Das Schubfachprinzip

- wende das Schubfachprinzip auf der Graphentheorie an
- das Erdös-Szekeres-Theorem
- Turáns Theorem
- Swell-colored Graphen: das Theorem von Ward-Szabó

Das Schubfachprinzip

(engl. Pigeonhole principle)

Wenn man *mehr* als kn Elemente auf n Fächer verteilt, so gibt es *mindestens* ein Fach, das *mehr* als k Elemente enthält.

- Jedes Fach enthält *maximal* k Elemente
- dann gibt es insgesamt *höchstens* kn Elemente
- Widerspruch zu der Existenz von **mehr** als **kn** Elementen □

Behauptung 1: In jedem Graph existieren immer 2 Knoten mit dem gleichen Grad.

- *Grad*: Der Grad von einem Knoten x bezeichnet die Anzahl d(x) der Kanten von G, die zu x inzident sind
- ein Graph mit *n* Knoten
- markiere die **n Fächer** mit den Zahlen 0 bis n-1
- der Knoten x liegt in dem k-ten Schubfach, wenn er genau den Grad k hat
- Ziel des Beweises: es gibt ein Fach, das mehr als einen Knoten enthält

Behauptung 1: In jedem Graph existieren immer 2 Knoten mit dem gleichen Grad.

- Annahme: es gibt kein solches Fach, das mehr als einen Knoten hat.
- Es gibt n Fächer und n Elemente
- Sei Knoten x im Fach 0 (Grad 0)
- Sei Knoten y im Fach n-1 (Grad n-1)
- y ist mit übrigen Knoten verbunden, inklusive x
- x ist nicht mit anderen Knoten verbunden, inklusive y. \rightarrow Widerspruch \square

Definitionen 1

Sei G ein endlicher Graph.

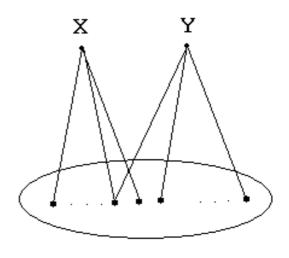
- independence number: Die independence number α(G) ist die maximale Anzahl von paarweise nicht adjazenten Knoten von G.
- *chromatic number*: Die *chromatic number* χ(**G**) ist die minimale Anzahl der Farben von den Knoten des Graphs G mit der Eigenschaft, dass paarweise adjazente Knoten unterschiedliche Farben haben.

Behauptung 2: Für jeden Graph G mit n Knoten gilt immer, dass $n \le \alpha(G) \cdot \chi(G)$

- verteile die n Knoten von G auf $\chi(G)$ Farbklassen
- Klassen von Knoten mit der gleichen Farbe bilden
- eine Farbklasse hat mindestens $\mathbf{n} / \chi(\mathbf{G})$ Knoten
- diese Knoten sind paarweise nicht adjazent
- daraus folgt $\alpha(G) \ge n / \chi(G)$

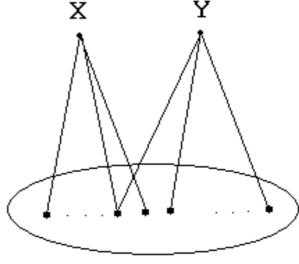
Behauptung 3: Sei G ein Graph mit n Knoten. G ist zusammenhängend, wenn jeder Knoten einen Grad von mindestens (n-1)/2 hat. (⇐)

- zusammenhängend (engl. connected), wenn für jedes Paar von Knoten u und v ein (u-v)-Pfad in G existiert
- wähle beliebig 2 Knoten x und y
- seien x und y nicht adjazent
- d(x) und d(y) mindestens (n-1)/2



- Es existiert mindestens n-1 Kanten, die die Knoten x und y mit den übrigen Knoten verbinden.
- Anzahl der übrigen Knoten ist n-2
- Verteile ≥ n-1 Elemente auf n-2 Fächer
- Es gibt mindestens ein Fach, das ≥ 2 Elemente enthält.
- Das Schubfachprinzip impliziert: ein Knoten davon muss zu x und y adjazent sein
- für alle **x** und **y**, jedes Paar von Knoten ist entweder adjazent oder hat einen gemeinsamen

 Nachbarn
- G ist zusammenhängend □



Definitionen 2

- Sei $A = (a_1, ..., a_n)$ eine *Folge* mit n verschiedenen Zahlen.
- Eine *Teilfolge* mit k Zahlen aus Folge A ist eine Folge B mit k verschiedenen Zahlen aus A, die in gleicher Reihenfolge genau so wie in Folge A erscheinen:

$$B = (a_{i_1}, a_{i_2}, \dots, a_{i_k})$$
, wobei $i_1 < i_2 < \dots < i_k$.

- Eine Teilfolge *B* ist steigend, wenn $a_{i1} < a_{i2} < ... < a_{ik}$.
- Eine Teilfolge *B* ist fallend, wenn $a_{i1} > a_{i2} > ... > a_{ik}$.
- Das Erdös-Szekeres-Theorem war eins der ersten Resultate in extremal combinatorics.

