

Date: November 29th, 2021

Exercise Sheet with solutions 06

Task T18

Show that Dominating Set \leq_{FPT} Hitting Set.

Solution

Let (G, k) be an instance of DOMINATING SET. Create an instance $(\mathcal{U}, \mathcal{F}, k')$ of HITTING SET as follows. Set $\mathcal{U} = V(G)$ and $\mathcal{F} = \{N[u] \mid u \in V(G)\}$, and k' = k. One can easily verify that G has a k-dominating set iff $(\mathcal{U}, \mathcal{F})$ has a k-hitting set.

Task T19

Show that $CLIQUE \leq_{FPT}$ INDEPENDENT SET on regular graphs.

Solution

Given an instance (G, k) for Clique, we construct an instance (G', k) with a regular graph G' as described below. If $k \leq 2$, then the Clique problem is trivial, hence we can output a trivial yes- or no-instance. Let d be the maximum degree of G.

- 1. Take d distinct copies G_1, \ldots, G_d of G and let v_i be the copy of $v \in V(G)$ in graph G_i .
- 2. For every vertex $v \in V(G)$, let us introduce a set V_v of $d d_{G(v)}$ vertices and add edges between every vertex of V_v and every v_i for $1 \le i \le d$.

Observe that every vertex of G' has degree exactly d. To prove the correctness of the reduction, we claim that G has a k-clique if and only if G' has. The left to right implication is clear: copies of G appear as subgraphs in G', thus any clique in G gives a corresponding clique in G'. For the reverse direction, observe that the vertices introduced in step 2. do not appear in any triangles. Therefore, assuming $k \ge 3$, these vertices cannot be part of a k-clique. Removing these vertices gives d disjoint copies of G, thus any k-clique appearing there implies the existence of a k-clique in G.

Finally take (\bar{G}', k) where \bar{G}' is the complementary graph to G', as our independent set instance. Because the regularity of the graph is not specified in the instance this is a valid fpt reduction from clique.

Task T20

Is there a parameterized reduction from VERTEX COVER to INDEPENDENT SET?

Solution

The following algorithm satisfies the formal definition of a parameterized reduction: solve the Vertex Cover instance in FPT time and output a trivial yes-instance or no-instance of Independent Set. More generally, if a problem A is FPT, then A has a parameterized reduction to any parameterized problem B that is nondegenerate in the sense that it has at least one yes-instance and at least one no-instance.

Task T21

Provide an FPT-reduction from INDEPENDENT SET to SHORT TURING MACHINE ACCEP-TANCE (STMA).

Solution

In this solution and the ones that follow, we will not be very formal in the Turing machine constructions. The goal is to get a feeling as to why such a reduction should work and not get bogged down in the details of Turing machine constructions.

Let (G, k) be an instance of the INDEPENDENT SET problem. Construct a non-deterministic Turing machine T_G whose input alphabet consists of n + 1 symbols $\{1, \ldots, n, \#\}$, where n = |V(G)|, and whose tape alphabet consists of the blank symbol $\{B\}$ and which works as follows:

- 1. The machine writes k symbols on its tape from the set $\{1, \ldots, n\}$.
- 2. It then verifies that the symbols written are distinct.
- 3. It then constructs the subgraph G' of G induced by these k vertices.
- 4. Finally, it verfies whether G' has edges and if not, it accepts.

Steps 1 and 2 take time O(k) and $O(k^2)$. Assuming that the graph G is "hardwired" in the machine as an adjacency matrix, Steps 3 and 4 together take time $O(k^2)$. The size of the state space of the machine M and the transition function table can be seen to be polynomial in the size of G. A very rough estimate is as follows: O(kn) states for choosing k vertices; O(k) states for verifying whether the vertices chosen are all distinct; $O(k^2)$ states for constructing the subgraph and another $O(k^2)$ states for verifying whether the subgraph has any edges.

Task H13 (5 credits)

Show that HITTING SET \leq_{FPT} Dominating Set.

Solution

Given an instance $(\mathcal{U}, \mathcal{F}, k)$ of HITTING SET, construct a graph G = (V, E) as follows. Define $V(G) = \{x, y_1, \ldots, y_{k+1}\} \cup U \cup F$, where $u_i \in U$ for each element $i \in \mathcal{U}$ and $s_j \in F$ for each set $S_j \in \mathcal{F}$, and x, y_1, \ldots, y_{k+1} are special vertices. Vertex $u_i \in U$ is connected to $s_j \in F$ iff $i \in S_j$ and vertex x is connected to every vertex $u_i \in U$ and to the vertices y_1, \ldots, y_{k+1} . The graph G has nor more edges.

We claim that there exists a hitting set of size k iff G has a dominating set of size k+1. Suppose that there exists a hitting set of size k. Choose the "corresponding" vertices from U and, in addition, choose vertex x. These k + 1 vertices clearly dominate all vertices of G. If G has a dominating set of size k + 1, then this set must include x. For otherwise, one would have to choose y_1, \ldots, y_{k+1} to dominate all of these. Since x also dominates all vertices in U, clearly this set does not contain any vertex from F. This is because vertices in F can dominate vertices of Uonly. Hence there exists k vertices in U that dominate all of F. The "corresponding" elements of \mathcal{U} hit all sets in \mathcal{F} and hence there exists a hitting set of size k.

Task H14 (5 credits)

Provide an FPT-reduction from DOMINATING SET to SHORT MULTI-TAPE TURING MACHINE ACCEPTANCE.

Solution

Given an instance (G, k) of DOMINATING SET, construct a machine with n + 1 tapes, where n = |V(G)|. The input alphabet of the machine is $\{1, \ldots, n, \#\}$ and the tape alphabet is $\{B\}$, denoting the blank symbol. The machine works as follows:

- 1. It first writes down symbol i (denoting the ith vertex) on the ith tape.
- 2. Over a set of k moves, it chooses k vertices non-deterministically and writes these on to the n + 1st tape.
- 3. It verifies that the k vertices chosen are distinct.
- 4. It then moves the head of the n + 1st tape to the starting position (where it started writing down the candidate vertices).
- 5. Suppose that the tape-head on the (n + 1)st tape sees the *j*th vertex on that tape. If vertex *i* on tape *i* is dominated by the *j*th vertex on tape n + 1, and the *i*th tape head does not see a #, the machine moves the *i*th tape head one cell to the right and prints a # on that cell. For a fixed *j* on tape n + 1, the machine does this simultaenously for all *i* satisfying this condition. Finally, the machine moves the tape-head on the (n + 1)st tape one cell to the right.
- 6. The machine accepts iff all tape heads from 1 to n see a #.

The total time taken by the machine is $O(k^2)$. One can again verify that the number of states and the size of the transition function table is polynomial in n.