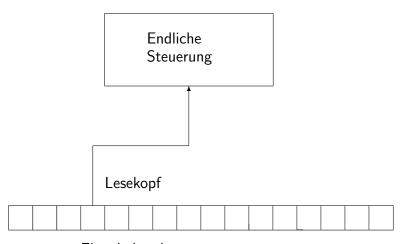
Definition

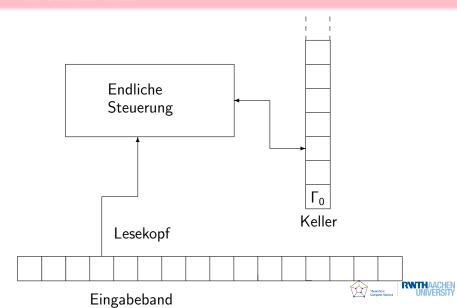
Ein Kellerautomat (PDA) $M = (Q, \Sigma, \Gamma, \delta, q_0, \Gamma_0, F)$ ist ein 7-Tupel, wobei

- Q die endliche Menge der Zustände,
- Σ das Eingabealphabet,
- Γ das Kelleralphabet
- $\delta \colon Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$, wobei jedes Bild eine *endliche* Menge von Paaren ist, die *Übergangsfunktion*
- $q_0 \in Q$ der Startzustand
- $\Gamma_0 \in \Gamma$ das Kellerbodensymbol
- $F \subseteq Q$ die Menge der Endzustände.

Endliche Automaten



Kellerautomaten



Konfigurationen

Definition

Eine Konfiguration eines PDA ist ein Tripel (q, w, γ) , wobei

- $q \in Q$ ein Zustand,
- w das noch zu lesende Wort und
- ullet γ der Kellerinhalt ist.

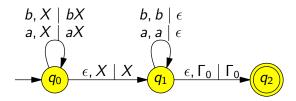
Wir schreiben

$$(q, aw, X\beta) \vdash (p, w, \alpha\beta)$$

falls
$$(p, \alpha) \in \delta(q, a, X)$$
, wobei $a \in \Sigma \cup \{\epsilon\}$, $X \in \Gamma$.

 $(p, w, \alpha\beta)$ ist eine Nachfolgekonfiguration von $(q, aw, X\beta)$.

Beispie



$$(abba, q_0, \Gamma_0) \vdash (bba, q_0, a\Gamma_0) \\ \vdash (ba, q_0, ba\Gamma_0) \\ \vdash (ba, q_1, ba\Gamma_0) \\ \vdash (a, q_1, a\Gamma_0) \\ \vdash (\epsilon, q_1, \Gamma_0) \\ \vdash (\epsilon, q_2, \Gamma_0)$$

Definition

Es sei $M = (Q, \Sigma, \Gamma, \delta, q_0, \Gamma_0, F)$ ein PDA.

Für ein Eingabewort w ist die Startkonfiguration (q_0, w, Γ) .

⊢ ist die transitiv-reflexive Hülle von ⊢.

Die von M durch Endzustand akzeptierte Sprache L(M) ist

$$\{ w \in \Sigma^* \mid (q_0, w, \Gamma_0) \stackrel{*}{\vdash} (q, \epsilon, \beta) \text{ für ein } q \in F \text{ und } \beta \in \Gamma^* \}.$$

$$egin{aligned} (q_0,abba,\Gamma_0)&\vdash (q_0,bba,a\Gamma_0)\ &\vdash (q_0,ba,ba\Gamma_0)\ &\vdash (q_1,ba,ba\Gamma_0)\ &\vdash (q_1,a,a\Gamma_0)\ &\vdash (q_1,\epsilon,\Gamma_0)\ &\vdash (q_2,\epsilon,\Gamma_0) \end{aligned}$$

Startkonfiguration: $(q_0, abba, \Gamma_0)$ abba wird akzeptiert.

Definition

Es sei $M = (Q, \Sigma, \Gamma, \delta, q_0, \Gamma_0, F)$ ein PDA.

Die von M durch leeren Keller akzeptierte Sprache N(M) ist

$$\mathcal{N}(M) = \{ w \in \Sigma^* \mid (q_0, w, \Gamma_0) \overset{*}{\vdash} (p, \epsilon, \epsilon) \text{ für ein } p \in Q \}$$

(F spielt keine Rolle und kann weggelassen werden.)

