Advanced Graph Algorithms

Jan Dreier, Philipp Kuinke,
Peter Rossmanith

Lehr- und Forschungsgebiet Theoretische Informatik



Overview

Organisation
Libraries

Algorithms



The Topic

Graph algorithms are an important tool to solve problems and
Graph Libraries provide a framework for them. Open source
gave rise to a lot of tools and it is time to give something back.



The Topic

The goals of this practical course are as follows:
¢ Improve on your teamwork,
e improve your programming skills,
¢ learn new and advanced graph algorithms, and
o familiarize yourself with contributing to active open source
projects

And hopefully: Extend existing graph libraries with new
algorithms.



What we expect

Since this is a Masters level course we expect you already have
the following

strong foundation in theoretical computer science

knowledge of basic graph algorithms (dfs, shortest-path,
spanning tree, flows, etc.)

solid programming skills
familiarity with git
strong independence



Timeline

Today you will form two teams.

In three weeks you have selected a library and familiarized
yourself with it. You should know exactly which algorithms
are implemented and which are not (this includes checking
pull requests!)

Present (and explain!) the library and the first algorithm(s)
you want to implement.

In regular presentations you will tell us and the others
about your progress and receive feedback.



Workflow

In each team has to

understand a complicated algorithm

implement it properly

adhere to the contribution guidelines of your library
write extensive tests and debug your code

make your code as efficient as possible (profiling and
optimization using callgrind, gprof, etc)

write helpful documentation

communicate with maintainer

present your progression to the other teams
submit a pull request to your library

react to changes requested by maintainer
start over with another algorithm



Meetings

¢ Tell us and the other team

what you have done

what you are working on
what you plan to do

what the difficulties are

what your long-term goals are

o Everybody needs to present
o Tuesdays 14:15-15:45



Source Control

We recommend using Github or Gitlab
» Github: fork library directly and develop in the open
o Gitlab: unlimited private repos
e give us read access



Libraries

The choice of the library is down to personal preference.
© Boost (C++)
® igraph (C)
® JgraphT (Java)
@ Networkx (Python)
©® Something else?



Boost

e Language: C++
o Website: http:
//www.boost.org/doc/1libs/1_66_0/1ibs/graph/doc/

e Content: www.boost.org/doc/1libs/1_66_0/1ibs/graph/
doc/table_of_contents.html

e Repo: https://github.com/boostorg/graph

Notes:
» most popular open source graph library for C++
¢ Mature, fast and flexible
o Template based
Notable Missing algorithms:
e treewidth decompositions
o centrality measures
» planar separators


http://www.boost.org/doc/libs/1_66_0/libs/graph/doc/
http://www.boost.org/doc/libs/1_66_0/libs/graph/doc/
www.boost.org/doc/libs/1_66_0/libs/graph/doc/table_of_contents.html
www.boost.org/doc/libs/1_66_0/libs/graph/doc/table_of_contents.html
https://github.com/boostorg/graph

igraph

Language: C

Website: http://igraph.org/

Manual: http://igraph.org/c/doc/

Repo: https://github.com/igraph/igraph

Notes:

Collection of network analysis tools with focus on efficiency
and portability

less general and more focused than boost
Interface for python and R

maintainer seems busy

in C (memory allocation, pointers,...)


http://igraph.org/
http://igraph.org/c/doc/
https://github.com/igraph/igraph

JgraphT

e Language: Java
o Website: http://jgrapht.org/
e Repo: https://github.com/jgrapht/jgrapht
Notes:
e Has a wiki: https://github.com/jgrapht/jgrapht/wiki
» Clear contribution guidelines
» Good documentation
¢ Very object oriented (every Algorithm is a class)
Notable Missing algorithms:
» Planarity algorithms


http://jgrapht.org/
https://github.com/jgrapht/jgrapht
https://github.com/jgrapht/jgrapht/wiki

Networkx

e Language: Python
o Website: https://networkx.github.io/
e Repo: https://github.com/networkx/networkx

Notes:
» Excellent documentation
» Very active community
e Python is slow compared to C++ and Java
e Code is easily readable
Notable Missing algorithms:
» Exact algorithms for NP-hard problems


https://networkx.github.io/
https://github.com/networkx/networkx

Something Else

You can choose another graph library but it has to be
well-maintained and in use! Talk to us if you want to do that.



Algorithms

(some ideas)



Simple FO Model-Checking

given graph G and FO-formula ¢, decide whether G = ¢
in time n!%! via branching

possible to add some straightforward pruning rules

an easier project to get started



Simple Heuristics for Treewidth
Decomposition

e computing an optimal treewidth decomposition is hard, but
a greedy strategy often leads to good results.

o for algorithms see slide Possible Heuristics on Upper
Bounds http://web.eecs.utk.edu/ cphillip/cs594_
spring2015_projects/treewidth.pdf

e an easier project to get started


http://web.eecs.utk.edu/~cphillip/cs594_spring2015_projects/treewidth.pdf
http://web.eecs.utk.edu/~cphillip/cs594_spring2015_projects/treewidth.pdf

Centrality Measures

o there are various centrality measures. They all try to
identify the most important vertices within a graph.

¢ boost only has edge betweenness centrality

 but there are many more
https://en.wikipedia.org/wiki/Centrality


https://en.wikipedia.org/wiki/Centrality

Two Vertex-Disjoint Paths

¢ A linear-time algorithm that does not need a planar
embedding is presented for the problem of computing two
vertex-disjoint paths, each with prescribed endpoints, in an
undirected 3-connected planar graph.

e paper: Hagerup, A Very Practical Algorithm for the
Two-Paths Problem in 3-Connected Planar Graphs
https://link.springer.com/chapter/10.1007/
978-3-540-74839-7_14 (Behind Springer wall. Ask us if
you cannot access it)


https://link.springer.com/chapter/10.1007/978-3-540-74839-7_14
https://link.springer.com/chapter/10.1007/978-3-540-74839-7_14

Faster Maximum Flow Algorithms

e many libraries implement Edmonds-Karp, which runs in
time O(V E?).

» By making a case distinction O(V E) is possible, see:
https://en.wikipedia.org/wiki/Maximum_flow_
problem#Solutions


https://en.wikipedia.org/wiki/Maximum_flow_problem#Solutions
https://en.wikipedia.org/wiki/Maximum_flow_problem#Solutions

Weighted Flow Algorithms

e many libraries have flow algorithms, but few have
algorithms for weighted flow problems, e.g., min cost max
flow.

e some are listed at https://en.wikipedia.org/wiki/
Circulation_problem#Related_problems

» these problems can often be solved easily using LPs. Can
we achieve competitive performance with a more
lightweight approach?


https://en.wikipedia.org/wiki/Circulation_problem#Related_problems
https://en.wikipedia.org/wiki/Circulation_problem#Related_problems

Planarity

Planarity testing

Planar embedding
Planar Separator
Planar graph generator



FPT

Consider algorithms which run in time f(k)n°®) for some
parameter k

Example: Find vertex cover of size k in time 2¥n
many algorithms only feasible for very small k&
More fine-grained than P and NP

missing in almost every library

We have many resouces for you if you are interested in this
topic (e.g., Parameterized Algorithms by Cygan et al.)



Random Graphs and Complex
Networks

o Community Graph Generators with ground truth (e.g. LFR
benchmark)

« Kleinberg-, Chung-Lu-, Configuration-Model



	Organisation
	Libraries
	Algorithms

