
calculation of P∗ remains the same. The only change is that weights are dynamic
now. A question one might raise at this point is how to change the weights in
favor of better prediction.

The idea here was making the assumption that “collective wisdom” must usu-
ally be greater than “individual wisdom”. In other words, one assumed that the
final weighted prediction will be more accurate than most of its single predictions.
Therefore, the greater the prediction error and the greater the deviation between
P∗ and Pm, the more adjustment should be done to wm. Let us define the weighted
sum off all 0-symbol predictions and the weighted sum off all 1-symbol predictions
as:

Σ0∗ := P ∗ (0) =
n∑

m=1

Pm(0)wm

8

Σ1∗ := P ∗ (1) =
n∑

m=1

Pm(1)wm

Furthermore:

Σ∗ := Σ0∗ + Σ1∗

Let x be the Interpretation of the actual symbol that a model was attempting to
predict:

error := x− Σ1∗

Σ∗ = x− p∗(1)

Note that the error can be negative or positive.

If the error is positive then P∗(1) should increase towards 1 . This can be
done by weakening weights of models that predicted the opposite and strengthen-
ing weights of models that predicted towards the correct value.

If the error is negative then P∗(1) should decrease towards 0 . This, again,
can be done by weakening weights of models that predicted the opposite and
strengthening weights of models that predicted towards the correct value.

The next task is to express the “collective wisdom”. In an optimal case, a
model m is just as accurate as the final prediction. This can be expressed as:

Σ0∗

Σ1∗ =
Pm(0)

Pm(1)

By applying simple algebra it follows:

Σ0∗Pm(1)− Σ1∗Pm(0) = 0

If P∗ and Pm differ only slightly then d 6= 0 when d is defined as:

d := Σ0∗Pm(1)− Σ1∗Pm(0)

If d is positive then

Pm(0)

Pm(1)
<

Σ0∗

Σ1∗

To make left and right hand side equal again the value of Pm(0)
Pm(1)

should increase .

This can be done by increasing the numerator Pm(0) and/or decreasing the

9

denominator Pm(1). Therefore if d is positive then, compared to the final predic-
tion, the probability for x = 1 is too high and the probability for x = 0 is too
low . Without loss of generality it holds:

pm(0)

1− pm(0)
<

p∗(0)

1− p∗(0)

By using simple algebraic transformations it follows that pm(0) < p∗(0) which also
implies pm(1) > p∗(1)

If d is negative , then the reasoning is precisely vice versa.

The weight adjustment is done as follows:

wm = wm + error × d

Using these findings the intention of the formulas can be shown easily for all 4
cases:

Case 1 : x = 0 but P∗(1) > P∗(0) (prediction towards 1 instead of 0)

Case 2 : x = 1 but P∗(1) < P∗(0) (prediction towards 0 instead of 1)

Case 3 : x = 1 and P∗(1) > P∗(0) (correct prediction towards 1)

Case 4 : x = 0 and P∗(1) < P∗(0) (correct prediction towards 0)

Cases 1 and 2 as well as cases 3 and 4 are reversions of each other. To avoid
unnecessary redundancies only case 1 and 3 will be analyzed:

Case 1: x = 0 but P∗(1) > P∗(0)

If x = 0 but P∗(1) > P∗(0) then P∗(1) should decrease in favor of P∗(0). By
the above the error will be negative .
If under these conditions a model m outputs a prediction with pm(0) < p∗(0) then
d will be positive . As result the term error×d will be negative and the weight of
the model will decrease . This is consistent with making a model which predicts
stronger towards 1 less significant.
If under these conditions a model m outputs a prediction with pm(0) > p∗(0) then
d will be negative . As result the term error× d will be positive and the weight
of the model will increase . This is consistent with making a model which predicts
stronger towards 0 more significant.

Case 3: x = 1 and P∗(1) > P∗(0)

10

If x = 1 and P∗(1) > P∗(0) then the goal should be to further increase P∗(1)
and decrease P∗(0). By the above the error will be positive .
If under these conditions a model m outputs a prediction with pm(1) > p∗(1) then
d will be positive . As result the term error×d will be positive and the weight of
the model will increase . This is consistent with making a model which predicts
stronger towards 1 more significant.
If under these conditions a model m outputs a prediction with pm(1) < p∗(1) then
d will be negative . As result the term error×d will be negative and the weight
of the model will decrease . This is consistent with making a model which predicts
stronger towards 0 less significant.

One drawback of this method is that all weight adjustments use the same error-
value. Being able to calculate error-values individually for each model and adjust
the weights in a more differentiated manner might lead to more flexible ways of
context mixing, opening possibilities for further improvement.

2.4.3 Mixing by neural networks

If one examines the previous weight adjustment formula wm = wm +error×d and
possesses some knowledge about AI-algorithms and particularly neural networks
it probably reminds him of another very similar formula used there:

wm = wm + errorm × α× Inputi[Lak12]

This and the fact that errorm is “some kind of” individual value (explanation
follows) immediately suggest to use neural network algorithms to perform context
mixing.