Beispiel

$$b, X \mid bX \qquad b, b \mid \epsilon$$

$$a, X \mid aX \qquad a, a \mid \epsilon$$

$$Q_0 \qquad \epsilon, X \mid X \qquad q_1 \qquad \epsilon, \Gamma_0 \mid \Gamma_0 \qquad q_2$$

$$L(M) = \{ ww^R \mid w \in \{a, b\}^* \}, \text{ aber } N(M) = \emptyset.$$

$$b, X \mid bX \qquad b, b \mid \epsilon$$

$$a, X \mid aX \qquad a, a \mid \epsilon$$

$$Q_0 \qquad \epsilon, X \mid X \qquad q_1 \qquad \epsilon, \Gamma_0 \mid \epsilon \qquad q_2$$

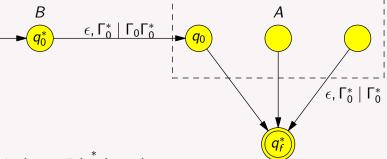
$$N(M) = \{ ww^R \mid w \in \{a, b\}^* \}, \text{ aber } L(M) = \emptyset.$$

Theorem

Für einen PDA $A = (Q, \Sigma, \Gamma, \delta, q_0, \Gamma_0)$ gibt es einen PDA B mit L(B) = N(A).

Reweis

Verwende
$$B = (Q \cup \{q_0^*, q_f^*\}, \Sigma, \Gamma \cup \{\Gamma_0^*\}, \delta_B, q_0^*, \Gamma_0^*, \{q_f^*\})$$



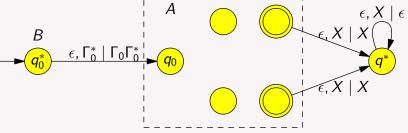
$$A:(q_0,w,\Gamma_0)\stackrel{*}{\underset{A}{\vdash}}(p,\epsilon,\epsilon)$$

$$B: (q_0^*, w, \Gamma_0^*) \underset{B}{\vdash} (q_0, w, \Gamma_0 \Gamma_0^*) \underset{AB}{\overset{*}{\vdash}} (p, \epsilon, \Gamma_0^*) \underset{B}{\vdash} (q_p^*, \epsilon, \Gamma_0)$$

Theorem

Für einen PDA $A = (Q, \Sigma, \Gamma, \delta, q_0, \Gamma_0, F)$ gibt es einen PDA B mit N(B) = L(A).

Bewels. $B = (q \cup \{q^*, q_0^*\}, \Sigma, \Gamma \cup \{\Gamma_0^*\}, \delta_B, q_0^*, \Gamma_0^*)$



B arbeitet wie A, kann aber von Endzuständen spontan nach q^* , wo der Keller geleert wird.

Theorem

Es sei G = (N, T, P, S) eine CFG ohne ϵ -Produktionen. Dann gibt es einen PDA M mit N(M) = L(G).

Beweis.

$$M = (\{q\}, T, N \cup T, \delta, q, S)$$
 wobei

•
$$\delta(q, a, a) = \{(q, \epsilon)\}$$
 für alle $a \in T$

•
$$\delta(q, \epsilon, A) = \{ (q, \alpha) \mid A \to \alpha \in P \}$$
 für alle $A \in N$.

Behauptung:

$$(q, w, S) \stackrel{*}{\vdash} (q, \epsilon, \epsilon) \text{ gdw. } S \stackrel{*}{\Rightarrow} w$$

Beispiel

$$S \rightarrow aSa \mid bSb \mid a \mid b$$

Zugehöriger PDA:

$$\begin{array}{c|c} \epsilon, S & aSa \\ \epsilon, S & bSb \\ \hline \epsilon, S & a \\ \epsilon, S & b \\ a, a & \epsilon \\ b, b & \epsilon \end{array}$$

a, S | Sa b, S | Sb a, S | ε b, S | ε a, a | ε b, b | ε

Das Kellerbodensymbol ist S.

bzw.

Theorem

Es sei $M = (Q, \Sigma, \Gamma, \delta, q_0, \Gamma_0)$ ein PDA.

Dann gibt es eine CFG G mit L(G) = N(M).

Beweis.