Das Erdös-Szekeres-Theorem

Sei $A=(a_1,\ldots,a_n)$ eine Folge mit n verschiedenen reelen Zahlen. Wenn $n \geq sr+1$, dann besitzt A entweder eine steigende Teilfolge mit s+1 Zahlen oder eine fallende Teilfolge mit r+1 Zahlen (oder beides).

Beweis (Seidenberg 1959):

- ordne jeder Zahl a_i aus Folge A ein Paar Punkte (x_i, y_i) zu
- x_i ist die Länge der längsten steigenden Teilfolge mit der Endung a_i.
- y_i ist die Länge der längsten fallenden Teilfolge mit dem Anfang a_i.

Das Erdös-Szekeres-Theorem

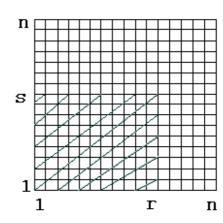
• $(x_i, y_i) \neq (x_j, y_j)$, wenn $i \neq j$.

Beweis: Wir haben ... $a_i ... a_j ...$

- (1) entweder $\mathbf{a_i} < \mathbf{a_j}$: die längste steigende Teilfolge mit der Endung $\mathbf{a_i}$ kann erweitert werden, wobei wir ein $\mathbf{a_j}$ am Ende der Teilfolge einfügen. (damit $\mathbf{x_i} < \mathbf{x_i}$)
- (2) oder $\mathbf{a_i} > \mathbf{a_j}$: die längste fallende Teilfolge mit dem Anfang $\mathbf{a_j}$ kann erweitert werden, wobei wir ein $\mathbf{a_i}$ am Anfang der Teilfolge einfügen. (damit $\mathbf{y_i} > \mathbf{y_i}$)

Das Erdös-Szekeres-Theorem

- setze jede Zahl a_i in das Schubfach mit den Koordinaten (x_i, y_i) ein
- Jede Zahl kann in ein Fach eingesetzt werden, weil $1 \le x_i$, $y_i \le n$ für alle i = 1, ..., n.
- Kein Schubfach darf mehr als eine Zahl enthalten, weil
 (x_i, y_i) ≠ (x_i, y_i) wenn i ≠ j.
- $|A| = n \text{ und } n \ge sr+1$
- mehr Elemente aus Folge A als schraffierte Fächer
- a_i aus Folge A befindet sich im nicht schraffierten Bereich
- entweder $x_i \ge s+1$ oder $y_i \ge r+1$ (oder beides) \square



Turáns Theorem

Definition: Eine *k-Klique* ist ein Graph mit k Knoten, wobei alle Knoten paarweise durch eine Kante verbunden sind.

Turáns Theorem (Paul Turán, 1941): Falls ein Graph G = (V, E) mit n Knoten keine (k+1)-Klique hat, wobei $k \ge 2$, dann $|E| \le (1 - \frac{1}{k}) \frac{n^2}{2}$.

Beweis: Mittels vollständiger Induktion für $n \in N$:

(1) Induktionsanfang: Es ist klar, dass die Aussage für n = 1 wahr ist.

Turáns Theorem

- (2) Induktionsschritt: Sei die Aussage bis n-1 wahr.
 - G = (V , E) ein Graph mit n Knoten, ohne (k+1)-Klique und mit einer **maximalen** Anzahl von Kanten.
 - G enthält sicher eine k-Klique.
 - Sei A diese k-Klique. Sei B = V-A, |B| = n-k
 - die Anzahl der Kanten von A ist $e_A = \binom{k}{2}$
 - für die Anzahl der Kanten in B gilt $e_B \leq (1 \frac{1}{k}) \frac{(n-k)^2}{2}$
 - für die Anzahl der Kanten zwischen A und B gilt

$$e_{A,B} \le (k-1)(n-k)$$

Turáns Theorem

$$|E| \le e_A + e_B + e_{A,B} \le {k \choose 2} + {k \choose 2} (\frac{n-k}{k})^2 + (k-1)(n-k)$$

$$= {k \choose 2} + {k \choose 2} (\frac{n-k}{k})^2 + {k \choose 2} \frac{2}{k} (n-k)$$

$$= {k \choose 2} (1 + \frac{n-k}{k})^2 = (1 - \frac{1}{k}) \frac{n^2}{2}$$

(3) Induktionsschluss: Mit Hilfe der vollständigen Induktion folgt aus (1) und (2): die Aussage ist für alle n richtig. □

Swell-colored Graphen

- *Definition 1*: Ein *vollständiger* Graph K_n besteht aus n Knoten, die alle paarweise mit einander verbunden sind.
- *Definition 2*: Ein vollständiger Graph ist *swell-colored*, wenn man die Kanten so färben kann, dass jedes Dreieck genau 1 oder 3 Farben hat und wenn dieser Graph mehr als eine Farbe besitzt.