2.4.3.1 Neural Networks Neural networks try to imitate information pro-
cessing as it is done between biological neurons. As shown in figure 2, a neural
network is usually a weighted directed graph where nodes represent neurons and
weights represent the connection strength between them. There is a layer of input
neurons where a signal is “fired” and a layer of output neurons where the signal
arrives at some strength. The final strength value represents some result. Signals
can only travel in one direction which is the direction towards the output layer.
They get distributed over all edges and are multiplied by the weight of the edge
they pass.

11

Figure 2: Visualization of a backpropagation neural network with one input layer,
one hidden Layer and one output Layer

Weights and signals are usually real numbers between 0 and 1. The incom-
ing signal strength Inputi of a node is a function of the sum of all incoming
signals. This function, also called the activation function. It usually normalizes
and propagates the newly calculated signal to all neurons in front of it. This
continues until the output layer is reached. The interpretation what a strong or
weak input/output signal means can be chosen freely which makes the algorithm
very flexible. In neural networks, the weights are interpreted as the knowledge
of the network and they can be optimized by repetitive firing of different signals
with different ideal outputs. This repetitive process of weight adaptation is called
“learning” or “training” and one such iteration is called an “epoch”. Finally, the
layer between the input and the output (so called “hidden layer”) can be ignored
here, since it is not used in classic PAQ versions.

2.4.3.2 Backpropagation Neural Networks Backpropagation networks are
commonly used if the ideal output signal is known. When ideal output signals are

12

known then for each input node an errorm-signal can be calculated and used to
guide the learning process. This is done by tracing the signals backwards from
Output to Input and adjusting the weights by using individual error values. His-
torically, it took a very long time to figure out the procedure for propagating the
errors back in order to adjust the weights. The official breakthrough happened in
1985[RHW85] while backpropagation networks were already proposed by Alexan-
der Bain in 1873[Bai73].

2.4.3.3 Neural Networks in PAQ In PAQ, the input nodes/neurons can be
directly interpreted as models, and the signal weights can be directly interpreted as
model weights. Since no hidden layers are used, the network is a complete, directed,
weighted bipartite graph. The input signals are functions of Pm(1) for all m and
the output signal comes from only one neuron representing P∗(1). Probabilities
Pm(0) and the probability P∗(0) can be ignored because they can be deduced by
Pm(0) = 1− Pm(1) and P∗(0) = 1− P∗(1).

Figure 3: Weight adjustment by using a backpropagation neural network variant.

The function that translates the probabilities Pm(1) into a signal sm is called

13

stretch:

stretch(x) = logit(x) = ln(
x

1− x
)4

In this regard the signal strength sm that is fired by a particular model m is defined
as:

sm := stretch(Pm(1))

Figure 4: Plot of the logit (stretch) -function.

Notice that if the probability is 0.5, then stretch(0.5) = 0 which means there
is no signal at all if neither 0 nor 1 can be predicted 4. The output signal is
interpreted as “stretched” and must therefore be “unstretched” to obtain P∗(1).
This is done by so called squash-function:

squash(x) = stretch−1(x) =
1

1 + e−x

14

For each node an individual error is calculated as follows:

errorm = x− Pm(1)

The weight adjustment is now defined as:

wm = wm + errorm × sm × η

With 0.002 < η < 0.01 being so called “learning rate”, where η can be set to a
fixed value or it can be modulated by using specifically designed algorithms. Such
algorithms usually gradually decrease η. Obviously the higher η is the stronger
the weight adjustment. The reason for that parameter is the fact that if η would
equal 1 then the weights would be “perfectly adjusted” for the current epoch in
such a way that the same input again would lead to a “perfect prediction” of 0 or
1. This is not what is intended because all previous weight adjustments would be
“overwritten” and there would be no memory of previously accumulated knowl-
edge. The reason for usage of sm in weight adjustment would reach beyond the
purpose of this paper and will not be discussed.

At last, a flexible and effective way is found to combine multiple predictions by
an intelligent moderation of weights. Such AI methodology can be pushed even
further by using more complex NN’s or NN models, but the basic principle will
likely remain the same.

3 Optimizations

PAQ can be made format specific by activating a specially designed set of models
for specific file formats. For example there is a special model for JPEG files
which takes advantage of knowing that JPEG compression was applied. It reverses
the calculation of so called “discrete cosine transform coefficients” used in JPEG
Format and compresses them again using its own methods. PAQ also supports
preprocessing data. This is particularly useful in text files where words can be
substituted with an index based on a standard dictionary.

15

4 Evaluation

A comparison with well known data archivers leads to no surprises except with
random files:

Figure 5: Comparison between PAQ version 8O and commonly used archivers

To ensure randomness, the random file was a 10 MB sequence of numbers
downloaded from the Quantum Random Numbers Server at The Australian Na-
tional University. The mp3-file was the German national anthem, the jpeg file was
a 512x512 px cut of the Lena-image, which is commonly used as a test file in image
processing. The bmp-file was the converted from the jpeg file, the zip file was an
archived version of the operating system ReactOS 0.3.14 and the text file was a
collection of all Shakespeare works downloaded from the Gutenberg Project.