Für jedes $p \in Q$ erzeuge eine Grammatik $G_p = (N, \Sigma, P, [q_0, \Gamma_0, p])$ wobei $N = \{[q, Z, r] | q, r \in Q, Z \in \Gamma\}$. P enthält folgende Regeln:

$$[q, Z, q_k] \rightarrow a[r, \gamma_1, q_1][q_1, \gamma_2, q_2] \cdots [q_{k-1}, \gamma_k, q_k]$$

falls

•
$$(r, \gamma) \in \delta(q, a, Z)$$
 mit $a \in \Sigma \cup \{\epsilon\}$

•
$$\gamma = \gamma_1 \cdots \gamma_k \text{ mit } \gamma_i \in \Gamma$$

•
$$q_i \in Q$$
 (alle Möglichkeiten!)

Spezialfall: $[q, Z, r] \rightarrow a$ falls $\gamma = \epsilon$.

Es gilt $(q_0, w, \Gamma_0) \stackrel{\cdot}{\vdash} (p, \epsilon, \epsilon)$ gdw. $[q_0, \Gamma_0, p] \stackrel{*}{\Rightarrow} w$ d.h.

$$N(M) = \bigcup_{p \in Q} L(G_p).$$

Beispiel

$$a, \Gamma_0 \mid a\Gamma_0 \qquad \epsilon, \Gamma_0 \mid \epsilon$$

$$[q_0, \Gamma_0, q_1] \rightarrow a[q_0, a, q_1][q_1, \Gamma_0, q_1]$$

$$[q_0, a, q_1] \rightarrow [q_1, a, q_1]$$

$$[q_1, a, q_1] \rightarrow b$$

$$[q_1, \Gamma_0, q_1] \rightarrow \epsilon$$

$$[q_0, \Gamma_0, q_1] \Rightarrow a[q_0, a, q_1][q_1, \Gamma_0, q_1] \Rightarrow ab[q_1, \Gamma_0, q_1] \Rightarrow ab$$

Kontextfreie Sprachen

Definition

Ein PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, \Gamma_0, F)$ ist ein DPDA, falls

- $|\delta(q, a, X)|$ ≤ 1 für alle $q \in Q, a \in \Sigma \cup {\epsilon}, X \in \Gamma$
- Falls $\delta(q, a, X) \neq \emptyset$ für ein $q \in Q, X \in \Gamma, a \in \Sigma$, dann ist $\delta(q, \epsilon, X) = \emptyset.$

Eine Sprache L ist eine deterministische CFL, falls es einen DPDA M gibt mit L(M) = L. Sie heißen DCFL.

Deterministische Kellerautomaten

Theorem

DCFL ist unter Komplement abgeschlossen.

D.h. falls $L \in DCFL$, dann auch $\Sigma^* \setminus L \in DCFL$.

Frage: Warum ist der Beweis nicht trivial?

Deterministische Kellerautomaten

Lemma

Es sei $L \in DCFL$.

Dann gibt es einen DPDA M, der folgende Eigenschaften hat:

- ② Jede erreichbare Konfiguration (q, w, γ) hat eine Nachfolgekonfiguration, falls $w \neq \epsilon$.
- **Solution Solution Solution**

Beweis.

Konstruktion:

Wir erreichen

- durch einen Fangzustand und ein zusätzliches Kellerbodensymbol, das nie entfernt wird,
- \bigcirc durch: Falls es eine solche unendliche Folge gibt, die mit (q,ϵ,Z) beginnt, dann setze
 - $\delta(q, \epsilon, Z) := \{(q_{\emptyset} Z)\}$, wobei q_{\emptyset} der Fangzustand ist, falls ab q kein Endzustand durchlaufen wird,
 - $\delta(q, \epsilon, Z) := \{(q_f, Z)\}$ (neuer Endzustand) und $\delta(q_f, \epsilon, Z) := \{(q_\emptyset, Z)\}.$

Wir haben jetzt einen PDA, der die ganze Eingabe liest.

(Er blockiert nie.)

