
Basic Merkle-Hellman
Knapsack cryptosystem

Crypto analysis by Shamir

By: Kanmogne Pekam Linda

● In 1976 the idea of public key
cryptosystem was introduced by Diffie
and Hellman

● In 1978 Merkle-Hellman Knapsack public
key Cryptosystem is published

● in 1982 Adi Shamir's broke the basic
Merkle-Hellman Knapsack Cryptosystem

Introduction

A problem Z is said to be NP-Complete if:
● Z is NP: Meaning there is a

nondeterministic turing machine that can
solve the problem in polynomial time

● And Z is NP-Hard: every NP problem R
can be reduced to Z.

NP-Complete

Which coins should we put in the bag such
that the total value of the bag is a big as
possible but the total weight at most 15 kg?

knapsack problem

● input: n items, ui and wi ∈Z+, 1≤ i ≤ n, are
resp value and weight of ith item, and the
sum W ∈ Z+

● Problem: if exists vector x = (x1,...,xn) ,
 xi ∈ {0,1} such that:

- Maximize ∑uixi for i: 1,...,n
- Subject to ∑wixi ≤ W for i: 1,...,n

This problem is known to be NP-Complete

Knapsack problem: formal
definition

Vector sequence a = (a1, a2, …, aj, …, an) is
said to be super increasing if :

aj >∑ ai for i: 1,…, j-1, with j ≤ n.
Example:
● (1, 2, 4, 6) is not super increasing

because 6 ≯ 1+2+4
● (1, 2, 4, 8) is super increasing

because 8 > 1+2+4

Super increasing sequence

● A Knapsack problem is easy if the knapsack
vector w = (w1,...,wn) weights of the n items
form a super increasing sequence :
=> wj > ∑ wi for i: 1,…, j-1, with j ≤ n.
=> ∑wixi = W is solvable in polynomial time

● The knapsack vector is hard otherwise and
then finding xi is an NP-Complete problem

Easy and Hard Knapsack

It is a particular case of Knapsack problem
● Giving n items with weight vector

w = (w1, w2,…, wn) , wi ∈ Z+ , for i : 1,...,n
● and S ∈ Z+ the sum.
● find subset wj’ of wi such that

S = ∑ wj’ for j: 1,…,p (p≤ n)
 => finding vector x = (x1,...,xn), xi∈ {0, 1} st:

S = ∑wixi = w1x1+ w2x2+...+ wnxn for i: 1,...,n
if xi = 1 : wi ∈ wj’, else , wi ∉ wj’

Subset-sum problem

The subset-sum problem (w, S) is known to
be NP-Complete

However if the initial weight vector w has
a super increasing, the problem (w, S) can
be solved in O(n).

Subset-Sum problem - 2

● input:
- n items, super increasing weights vector
 w = (w1, w2,…, wn)
- Sum S ∈ Z+
● Problem: find vector x = (x1,...,xn), xi ∈ {0, 1}

 such that S = ∑wixi = w1x1+ w2x2+...+ wnxn

Solving Super increasing
knapsack

● Algorithm to solve a Subst-Sum problem
with a super increasing weights vector:

for i = n downto 1
{ If S ≥ wi then { xi = 1; S = S - wi; } else xi = 0; }
return (x1, x2,..., xn).

Solution if exists is unique!
Running time: O(n)

Solving Super increasing
knapsack

Encoded message as solution to knapsack
problem.

Merkle-Hellman Knapsack
Cryptosystem: Idea

● n-bit message
● Choose a super increasing vector

ai : {a1, a2,…, an}
● Choose a number q such that q > ∑ ai for

1 ≤ i ≤ n. q is call the modulus
● choose a number r such that r and q are

coprime: gcd (r,q) = 1. r is called the
multiplier.

MH -> Key Generation

Now we compute the vector bi : (b1, b2,…,
bn) such that: bi = r ai mod(q) , 0 ≤ bi < q
The keys:
Public key: is bi
Private key: is (ai, q, r)

MH -> Key generation -2

● n-bit message mi : { m1 , m2 ,…, mn}
● Public key bi : {b1, b2,…, bn}
● Encrypted message is: C = ∑ mi bi (E)

for 1 ≤ i ≤ n, with 0 ≤ C < q
(E) is NP-Complete knapsack problem : bi is
a hard-Knapsack

MH -> Encryption

● Private key: (ai, q, r).
● Message integer C = ∑ mi bi for 1 ≤ i ≤ n.

