
Basic Merkle-Hellman 
Knapsack cryptosystem 

Crypto analysis by Shamir

By: Kanmogne Pekam Linda



● In 1976 the idea of public key 
cryptosystem was introduced by Diffie 
and Hellman

● In 1978 Merkle-Hellman Knapsack public 
key Cryptosystem is published

● in 1982 Adi Shamir's broke the basic 
Merkle-Hellman Knapsack Cryptosystem

Introduction



A problem Z is said to be NP-Complete if:
● Z is NP: Meaning there is a 

nondeterministic turing machine that can 
solve the problem in polynomial time 

● And Z is NP-Hard: every NP problem R 
can be reduced to Z. 

NP-Complete



Which coins should we put in the bag such 
that the total value of the bag is a big as 
possible but the total weight at most 15 kg?

knapsack problem



●  input:  n items,  ui and wi ∈Z+, 1≤ i ≤ n, are 
resp value and weight of ith item,  and the 
sum W ∈ Z+

● Problem: if exists vector x = (x1,...,xn ) ,
     xi ∈ {0,1} such that:

- Maximize ∑uixi for i: 1,...,n
- Subject to ∑wixi ≤ W for i: 1,...,n

This problem is known to be NP-Complete 

Knapsack problem: formal 
definition



Vector sequence a = (a1, a2, …, aj, …, an) is 
said to be super increasing if :

aj >∑ ai for i: 1,…, j-1, with j ≤ n.
Example:
● (1, 2, 4, 6) is not super increasing 

because 6 ≯ 1+2+4
● (1, 2, 4, 8) is super increasing 

because  8  > 1+2+4

Super increasing sequence



● A Knapsack problem is easy if the knapsack 
vector w = (w1,...,wn)  weights of the n items 
form a super increasing sequence :
=> wj > ∑ wi for i: 1,…, j-1, with j ≤ n.
=> ∑wixi =  W is solvable in polynomial time

● The knapsack vector is hard otherwise and 
then finding xi is an NP-Complete problem

Easy and Hard Knapsack



It is a particular case of Knapsack problem
● Giving n items with weight  vector

w = (w1, w2,…, wn) , wi  ∈ Z+ , for i : 1,...,n
● and S ∈ Z+ the sum.
● find subset wj’ of wi such that

S = ∑ wj’ for j: 1,…,p (p≤ n)
 => finding vector x = (x1,...,xn ), xi∈ {0, 1} st:

S = ∑wixi  = w1x1+ w2x2+...+ wnxn  for i: 1,...,n
if xi  = 1 : wi ∈ wj’, else ,  wi ∉  wj’

Subset-sum problem



The subset-sum problem (w, S) is known to 
be NP-Complete 

However if the initial weight  vector w has 
a  super increasing, the problem (w, S) can 
be solved in O(n).

Subset-Sum problem - 2



● input:  
- n items, super increasing weights vector 
   w = (w1, w2,…, wn)
- Sum S ∈ Z+
● Problem: find vector x = (x1,...,xn ), xi ∈ {0, 1}

 such that  S = ∑wixi  = w1x1+ w2x2+...+ wnxn

Solving Super increasing 
knapsack



● Algorithm to solve a Subst-Sum problem 
with a super increasing weights vector:

for i = n downto 1
{ If S ≥ wi  then { xi = 1; S = S - wi; } else xi = 0; }
return (x1, x2,..., xn).

Solution if exists is unique!
Running time: O(n)

Solving Super increasing 
knapsack



Encoded message as solution to knapsack 
problem.

Merkle-Hellman Knapsack 
Cryptosystem: Idea



● n-bit message
● Choose a super increasing vector

ai : {a1, a2,…, an}
● Choose a number q such that q > ∑ ai  for 

1 ≤ i ≤ n. q is call the modulus
● choose a number r such that r and q are 

coprime: gcd (r,q) = 1. r is called the 
multiplier.

        

MH -> Key Generation



Now we compute the vector bi : (b1, b2,…, 
bn) such that: bi = r ai mod(q)    , 0 ≤  bi < q
The keys: 
Public key:  is bi 
Private key: is (ai, q, r)

MH -> Key generation -2



● n-bit message mi : { m1 , m2 ,…, mn}
● Public key bi : {b1, b2,…, bn}
●  Encrypted message is: C = ∑ mi bi     (E)  

for 1 ≤ i ≤ n, with 0 ≤ C < q
(E) is NP-Complete knapsack problem : bi is 
a hard-Knapsack

MH -> Encryption



● Private key: (ai, q, r).
● Message integer C = ∑ mi bi  for 1 ≤ i ≤ n.