Deterministische Kellerautomaten

Beweis (des Theorems)

Ersetze Q durch $Q'=Q\times\{1,2,3\}$ und F durch $F'=Q\times\{3\}$ und δ durch δ' mit:

Falls
$$\delta(q, \epsilon, Z) = \{(p, \gamma)\}$$
 setze

$$\delta'((q,1),\epsilon,Z) := \begin{cases} \{((p,1),\gamma)\} & \text{falls } p \notin F \\ \{((p,2),\gamma)\} & \text{falls } p \in F \end{cases}$$

somit
$$\delta'((q,2),\epsilon,Z) := \{((p,2),\gamma)\}$$

Falls $\delta(q,a,Z) = \{(p,\gamma)\}$ für $a \in \Sigma$ setze

$$\delta'((q,1),\epsilon,Z):=\{((q,3),Z)\}$$
 und

$$\delta'((q,2),a,Z) = \delta'((q,3),a,Z) := \begin{cases} \{(p,1),\gamma\} & \text{falls } p \notin F \\ \{(p,2),\gamma\} & \text{falls } p \in F \end{cases}$$

Neuer Startzustand: $(q_0, 1)$ falls $q_0 \in F$, $(q_0, 2)$ sonst.

"1": Nach dem letzten Zeichens keinen Endzustand durchlaufen "2": Nach dem letzten Zeichens einen Endzustand durchlaufen

Abschlußeigenschaften kontextfreier Sprachen

Theorem

Es seien L und L' kontextfreie und R eine reguläre Sprache. Dann sind L \cap R, L \setminus R, L \cup L' und LL' wieder kontextfreie Sprachen.

Beweis

Schnitt und Differenz: Produktautomat.

Vereinigung:
$$G_1 = (N, T, P_1, S_1)$$
 und $G_2 = (N, T, P_2, S_2)$.

$$G = (N, T, P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\}, S), L(G) = L(G_1) \cup L(G_2).$$

Konkatenation:
$$G_1 = (N, T, P_1, S_1)$$
 und $G_2 = (N, T, P_2, S_2)$.

$$G = (N, T, P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\}, S), L(G) = L(G_1)L(G_2).$$

Kleene'sche Hülle: $G_1 = (N, T, P_1, S_1)$.

$$G = (N, T, P_1 \cup \{S \rightarrow \epsilon \mid SS \mid S_1\}, S), L(G) = L(G_1)^*.$$

Abschlußeigenschaften kontextfreier Sprachen

Theorem

CFL ist nicht unter Komplement abgeschlossen und damit auch nicht unter Schritt.

Beweis.

Es sei
$$L = \{ a^i b^j c^k \mid i \geq j \lor k \geq j \lor i + k \leq j \}$$

Offensichtlich ist L kontextfrei.

Es sei
$$\bar{L} = \{a, b, c\}^* \setminus L$$
 und $L' = \bar{L} \cap a^*b^*c^*$.

Falls \bar{L} kontextfrei wäre, dann auch L'.

$$L' = \{ a^i b^j c^k \mid i < j \land k < j \land i + k > j \}$$
 ist aber nicht kontextfrei (Pumping-Lemma).

Also ist auch \bar{L} nicht kontextfrei.

Theorem

DCFL ist nicht unter Vereinigung und daher auch nicht unter Schnitt abgeschlossen.

Beweis.

Wir definieren drei DCFLs:

•
$$L_1 = \{ a^i b^j c^k \mid i \geq j \},$$

•
$$L_2 = \{ a^i b^j c^k \mid k \ge j \},$$

•
$$L_3 = \{ a^i b^j c^k \mid i + k \leq j \}.$$

 $L_1 \cup L_2 \cup L_3$ ist eine CFL, ihr Komplement ist aber keine CFL.

Wäre $L_1 \cup L_2 \cup L_3$ eine DCFL, wäre auch das Komplement eine CFL.

Die Chomsky-Hierarchie besteht aus vier Stufen:

- Chomsky-0: Rekursiv aufzählbare Sprachen Unbeschränkte Grammatiken: $abAc \rightarrow Bcb$
- Chomsky-1: Kontextsensitive Sprachen Kontextsensitive Grammatiken: $abAc \rightarrow abBCc$, $aBCD \rightarrow abCaAbCD$, kein $A \rightarrow \epsilon$
- Chomsky-2: Kontextfreie Sprachen Kontextfreie Grammatiken: $A \rightarrow BC$, $B \rightarrow bCaAb$
- Chomsky-3: Reguläre Sprachen Linkslineare Grammatiken: $A \rightarrow a$, $B \rightarrow bC$