Beispiel: K₃ und K₄ swell-colored mit 3 Farben.

Swell-colored Graphen

Theorem (Ward-Szabó 1994): Der vollständige Graph mit n Knoten kann nicht swell-colored sein mit weniger als $\sqrt{n} + 1$ Farben.

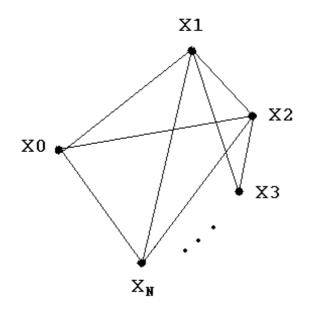
- Sei K_n swell-colored mit r verschiedenen Farben.
- N(x, c): die Anzahl der Kanten inzident zum Knoten x, welche die Farbe c haben
- wähle x_0 , c_0 fest, wobei $N(x_0, c_0)$ maximal ist
- $N(x_0, c_0) =: N$

Swell-colored Graphen

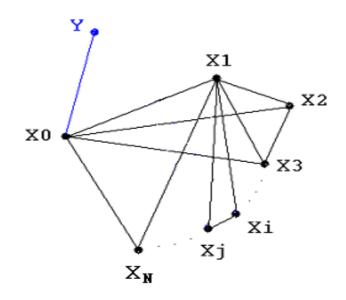
Theorem (Ward-Szabó 1994): Der vollständige Graph mit n Knoten kann nicht swell-colored sein mit weniger als $\sqrt{n} + 1$ Farben.

- ordne die n-1 zum Knoten x_0 inzidenten Kanten nach Farben in \leq r Farbklassen ein
- Jede Farbklasse besitzt N oder weniger Kanten, die zu x₀ inzident sind:

$$\mathbf{N} \cdot \mathbf{r} \ge \mathbf{n} - 1$$



- Seien $x_1, ..., x_N$ die Nachbarn von x_0 , die durch Kanten mit Farbe c_0 mit x_0 verbunden sind.
- G = (V, E) ist der vollständige Teilgraph von K_n , wobei $V = \{x_0, x_1, ..., x_N\}$
- G swell-colored
- alle Kanten von G haben Farbe c₀



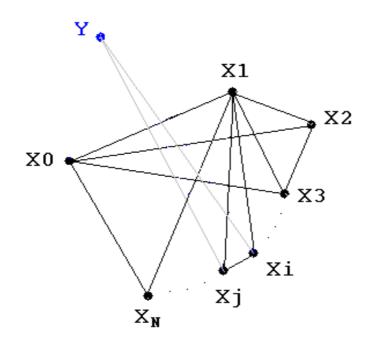
- K_n hat mindestens 2 Farben
- wähle einen Knoten y aus K_n, der nicht in G liegt
- Es ergibt sich die folgende Eigenschaft des Knotens y: Mindestens eine Kante, die den Knoten y mit dem Teilgraph G verbindet, hat eine andere Farbe als c₀.

Behauptung: Jede der N+1 Kanten, mit welchen y und G verbunden sind, hat eine von anderen Kanten verschiedene Farben. Und diese Farben von den N+1 Kanten sind andere als c_0 .

- aus $r \ge N+2 \rightarrow N \le r-2$ und $N \cdot r \ge n-1$
- folgt: $r \ge \sqrt{n} + 1$
- genau was wir wünschen für den Satz
- Es bleibt uns noch übrig, diese Behauptung zu beweisen.

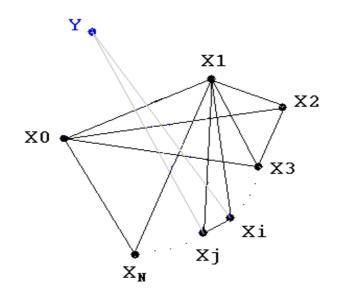
Zuerst die zweite Aussage: Die Farben von der N+1 Kanten sind andere als c_0 .

- für alle $0 \le i, j \le N$: $\{x_i, x_j\}$ hat die Farbe c_0
- wenn {y, x_i} auch die Farbe c₀ hat
- dann hat {y, x_i} auch die Farbe c₀
- Widerspruch zur Eigenschaft des Knotens y



Jetzt die erste Aussage: Jede der N+1 Kanten hat eine von anderen Kanten verschiedene Farbe.

- Annahme: beliebige 2 Kanten $\{y, x_i\}$, $\{y, x_j\}$ haben die gleiche Farbe f
- Wegen der swell-coloredness von K_n : $\{x_i, x_j\}$ hat die gleiche Farbe, nämlich f
- $\{x_i, x_j\}$ hat die Farbe c_0 ($f = c_0$) \rightarrow $\{y, x_i\}$ hat auch die Farbe c_0
- Widerspruch zu der zweiten Aussage



Ich bedanke mich für eure Aufmerksamkeit!