
Advanced Graph Algorithms

Jan Dreier, Philipp Kuinke,
Peter Rossmanith

Lehr- und Forschungsgebiet Theoretische Informatik

Overview

Organisation

Libraries

Algorithms

The Topic

Graph algorithms are an important tool to solve problems and
Graph Libraries provide a framework for them. Open source
gave rise to a lot of tools and it is time to give something back.

The Topic

The goals of this practical course are as follows:
• Improve on your teamwork,
• improve your programming skills,
• learn new and advanced graph algorithms, and
• familiarize yourself with contributing to active open source

projects
And hopefully: Extend existing graph libraries with new
algorithms.

What we expect

Since this is a Masters level course we expect you already have
the following
• strong foundation in theoretical computer science
• knowledge of basic graph algorithms (dfs, shortest-path,

spanning tree, flows, etc.)
• solid programming skills
• familiarity with git
• strong independence

Timeline

• Today you will form two teams.
• In three weeks you have selected a library and familiarized

yourself with it. You should know exactly which algorithms
are implemented and which are not (this includes checking
pull requests!)

• Present (and explain!) the library and the first algorithm(s)
you want to implement.

• In regular presentations you will tell us and the others
about your progress and receive feedback.

Workflow
In each team has to
• understand a complicated algorithm
• implement it properly
• adhere to the contribution guidelines of your library
• write extensive tests and debug your code
• make your code as efficient as possible (profiling and

optimization using callgrind, gprof, etc)
• write helpful documentation
• communicate with maintainer
• present your progression to the other teams
• submit a pull request to your library
• react to changes requested by maintainer
• start over with another algorithm

Meetings

• Tell us and the other team
• what you have done
• what you are working on
• what you plan to do
• what the difficulties are
• what your long-term goals are

• Everybody needs to present
• Tuesdays 14:15-15:45

Source Control

We recommend using Github or Gitlab
• Github: fork library directly and develop in the open
• Gitlab: unlimited private repos
• give us read access

Libraries

The choice of the library is down to personal preference.
1 Boost (C++)
2 igraph (C)
3 JgraphT (Java)
4 Networkx (Python)
5 Something else?

Boost
• Language: C++
• Website: http:
//www.boost.org/doc/libs/1_66_0/libs/graph/doc/

• Content: www.boost.org/doc/libs/1_66_0/libs/graph/
doc/table_of_contents.html

• Repo: https://github.com/boostorg/graph

Notes:
• most popular open source graph library for C++
• Mature, fast and flexible
• Template based

Notable Missing algorithms:
• treewidth decompositions
• centrality measures
• planar separators
• . . .

http://www.boost.org/doc/libs/1_66_0/libs/graph/doc/
http://www.boost.org/doc/libs/1_66_0/libs/graph/doc/
www.boost.org/doc/libs/1_66_0/libs/graph/doc/table_of_contents.html
www.boost.org/doc/libs/1_66_0/libs/graph/doc/table_of_contents.html
https://github.com/boostorg/graph

igraph

• Language: C
• Website: http://igraph.org/
• Manual: http://igraph.org/c/doc/
• Repo: https://github.com/igraph/igraph

Notes:
• Collection of network analysis tools with focus on efficiency

and portability
• less general and more focused than boost
• Interface for python and R
• maintainer seems busy
• in C (memory allocation, pointers,. . .)

http://igraph.org/
http://igraph.org/c/doc/
https://github.com/igraph/igraph

JgraphT

• Language: Java
• Website: http://jgrapht.org/
• Repo: https://github.com/jgrapht/jgrapht

Notes:
• Has a wiki: https://github.com/jgrapht/jgrapht/wiki
• Clear contribution guidelines
• Good documentation
• Very object oriented (every Algorithm is a class)

Notable Missing algorithms:
• Planarity algorithms

http://jgrapht.org/
https://github.com/jgrapht/jgrapht
https://github.com/jgrapht/jgrapht/wiki

Networkx

• Language: Python
• Website: https://networkx.github.io/
• Repo: https://github.com/networkx/networkx

Notes:
• Excellent documentation
• Very active community
• Python is slow compared to C++ and Java
• Code is easily readable

Notable Missing algorithms:
• Exact algorithms for NP-hard problems

https://networkx.github.io/
https://github.com/networkx/networkx

Something Else

You can choose another graph library but it has to be
well-maintained and in use! Talk to us if you want to do that.

Algorithms
(some ideas)

Simple FO Model-Checking

• given graph G and FO-formula ϕ, decide whether G |= ϕ

• in time n|ϕ| via branching
• possible to add some straightforward pruning rules
• an easier project to get started

Simple Heuristics for Treewidth
Decomposition

• computing an optimal treewidth decomposition is hard, but
a greedy strategy often leads to good results.

• for algorithms see slide Possible Heuristics on Upper
Bounds http://web.eecs.utk.edu/~cphillip/cs594_
spring2015_projects/treewidth.pdf

• an easier project to get started

http://web.eecs.utk.edu/~cphillip/cs594_spring2015_projects/treewidth.pdf
http://web.eecs.utk.edu/~cphillip/cs594_spring2015_projects/treewidth.pdf

Centrality Measures

• there are various centrality measures. They all try to
identify the most important vertices within a graph.

• boost only has edge betweenness centrality
• but there are many more
https://en.wikipedia.org/wiki/Centrality

https://en.wikipedia.org/wiki/Centrality

Two Vertex-Disjoint Paths

• A linear-time algorithm that does not need a planar
embedding is presented for the problem of computing two
vertex-disjoint paths, each with prescribed endpoints, in an
undirected 3-connected planar graph.

• paper: Hagerup, A Very Practical Algorithm for the
Two-Paths Problem in 3-Connected Planar Graphs
https://link.springer.com/chapter/10.1007/
978-3-540-74839-7_14 (Behind Springer wall. Ask us if
you cannot access it)

https://link.springer.com/chapter/10.1007/978-3-540-74839-7_14
https://link.springer.com/chapter/10.1007/978-3-540-74839-7_14

Faster Maximum Flow Algorithms

• many libraries implement Edmonds-Karp, which runs in
time O(V E2).

• By making a case distinction O(V E) is possible, see:
https://en.wikipedia.org/wiki/Maximum_flow_
problem#Solutions

https://en.wikipedia.org/wiki/Maximum_flow_problem#Solutions
https://en.wikipedia.org/wiki/Maximum_flow_problem#Solutions

Weighted Flow Algorithms

• many libraries have flow algorithms, but few have
algorithms for weighted flow problems, e.g., min cost max
flow.

• some are listed at https://en.wikipedia.org/wiki/
Circulation_problem#Related_problems

• these problems can often be solved easily using LPs. Can
we achieve competitive performance with a more
lightweight approach?

https://en.wikipedia.org/wiki/Circulation_problem#Related_problems
https://en.wikipedia.org/wiki/Circulation_problem#Related_problems

Planarity

• Planarity testing
• Planar embedding
• Planar Separator
• Planar graph generator

FPT

• Consider algorithms which run in time f(k)nO(1) for some
parameter k

• Example: Find vertex cover of size k in time 2kn

• many algorithms only feasible for very small k
• More fine-grained than P and NP
• missing in almost every library
• We have many resouces for you if you are interested in this

topic (e.g., Parameterized Algorithms by Cygan et al.)

Random Graphs and Complex
Networks

• Community Graph Generators with ground truth (e.g. LFR
benchmark)

• Kleinberg-, Chung-Lu-, Configuration-Model

	Organisation
	Libraries
	Algorithms