● Compute r-1 inverse of r modulo q using
the Extended Euclidean Division

MH -> Decryption

 We compute C’ = C r-1 mod(q)
=> C’ = ∑mi bi r

-1 mod(q), with bi = r aimod(q)
=> ai = r-1 bi mod(q)
=> C‘ = ∑ mi ai mod(q)
 q > ∑ ai and mi ∈ {0,1}, ∑ mi ai < q
=> C‘=∑ mi ai (E')
(E') easy to solve as ai has a super
increasing.

MH -> Decryption -2

● Message "hello", n = 7 bits
● ai : {3, 5, 15, 25, 54, 110, 225} i: 1,...,7
● q >∑ ai => q = 439 and r = 10
● bi = ai r mod (q) => bi : {30, 50, 150, 250,

101, 222, 55)}
● Encryption:
h = 1001000 => Ch= ∑hibi = 30 + 250 = 280
e = 1100101 => Ce= ∑eibi = 30 + 50 + 101 +
55 = 236

MH -> Example

l = 1101100 => Cl= ∑libi = 30 + 50 + 250 +
101 = 431
o = 1101111 => Cl= ∑libi = 30 + 50 + 250 +
101 + 222 + 55 = 708
So the encrypted message is M = (280, 236,
431, 431, 708).

● Decryption of Ch = 280
r-1 of r modulo q is 44 (10x44 = 1 mod(q))

MH -> Example - 2

Algo to solve the super increasing
knapsack problem:
for j = n downto 1
{ If s ≥ aithen { xi = 1; s = s - ai; } else
xi = 0; }
return (x1, x2,..., xn).

Ch' = Ch r
-1 mod (q)

=> Ch' = 280x44 mod (439) = 28
ai : {3, 5, 15, 25, 54, 110, 225}
- The largest element
of ai≤ Ch' is 25 => h4 = 1
Ch' = 28 - 25 = 3
 a1≤ Ch' => h1 = 1, Ch' = 3 - 3 = 0
=> hi : 1001000

MH -> Example - 3

● n ⟶ ∞
● d: expansion factor: Ratio between size of

the ciphertext over the size of the
plaintext . d > 1 is fixed

● d = 2 for the Basic MH : M = 200, n = 100
● q0 and bi grow linearly with n
● a1 ≅ 2-n+1, ai ≅ 2-n+i-1

● q0 ≅ 2-dn , bi < q0

MH- Crypto analysis: Assumptions

Shamir algorithm find trapdoor pair w and q,
with w = r-1 mod (q) such that given the
public key bi, we can compute a super
increasing vector si st:
 si= w bi mod(q) and with q > ∑si

There is at least one solution by
construction w0, q0!!

MH- Crypto analysis: Trapdoor
pair

(w, q) can be different from (w0, q0), but will
still decrypt the message.
Proof:
- encrypted message C = ∑ mi bi
- C' = C w mod (q) with si = w bi mod(q)
=> C' = ∑ mi bi w mod(q) = ∑ mi si mod (q)
=> C' = ∑ mi si (D), q > ∑si , mi: {0,1}
(si super increasing => (D) easy to solve)

MH- Crypto analysis: Trapdoor
pair -2

● q0 is unknown
● We study the curves : w bi mod(q0), i:1..n

MH- Cryptanalysis: Step 1

for real multipliers
0 ≤ w < q0 ,
w bi mod(q0) graph
has a sawtooth form

Minimum: w bi mod(q0) = 0

● The slope of the sawtooth curves is bi
● Minimum is reached when biw = xq0
=> w = xq0/bi, with 0 ≤ w < q0
=> 0 ≤ x < bi-1: there is bi minima
● distance between two successive minima

is q0/bi
● for i = 1, wo is such that a1 = wob1mod(q0)
=> a1 = wob1 - xq0,

MH- Cryptanalysis: Step 1 - 2

=>a1/b1 = wo - xq0/b1 , a1 ≅ 2dn-n , b1< q0≅2dn

`=> wo - xq0/b1 ≅ 2-n: distance between wo

and the xth closest minimum to the left wx
1

of the b1 curves is at most 2-n.

● wo and wx
1 are closed to each other

MH- Cryptanalysis: Step 1 - 3

● Similarly for i = 2, the distance between
wo and the yth closest minimum to the left
of the b2 curves wy

2 is at most 2-n+1

● w0 and wy
2 are also really closed

=> wx
1 and wy

2 are also closed
=> distance factor between w0 and closest
minimum to left of the ith curves is : 2-n + i - 1

=> There is a point where all the minima at
are closed to each other.

