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Task T1
The Independent Set problem is defined as follows. Given a graph G = (V,E) and an
integer k, is ther a set S of size k such that for all u, v ∈ S where u 6= v it holds uv /∈ E(G)?
Is Independent Set restricted to graphs of maximal degree d, where d is a constant, fixed
paramater tractable parameterized by the size of the solution k?

Solution
The problem is in FPT. One can design an FPT algorithm as follows. Take any node v. It will
have degree d or lower. We know that either v or one of its neighbors must be in a maximal
independent set. We branch over every possibility by taking a node of N [v] into the independent
set, deleting it and all of its neighbors and recursively solving the remaining graph. This gives
us an algorithm with running time O((d+ 1)k · n).

Task T2
The Triangle Vertex Deletion problem is defined as follows. Given a graph G = (V,E)
and an integer parameter k, are there k vertices whose deletion results in a graph with no cycles
of length three? Show that this problem is fixed-parameter tractable. What is the running time
of your algorithm? Is there some easy way to improve the running time?

Solution
The idea now is to branch on the vertices of a triangle. Let (u, v, w, v) be a three cycle in G.
We recurse on the instances (G− u, k − 1), (G− v, k − 1) and (G− w, k − 1). The branching
vector is (1, 1, 1) and the running time is 3k · poly(|G|).
To improve this, one can take into account that if a triangle is independent no branching is
needed, deleting one of their vertices is enough, but if a triangle with vertices x, y, z intersects
with a triangle with vertices x, a, b, one has five branching possibilities, deleting x, which de-
creases the size by 1, or deleting y or z and a or b, which are 4 possibilities that decrease the
size by 2. Thus, the branching vector becomes (1, 2, 2, 2, 2), with a branching number less than
2.5616.

Task T3
Given a boolean formula ϕ in CNF with n variables and m clauses and an integer k, you have
to decide whether there exists an assignment to the variables that satisfies at least k clauses.
Assume that the literals appearing in a clause are all distinct and that no clause contains a
literal and its negation. We first consider several special cases.

1. If ϕ contains only unit clauses (clauses with one literal), then how can you find the
optimum assignment?

2. If there are k clauses in ϕ that each contain k literals, then show that one can find an
assignment satisfying all these clauses in |ϕ| time.

3. Show that one can always find an assignment that satisfies at least m/2 clauses of ϕ.

Use these facts to design an FPT-algorithm with k as parameter.
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Solution

1. Set a literal to true or false depending on which satisfies more clauses.

2. Let the clauses be denoted C1, . . . , Ck. Pick an arbitrary literal from C1 and set it such
that C1 is satisfied. Inductively, proceed to Ci and pick a literal li that has not been set
in the previous i− 1 rounds. We are guaranteed that such a literal exists since there are
at least k distinct literals in the k clauses that we started out with. Set li such that Ci is
satisfied. The total time taken is linear in the sizes of all the clauses C1, . . . , Ck.

3. Start will the all-false assignment. If this does not satisfy at least half the clauses, then
it falsifies half the clauses. But then the all-true assignment satisfies all those clauses
falsified by the all-false assignment. In either case, you have an assignment that satisfies
at least half the clauses.

Our algorithm works as follows:

1. If k > m output “No” and halt.

2. If k ≤ m/2 output “Yes” and halt.

3. Separate the clauses of ϕ into short and long clauses: short clauses have fewer than k
literals and long clauses have at least k literals. Let ϕl and ϕs be the conjunction of the
long and short clauses respectively. Let there be b long clauses. If b ≥ k then output “Yes”
and halt.

4. Construct a binary tree of the following type: the root is labeled with the pair (ϕs, k− b).
In general, each node of the tree is labeled by a pair (ψ, j), where ψ is a boolean formula
in CNF and j is a non-negative integer. If the label of a node satisfies one of these three
categories it is a leaf node:

(a) If j exceeds the number of clauses in ψ, then (ψ, j) is a leaf-node labeled “No.”

(b) If j = 0, then (ψ, j) is a leaf-node labeled “Yes.”

(c) If no literal in ψ occurs positively and negatively then (ψ, j) is a leaf node labeled
“Yes.”

Pick a literal v that occurs both positively and negatively in ψ. Let the number of clauses
that contain this literal in the positive form be lpos and the number of clauses that contain
it negatively be lneg. Let ψv and ψv̄ be the formulas obtained by setting v to true and
false, respectively. Then (ψ, j) has two children labeled (ψv, j − lpos) and (ψv̄, j − lneg).
If the tree has a leaf node labeled “Yes”, output “Yes” and halt. Since lpos and lneg are
both at least 1 and j is at most k, we get a branching algorithm of 2k.

Task H1 (5 credits)

Use the algorithm presented in the lecture to solve the following instance of Center String.
Recall that the parameter is the hamming distance which we fix to be d = 2.

s1 = bbbb

s2 = aabb

s3 = aaaa

s4 = abaa

2



Solution

Here is the full computation tree of the algorithm. Note that the tree is not unique.

The first line are the inputs for center string. The second line gives the chosen string whose
Hamming distance is to high and the selected positions where it differs. Our always chose the
first string and the first positions that do not match. The result for this input is YES with abab.

bbbb, 2
s3, p : 1, 2, 3

abbb, 1
s3, p : 2, 3

aabb, 0
NO

abab, 0
YES

babb, 1
s3, p : 1, 3

aabb, 0
YES

baab, 0
NO

bbab, 1
s2, p : 1, 2

abab, 0
YES

baab, 0
NO

Task H2 (10 credits)

a) Invent a reduction rule for Vertex Cover that removes all pendant vertices (vertices
of degree one). It should generate an equivalent instance in polynomial time.

b) Design a bounded search tree algorithm for Vertex Cover in graphs of minimum degree
two. Analyze its running time. It should be faster than 1.7knO(1).

c) Use the results above to get an algorithm that solves Vertex Cover on general graphs
with the running time of b).

Solution

a) There is always an optimal solution that does not contain a given pendant vertex. This
is because the neighbor can be taken instead and the solution will not be bigger.

So one can delete a pendant vertex and its neighbor and decrease k by one. This yields
an equivalent instance.

b) Given any vertex u. It has degree at least two. If we branch on this vertex we delete
u in one branch and the neighbors, at least two, in the other branch. This gives us the
following recurrence for the size of the search tree:

tk ≤ tk−1 + tk−2

The corresponding reflected characteristic polynomial is 1−z−z2 with the root 1/φ in the
unit interval, where φ ≈ 1.618033989 is the golden ratio. The running time is therefore
φknO(1), which is clearly good enough.

c) Just use the branching algorithm of b) and guarantee that the graph has minimum degree
two before each branch by exhaustively applying the reduction rule from a).
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