Basic Merkle-Hellman Knapsack cryptosystem Crypto analysis by Shamir

By: Kanmogne Pekam Linda

Introduction

- In 1976 the idea of public key cryptosystem was introduced by Diffie and Hellman
- In 1978 Merkle-Hellman Knapsack public key Cryptosystem is published
- in 1982 Adi Shamir's broke the basic
 Merkle-Hellman Knapsack Cryptosystem

NP-Complete

- A problem Z is said to be NP-Complete if:
- Z is NP: Meaning there is a nondeterministic turing machine that can solve the problem in polynomial time
- And Z is NP-Hard: every NP problem R
 can be reduced to Z.

knapsack problem

Which coins should we put in the bag such that the total value of the bag is a big as possible but the total weight at most 15 kg?

\in

Knapsack problem: formal definition

- input: n items, u_i and w_i ∈ Z+, 1≤ i ≤ n, are resp value and weight of ith item, and the sum W ∈ Z+
- Problem: if exists vector x = (x₁,...,x_n),
 x_i ∈ {0,1} such that:
 - Maximize ∑u_ix_i for i: 1,...,n
 - Subject to ∑w_ix_i ≤ W for i: 1,...,n
- This problem is known to be NP-Complete

Super increasing sequence

Vector sequence $a = (a_1, a_2, ..., a_j, ..., a_n)$ is said to be super increasing if: $a_j > \sum a_i \text{ for } i: 1, ..., j-1, \text{ with } j \leq n.$

Example:

- (1, 2, 4, 6) is not super increasing because 6 ≯ 1+2+4
- (1, 2, 4, 8) is super increasing because 8 > 1+2+4

Easy and Hard Knapsack

- A Knapsack problem is easy if the knapsack vector w = (w₁,...,w_n) weights of the n items form a super increasing sequence :
 => w_j > ∑ w_i for i: 1,..., j-1, with j ≤ n.
 => ∑w_ix_i = W is solvable in polynomial time
- The knapsack vector is hard otherwise and then finding x_i is an NP-Complete problem

Subset-sum problem

It is a particular case of Knapsack problem

- Giving n items with weight vector $w = (w_1, w_2, ..., w_n), w_i \in Z+, \text{ for } i:1,...,n$
- and $S \in Z$ + the sum.
- find subset w_i' of w_i such that

$$S = \sum w_j$$
 for j: 1,...,p (p \le n)

=> finding vector $x = (x_1, ..., x_n), x_i \in \{0, 1\}$ st:

$$S = \sum w_i x_i = w_1 x_1 + w_2 x_2 + ... + w_n x_n$$
 for i: 1,...,n

if
$$x_i = 1 : w_i \subseteq w_i'$$
, else, $w_i \notin w_i'$

Subset-Sum problem - 2

The subset-sum problem (w, S) is known to be NP-Complete

However if the initial weight vector \mathbf{w} has a super increasing, the problem (w, S) can be solved in O(n).

Solving Super increasing knapsack

- input:
- n items, super increasing weights vector $w = (w_1, w_2, ..., w_n)$
- Sum S \in Z+
- Problem: find vector $x = (x_1, ..., x_n), x_i \in \{0, 1\}$ such that $S = \sum w_i x_i = w_1 x_1 + w_2 x_2 + ... + w_n x_n$

Solving Super increasing knapsack

 Algorithm to solve a Subst-Sum problem with a super increasing weights vector:

```
for i = n downto 1

{ If S \ge w_i then { x_i = 1; S = S - w_i; } else x_i = 0; }

return (x_1, x_2, ..., x_n).
```

Solution if exists is unique! Running time: O(n)

Merkle-Hellman Knapsack Cryptosystem: Idea

Encoded message as solution to knapsack

problem.

MH -> Key Generation

- n-bit message
- Choose a super increasing vectora_i: {a₁, a₂,..., a_n}
- Choose a number q such that q > ∑ a_i for
 1 ≤ i ≤ n. q is call the modulus
- choose a number r such that r and q are coprime: gcd (r,q) = 1. r is called the multiplier.