● Compute r-1 inverse of r modulo q using 
the Extended Euclidean Division

MH -> Decryption



 We compute C’ = C r-1 mod(q)
=> C’ = ∑mi bi r

-1 mod(q), with bi = r aimod(q) 
=>  ai  = r-1 bi mod(q)
=> C‘ = ∑ mi ai mod(q)
 q > ∑ ai  and mi ∈ {0,1}, ∑ mi ai < q  
=> C‘=∑ mi ai (E')
(E') easy to solve as ai has a super 
increasing.

MH -> Decryption -2



● Message "hello", n = 7 bits
● ai : {3, 5, 15, 25, 54, 110, 225} i: 1,...,7
● q >∑ ai  => q = 439 and r = 10
● bi = ai r mod (q) => bi : {30, 50, 150, 250, 

101, 222, 55)}
● Encryption: 
h = 1001000 => Ch= ∑hibi = 30 + 250 = 280
e = 1100101 => Ce= ∑eibi = 30 + 50 + 101 + 
55 = 236

MH -> Example



l = 1101100 => Cl= ∑libi = 30 + 50 + 250 + 
101 = 431
o = 1101111 => Cl= ∑libi = 30 + 50 + 250 + 
101 + 222 + 55 = 708
So the encrypted message is M = (280, 236, 
431, 431, 708).

● Decryption of Ch = 280
r-1 of r modulo q is 44 (10x44 = 1 mod(q))

MH -> Example - 2



Algo to solve the super increasing 
knapsack problem:
for j = n downto 1
{ If s ≥ aithen { xi = 1; s = s - ai; } else 
xi = 0; }
return (x1, x2,..., xn).

Ch' = Ch r
-1 mod (q) 

=> Ch' =  280x44 mod (439) = 28
ai : {3, 5, 15, 25, 54, 110, 225}
- The largest element 
of ai≤ Ch' is 25 => h4 = 1
Ch' = 28 - 25 = 3
 a1≤ Ch' =>  h1 = 1, Ch' = 3 - 3 = 0
=> hi : 1001000

MH -> Example - 3



● n ⟶ ∞ 
● d: expansion factor: Ratio between size of 

the ciphertext over the size of the  
plaintext . d > 1 is fixed

●  d = 2 for the Basic MH : M = 200, n = 100
● q0 and bi grow linearly with n
● a1 ≅ 2-n+1, ai ≅ 2-n+i-1

● q0 ≅ 2-dn , bi < q0

MH- Crypto analysis: Assumptions



Shamir algorithm find trapdoor pair w and q, 
with w = r-1 mod (q) such that given the 
public key bi, we can compute a super 
increasing vector si st:
 si= w bi mod( q) and with   q > ∑si  

There is at least one solution by 
construction w0, q0!! 

MH- Crypto analysis: Trapdoor 
pair



(w, q) can be different from (w0, q0), but will 
still decrypt the message.
Proof: 
- encrypted message C = ∑ mi bi 
- C' = C w mod (q)  with si  = w bi mod( q) 
=> C' = ∑ mi bi w mod(q) = ∑ mi si  mod (q) 
=> C' = ∑ mi si  (D), q > ∑si   , mi: {0,1}
(si super increasing => (D) easy to solve )

MH- Crypto analysis: Trapdoor 
pair -2



● q0 is unknown
● We study the curves : w bi mod( q0), i:1..n

MH- Cryptanalysis: Step 1

for real multipliers  
0 ≤  w <  q0 , 
w bi mod( q0) graph 
has a sawtooth form

Minimum: w bi mod( q0) = 0



● The slope of the sawtooth curves is bi
● Minimum is reached when biw = xq0
=> w = xq0/bi, with  0 ≤  w <  q0  
=>  0 ≤  x <  bi-1: there is bi minima 
● distance between two successive minima 

is q0/bi 
● for i = 1, wo is such that a1 = wob1mod(q0)
=> a1 = wob1 - xq0,

MH- Cryptanalysis: Step 1 - 2



=>a1/b1  = wo - xq0/b1 , a1  ≅ 2dn-n , b1< q0≅2dn 

`=> wo - xq0/b1 ≅ 2-n: distance between wo 

and the xth closest minimum to the left wx
1 

of the b1  curves is at most 2-n.

● wo and wx
1 are closed to each other

MH- Cryptanalysis: Step 1 - 3



● Similarly for i = 2,  the distance between 
wo and the yth closest minimum to the left 
of the b2  curves wy

2 is at most 2-n+1

● w0 and wy
2 are also really closed

=> wx
1 and  wy

2 are also closed 
=> distance factor between  w0 and  closest 
minimum to left of the ith curves is : 2-n + i - 1

=> There is a point where all the minima at 
are closed to each other.