MH- Cryptanalysis: Step 1 - 4

If we superimpose bi curves, there would an
interval (s) where all minina of bi curves are
closed to each other meaning closed to w0

MH- Cryptanalysis: Step 2

● So instead of finding wo, we can compute
the accumulation points of the super
imposes bi curves

● Choose l out of n curves to superimpose.
what is should be the value of l?

● Shamir proved that l is not dependant on
n but instead on the factor d = M/n

● l = d+2 is enough to estimate the
accumulation points

MH- Cryptanalysis: Step 2 - 2

● We pick l bi curves
● the pth minimum of b1 is pq0/b1,
● we don't have q0
● Observation: the location of accumulation

points depend on b1 and not on tq0

MH - Cryptanalysis : Step 3

● we can get rid of q0 by dividing the
function by q0

=> biv mod(1) with v = w/q0 , 0 ≤ v < 1
=> slope is unchanged: bi
=> the distance between two consecutives
minima : 1/bi
=> distance between wo and the bi minima
will be reduced by 2dn, => vo -vi ≤ 2-dn-n+i-1

MH-Cryptanalysis : step 3 - 2

for i=1, the pth minimum of b1 curve is an
accumulation point if it is closed enough to all other
neighboring bi minima

MH-Cryptanalysis : step 3 - 3

=> This gives the following system :
● (l-1) inequalities equations
● l unknow value p, q , r…integers
● є , є’ : allowable deviation between pth

minimum and other minima.

 – є2 < p/b1 – q/b2 < - є2’ 1 ≤ p < b1-1, 1 ≤ q < b2-1

 – є3 < p/b1 – r/b3 < - є3’ 1 ≤ p < b1-1, 1 ≤ r < b3-1

 …

MH-Cryptanalysis : step 3 - 4

Multiplying the inequalities by their denominators
gives:
 – є2 < pb2 – qb1 < - є2’ 1 ≤ p < b1-1, 1 ≤ q < b2-1
 – є3 < pb3 – rb1 < - є3’ 1 ≤ p < b1-1, 1 ≤ r < b3-1

…
Since the number of variable is fixed , We can
apply the Lenstra's algorithm to find p values.
running time is O(nF(l)), F(l) grows exponentially
with l, but l is small (l = 4 for the Basic MH) .

MH-Cryptanalysis : step 3 - 5

Using the Lenstra integer programming will
output all possible value of p, satisfying the
inequalities system
The number of accumulation points k should
not exceed 100 else the algorithm is aborted.
This condition make sure the algorithm runs in
polynomial time.
Example: all bi are similar => all minima are
accumulation points

MH-Cryptanalysis : step 3 - 6

∀ p found in step 3:
● [p/b1, (p+1)/b1]: interval between 2

successive minima of b1

● v1,...,v1 : the list of coordinates of

discontinuity points of all n curves lying in
the sorted order in this interval

● We divide [p/b1, (p+1)/b1] in subintervals

such as [vt, vt+1).

MH-Cryptanalysis : step 4

● in [vt, vt+1), each bi curves is a line
segment.

=> the ith linear segment : vbi + Ct
i where Ct

i
: number of bi minima in (0, vt] , vt ≤ v < vt+1

MH-Cryptanalysis : step 4 - 2

● v = Ct
i/bi

● Conditions: v trapdoor ratio w/q if:
● modulus Size: ∑(vbi + Ct

i) < 1 i: 1,...,n
● Superincreasing: (vbi + Ct

i) >∑(vbj + Ct
j)

for i: 2,...,n and j: 1,...,i-1

The solution to this system of linear inequalities
in v, is possible non empty subinterval of
[vt, vt+1).

MH-Cryptanalysis : step 4 - 3

There would be at least one non empty
subintervals by construction

The membership of w/q to this subinterval
for some p, t value is a necessary and
sufficient condition for w and q to be a
trapdoor pair.

 MH-Cryptanalysis : step 4 -4

● We have the ratio (s) w/p = k, with k real
value

● We need w, p
Diophantine approximation: For a given real
value k, output the rational number w/q such
that w/q is an approximated value of k.
● With w, q, and bi we can compute si

● The new private key is then (si, q, w)

MH-Cryptanalysis : step 5

The most consuming part of the algorithm is the
Lenstra's algorithm to find p values. running
time is polynomial time in n but exponential
in l.

MH- Crypto analysis: Performance

Thank you for your attention!!!