MH -> Key generation -2

Now we compute the vector b_i: (b₁, b₂,...,

 b_n) such that: $b_i = r a_i \mod(q)$, $0 \le b_i < q$

The keys:

Public key: is b

Private key: is (a, q, r)

MH -> Encryption

- n-bit message m_i: { m₁, m₂,..., m_n}
- Public key b_i: {b₁, b₂,..., b_n}
- Encrypted message is: C = ∑ m_i b_i (E)
 for 1 ≤ i ≤ n, with 0 ≤ C < q
- (E) is NP-Complete knapsack problem : b_i is
- a hard-Knapsack

MH -> Decryption

- Private key: (a_i, q, r).
- . Message integer C = ∑ m_i b_i for 1 ≤ i ≤ n.
- Compute r⁻¹ inverse of r modulo q using the Extended Euclidean Division

MH -> Decryption -2

We compute $C' = C r^{-1} \mod(q)$ => C' = $\sum m_i b_i r^{-1} \mod(q)$, with $b_i = r a_i \mod(q)$ $=> a_i = r^{-1} b_i \mod(q)$ $=> C' = \sum m_i a_i \mod(q)$ $q > \sum a_i$ and $mi \in \{0,1\}, \sum m_i a_i < q$ $=> C'=\sum m_i a_i (E')$ (E') easy to solve as a has a super increasing.

MH -> Example

- Message "hello", n = 7 bits
- a_i: {3, 5, 15, 25, 54, 110, 225} i: 1,...,7
- $q > \sum a_i = q = 439$ and r = 10
- b_i = a_i r mod (q) => b_i : {30, 50, 150, 250, 101, 222, 55)}
- Encryption:

$$h = 1001000 => C_h = \sum h_i b_i = 30 + 250 = 280$$

$$e = 1100101 => C_e = \sum e_i b_i = 30 + 50 + 101 +$$

$$55 = 236$$

MH -> Example - 2

$$I = 1101100 => C_i = \sum_i b_i = 30 + 50 + 250 + 101 = 431$$

$$0 = 11011111 => C_i = \sum_i b_i = 30 + 50 + 250 + 101 + 222 + 55 = 708$$
So the encrypted message is M = (280, 236, 431, 431, 708).

Decryption of $C_h = 280$ r^{-1} of r modulo q is 44 (10x44 = 1 mod(q))

MH -> Example - 3

$$C_h' = C_h r^{-1} \mod (q)$$

=> $C_h' = 280x44 \mod (439) = 28$
 $a_i : \{3, 5, 15, 25, 54, 110, 225\}$
- The largest element of $a_i \le C_h'$ is $25 => h_4 = 1$ Algo to solve the super increasing knapsack problem: for $j = n$ downto 1 { If $s \ge a_i$ then { $xi = 1$; $s = s - ai$; } else $xi = 0$; } return ($x1, x2,..., xn$).
 $a_1 \le C_h' => h_1 = 1, C_h' = 3 - 3 = 0$
=> $h_i : 1001000$

MH- Crypto analysis: Assumptions

- \bullet n \rightarrow ∞
- d: expansion factor: Ratio between size of the ciphertext over the size of the plaintext . d > 1 is fixed
- d = 2 for the Basic MH : M = 200, n = 100
- q₀ and b_i grow linearly with n
- $a_1 = 2^{-n+1}, a_i = 2^{-n+i-1}$
- $q_0 \approx 2^{-dn}, b_i < q_0$

MH- Crypto analysis: Trapdoor pair

Shamir algorithm find trapdoor pair w and q, with $w = r^{-1} \mod (q)$ such that given the public key b_i , we can compute a super increasing vector s_i st:

 $s_i = w b_i \mod(q)$ and with $q > \sum s_i$

There is at least one solution by construction w_0 , $q_0!!$

MH- Crypto analysis: Trapdoor pair -2

(w, q) can be different from (w_0, q_0) , but will still decrypt the message.

Proof:

- encrypted message C = ∑ m_i b_i
- C' = C w mod (q) with $s_i = w \text{ bi mod}(q)$
- $=> C' = \sum m_i b_i w \mod(q) = \sum m_i s_i \mod(q)$
- $=> C' = \sum m_i s_i (D), q > \sum s_i , m_i: \{0,1\}$
- (s; super increasing => (D) easy to solve)

MH- Cryptanalysis: Step 1

- We study the curves: w bi mod(q_0), i:1..n

Minimum: w bi mod(q_0) = 0

for real multipliers $0 \le w < q_0$, w bi mod(q_0) graph has a sawtooth form

- The slope of the sawtooth curves is b_i
- Minimum is reached when b_iw = xq₀
- $=> w = xq_0/b_i$, with $0 \le w < q_0$
- $=> 0 \le x < b_i-1$: there is b_i minima
- distance between two successive minima is q₀/b_i
- for i = 1, w_0 is such that $a_1 = w_0 b_1 mod(q_0)$
- $=> a_1 = w_0 b_1 xq_0$

=> $a_1/b_1 = w_o - xq_0/b_1$, $a_1 = 2^{dn-n}$, $b_1 < q_0 = 2^{dn}$ => $w_o - xq_0/b_1 = 2^{-n}$: distance between w_o and the xth closest minimum to the left w_1^x of the b_1 curves is at most 2^{-n} .

w_o and w^x₁ are closed to each other

- Similarly for i = 2, the distance between w_o and the *yth* closest minimum to the left of the b₂ curves w^y₂ is at most 2⁻ⁿ⁺¹
- w₀ and w^y₂ are also really closed
- => w^x₁ and w^y₂ are also closed
- => distance factor between w₀ and closest
- minimum to left of the ith curves is: 2-n + i 1
- => There is a point where all the minima at are closed to each other.