MH- Cryptanalysis: Step 1 - 4



If we superimpose bi curves, there would an 
interval (s) where all minina of bi curves are 
closed to each other meaning closed to w0

MH- Cryptanalysis: Step 2 



● So instead of finding wo, we can compute 
the accumulation points of the super 
imposes bi curves 

●  Choose l out of n curves to superimpose. 
what is should be the value of l? 

● Shamir proved that l is not dependant on 
n but instead on the factor d = M/n

● l = d+2 is enough to estimate the 
accumulation points

MH- Cryptanalysis: Step 2 - 2



● We pick l bi curves
● the pth minimum of b1 is pq0/b1, 
● we don't have q0
● Observation: the location of accumulation 

points depend on b1 and not on tq0

MH - Cryptanalysis : Step 3



● we can get rid of q0 by dividing the 
function by q0

=> biv mod(1) with v = w/q0 , 0 ≤  v <  1
=> slope is unchanged: bi
=> the distance between two consecutives 
minima : 1/bi
=> distance between wo and the bi minima 
will be reduced by 2dn, => vo -vi ≤ 2-dn-n+i-1

MH-Cryptanalysis : step 3 - 2



for i=1, the pth minimum of b1 curve is an 
accumulation point if it is closed enough to all other 
neighboring bi minima 

MH-Cryptanalysis : step 3 - 3



=>  This gives the following system :
●  (l-1) inequalities equations 
●  l unknow value p, q , r…integers
● є , є’ : allowable deviation between pth 

minimum and other minima.
 
 – є2 < p/b1 – q/b2 < - є2’   1 ≤ p < b1-1, 1  ≤ q < b2-1 

 – є3 < p/b1 – r/b3 < - є3’    1 ≤ p < b1-1, 1  ≤ r < b3-1

 …

MH-Cryptanalysis : step 3 - 4



Multiplying the inequalities by their denominators 
gives:
  – є2 < pb2 – qb1 < - є2’   1 ≤ p < b1-1, 1  ≤ q < b2-1 
  – є3 < pb3 – rb1 < - є3’    1 ≤ p < b1-1, 1  ≤ r < b3-1

…
Since the number of variable is fixed , We can 
apply the Lenstra's algorithm to find p values.  
running time is O(nF(l)), F(l) grows exponentially  
with l, but l is small (l = 4 for the Basic MH) .

MH-Cryptanalysis : step 3 - 5



Using the Lenstra integer programming will 
output all possible value of p, satisfying the 
inequalities system
The number of accumulation points  k should 
not exceed 100 else the algorithm is aborted. 
This condition make sure the algorithm runs in 
polynomial time.
Example: all bi are similar => all minima are 
accumulation points

MH-Cryptanalysis : step 3 - 6



∀ p found in step 3:
● [p/b1, (p+1)/b1]: interval between 2 

successive minima of b1

● v1,...,v1 : the list of coordinates of 

discontinuity points of all n curves lying in 
the sorted order in this interval

● We divide [p/b1, (p+1)/b1] in subintervals 

such as [vt, vt+1).

MH-Cryptanalysis : step 4 



● in [vt, vt+1), each bi curves is a line 
segment. 

=> the ith linear segment : vbi + Ct
i where Ct

i 
: number of bi minima in (0, vt] , vt ≤ v < vt+1

MH-Cryptanalysis : step 4  - 2



● v = Ct
i/bi

● Conditions: v trapdoor ratio w/q if:
● modulus Size:     ∑(vbi + Ct

i ) < 1 i: 1,...,n
● Superincreasing:  (vbi + Ct

i ) >∑(vbj + Ct
j )

for  i: 2,...,n and j: 1,...,i-1

The solution to this system of linear inequalities 
in v, is possible non empty subinterval of 
[vt, vt+1). 

MH-Cryptanalysis : step 4  - 3



There would be at least one non empty 
subintervals by construction

The membership of w/q to this subinterval 
for some p, t value is a necessary and 
sufficient condition for w and q to be a 
trapdoor pair. 

 MH-Cryptanalysis : step 4  -4



● We have the ratio (s) w/p = k, with k real 
value

● We need w, p
Diophantine approximation: For a given real 
value k, output the rational number w/q such 
that w/q is an approximated value of k.
● With w, q, and bi we can compute si

● The new private key is then ( si, q, w)

MH-Cryptanalysis : step 5



The most consuming part of the algorithm is the  
Lenstra's algorithm to find p values.  running 
time is polynomial time in n but exponential 
in l.

MH- Crypto analysis: Performance



Thank you for your attention!!!