By information theory, it is extremely unlikely that a random file can be com-
pressed. It should become lager in all cases. No surprise so far, but PAQ8O
turned out to be the worst in compressing random data, the reason being that
PAQ compresses the entire data stream without checking if prediction is helpful
to compression at all. Since the data seemed truly unpredictable, most predic-
tions were very inaccurate independent of how they were weighted. This results in
an arithmetic code that is larger than the original data most of the time. Other
archive formats tend to recognize such data and can use that information to achieve
better results, for example by skipping compression. That directly suggest another
potential for improvement in PAQ.
PAQ explores new compression limits while running on hardware that sometimes
needs hours or even days to finish the task while often using more than 1GB of
memory. This, and the fact that decompression uses the same amount of time and
resources, makes the algorithm unsuitable for everyday use. The main advantage
is, that PAQ reaches best compression compared to other algorithms, but at cost.

16

The flexible plug in-like model architecture allows for the compression being very
general, but also very specific at the same time. It can be standardized easily
and being open source enables potential for wide spread application. In addition,
developers believe that PAQ is not encumbered by any patents and recent devel-
opments like the ZPAQ standard made some newer versions backwards compatible
which was not the case before.

Despite being mostly experimental and suboptimal for every day use, PAQ might
have potential for the space industry, where data transmission is expensive and
takes place with very limited bandwidths. For example NASA’s Opportunity mars
rover can send data at rates of 20 MB per hour. To the best knowledge of the
author, there is no research to improve the ICER image compression algorithm
which is the current standard for all NASA rovers. The author suggests, that
PAQ might inspire new ideas here.

5 Summary and Outlook

When understanding the algorithm, one idea arises to improve it once more: All
the models and contexts are done by limited human thinking processes. There
is no way to generate models automatically and deterministically. The author’s
idea is that such models could be evolved by using a deterministic evolutionary
algorithm. The resulting model would be very specific for a particular file and
could evolve during the compression process to possibly predict better than all
other “hard coded” models. On the other hand, implementing such optimization
might significantly slow down the compression process.

PAQ is an advanced algorithm that improves PPM by having many different
models, and many flexible contexts. This allows to use much more world knowl-
edge and make a more accurate prediction most of the time. Like PPM, PAQ also
uses arithmetic coding as its standard but because of its usage of multiple models,
it has to find a way to combine them into one single prediction again. Calculating
such final prediction is called “context mixing”. The single outcome then can be
used as usual to perform arithmetic coding.

At birth of PAQ, context mixing was performed with fixed model weights but
evolved through adaptive weighting to advanced mixing methods inspired by AI
algorithms. It was shown that adaptive model weighting is consistent with the
intention of favoring successful models.

Although there is hardly a compression algorithm that is more effective, there

17

are still improvement ideas such as skipping “incompressible” parts and evolving
new file specific models instead of inventing new ones directly by human hand.

PAQ is very slow and consumes a lot of hardware resources. Despite it’s ex-
perimental nature, if data transfer is very slow and very expensive, usage of PAQ
might be well justified. Considering Kolmogorov’s findings it will be hard if not
impossible to ever tell when compression limits are finally reached.

18

References

[Bai73] Bain, Alexander: Mind and Body. The Theories of Their Relation.
London : International Scientific Series, 1873

[Haw04] Hawkins, Jeff: On Intelligence. Times Books, 2004. – ISBN 978–
0805074567

[Hut05] Hutter, Marcus: Universal Artificial Intelligence: Sequential De-
cisions based on Algorithmic Probability. Berlin : Springer, 2005. –
300 pages S. http://dx.doi.org/10.1007/b138233. http://dx.doi.
org/10.1007/b138233. – ISBN 3–540–22139–5

[Kol65] Kolmogorov, Andrey: Problems of Information Transmission. Bd. 1.
Taylor & Francis, 1965. – 1–7 S.

[Lak12] Lakemeyer, Gerhard: Introduction to Artificial Intelligence.
2011/2012. – Lecture Material

[Nim12] Nimpa, Junior L.: Huffman-Codierung, Arithmetische Codierung. In:
Seminar on compression algorithms (2012)

[PAQ] PAQ compression website. http://mattmahoney.net/dc/

[RHW85] Rumelhart, David E. ; Hinton, Geoffrey E. ; Williams, Ronald J.:
Learning Internal Representations by Error Propagation / University of
California. 1985. – Forschungsbericht

[Sew12] Sewing, Nils: PPM - Prediction by Partial Matching. In: Seminar on
compression algorithms (2012)

19

http://dx.doi.org/10.1007/b138233
http://dx.doi.org/10.1007/b138233
http://dx.doi.org/10.1007/b138233
http://mattmahoney.net/dc/

	Introduction
	PAQ Algorithm
	Recap about arithmetic coding
	Recap about PPM
	Connection to PAQ
	Contexts
	Models

	Context Mixing
	Mixing by weighted averaging
	Mixing by adaptive model weighting
	Mixing by neural networks

	Optimizations
	Evaluation
	Summary and Outlook