MH- Cryptanalysis: Step 2

If we superimpose b_i curves, there would an interval (s) where all minina of b_i curves are closed to each other meaning closed to w₀

- So instead of finding w_o, we can compute the accumulation points of the super imposes b_i curves
- Choose I out of n curves to superimpose.
 what is should be the value of I?
- Shamir proved that I is not dependent on n but instead on the factor d = M/n
- I = d+2 is enough to estimate the accumulation points

MH - Cryptanalysis: Step 3

- We pick I b_i curves
- the pth minimum of b₁ is pq₀/b₁,
- we don't have q₀
- Observation: the location of accumulation points depend on b₁ and not on tq₀

- we can get rid of q₀ by dividing the function by q₀
- => $b_i v \mod(1)$ with $v = w/q_0$, $0 \le v < 1$
- => slope is unchanged: b
- => the distance between two consecutives minima : 1/b_i
- => distance between w_o and the b_i minima will be reduced by 2^{dn} , => $v_o v_i \le 2^{-dn-n+i-1}$

for i=1, the pth minimum of b₁ curve is an accumulation point if it is closed enough to all other neighboring b_i minima

- This gives the following system :
- (I-1) inequalities equations
- I unknow value p, q , r...integers
- ε, ε': allowable deviation between pth minimum and other minima.

$$-\epsilon_{2} < p/b_{1} - q/b_{2} < -\epsilon_{2}' \quad 1 \le p < b_{1}-1, 1 \le q < b_{2}-1$$

$$-\epsilon_{3} < p/b_{1} - r/b_{3} < -\epsilon_{3}' \quad 1 \le p < b_{1}-1, 1 \le r < b_{3}-1$$

- - -

Multiplying the inequalities by their denominators gives:

$$-\epsilon_{2} < pb_{2} - qb_{1} < -\epsilon_{2}$$
 $1 \le p < b_{1} - 1, 1 \le q < b_{2} - 1$

$$-\epsilon_3 < pb_3 - rb_1 < -\epsilon_3'$$
 $1 \le p < b_1 - 1, 1 \le r < b_3 - 1$

. . .

Since the number of variable is fixed, We can apply the Lenstra's algorithm to find p values. running time is $O(n^{F(I)})$, F(I) grows exponentially with I, but I is small (I = 4 for the Basic MH).

Using the Lenstra integer programming will output all possible value of p, satisfying the inequalities system

The number of accumulation points k should not exceed 100 else the algorithm is aborted. This condition make sure the algorithm runs in polynomial time.

Example: all b_i are similar => all minima are accumulation points

- p found in step 3:
- [p/b₁, (p+1)/b₁]: interval between 2
 successive minima of b₁
- v₁,...,v₁: the list of coordinates of discontinuity points of all n curves lying in the sorted order in this interval
- We divide $[p/b_1, (p+1)/b_1]$ in subintervals such as $[v_t, v_{t+1}]$.

- in [v_t, v_{t+1}), each b_i curves is a line segment.
- => the ith linear segment : vb, + Ct, where Ct,
- : number of b_i minima in $(0, v_t]$, $v_t \le v < v_{t+1}$

- \bullet v = C_i^t/b_i
- Conditions: v trapdoor ratio w/q if:
- modulus Size: $\sum (vb_i + C_i^t) < 1 \text{ i: } 1,...,n$
- Superincreasing: $(vb_i + C_i^t) > \sum (vb_j + C_j^t)$ for i: 2,...,n and j: 1,...,i-1

The solution to this system of linear inequalities in v_t , is possible non empty subinterval of $[v_t, v_{t+1}]$.

There would be at least one non empty subintervals by construction

The membership of w/q to this subinterval for some p, t value is a *necessary* and sufficient condition for w and q to be a trapdoor pair.

- We have the ratio (s) w/p = k, with k real value
- We need w, p
- **Diophantine approximation**: For a given real value k, output the rational number w/q such that w/q is an approximated value of k.
- With w, q, and b_i we can compute s_i
- The new private key is then (s_i, q, w)

MH- Crypto analysis: Performance

The most consuming part of the algorithm is the Lenstra's algorithm to find p values. running time is polynomial time in n but exponential in I.

Thank you for your attention!!!

