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Exercise for Analysis of Algorithms

Exercise 5

If a flow diagram consists of n nodes and m edges, how many fundamental cycles do we
get?

Solution:

Any spanning tree of a graph on n nodes has to use exactly n− 1 edges. that means that
there are m− (n− 1) edges that are not part of the spanning tree. Since every edge not
part of the spanning tree is part of exactly one fundamental cycle we get m−n+1 many
fundamental cycles.

Exercise 6

Prove or disprove: In every flow diagram you can find a spanning tree such that all
fundamental cycles contain only edges that are labeled with plus.

Solution:

Consider a part of a program that contains an if-else statement.

A spanning tree of that structure always has one edge not part of the tree, no matter what
edge is selected, we always have to use the two edges of the other side in the opposite
direction. So without loss of generality let e1 be the non tree edge, e2 the edge on the
same side (either before or after e1) and e3 and e4 the two edges on the other side. We
get

C1 = e1 + e2 − e3 − e4

Which thereby disproves the conjecture.



Exercise 7

In this exercise, we consider Prim’s Algorithm, which computes a minimum spanning
tree. The input to this algorithm is a graph G = (V,E), a weight function on the edges
w : E → R and a starting node r.

1 for each u ∈ V do

2 key[u]←∞
3 π[u]← NIL
4 key[r]← 0
5 M ← V

6 while (M 6= ∅) do
7 u← min-from(M)
8 for each v ∈ neighbors(u) do
9 if (v ∈M) ∧ (w(u, v) < key[v]) then
10 π[v]← u

11 key[v]← w(u, v)

Construct the control flow graph, a spanning tree in the control flow graph, the funda-
mental cycles, a corresponding linear system of equations and a solution to this system.

Solution:

The flow diagram is depicted below. The for-loops were changed, since the initializing
and iteration condition must be separated.
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We choose the spanning tree e1, e2, e4, e5, e6, e7, e8, e9, e10. This yields the following fun-
damental cycles:

C0 = e0 + e1 + e4 + e5

C3 = e3 + e2

C11 = e11 + e8 + e9

C12 = e12 + e8 + e9 + e10

C13 = e13 + e8

C14 = e14 + e6 + e7

We now use standard linear algebra to find a good set of blocks whose number of visits
we need to compute: By Ei, 0 ≤ i ≤ 14, we denote the number of times the program flow
visits the edge ei. With each fundamental cycle above we identify a vector Ci. Then the
Ei can be written as a linar combination of the fundamental cycles, i.e.,

(C0, C3, C11, C12, C13, C14)
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for appropriate values of λ1, . . . , λ6. We select six independent rows and obtain the equa-
tion
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This means, we only need to compute the values of C,G,H, I, J for a complete analysis
(E0 = 1 is trivally known), and then all other values can be derived: We see that E0 =
E1 = E4 = E5, E2 = E3, E6 = E7 = E14, E10 = E12. This implies A = 1, B = E1 +E3 =
C + 1, D = E4 = 1, E = E5 + E14 = 1 +G−H, F = E6 = G−H.

Exercise 8

Let w ∈ {a, b}n a word that has been chosen uniformly at random. How often is the
body of the while-loop executed on average in the following algorithm? The function
is palindrome tests whether a word is a palindrome, i.e., the same when read backwards.



i = 2 ;
whi l e ( i <= n)

i f ( i s pa l i nd rome (w [ 1 ] , . . . , w[ i ] ) )
r e turn t rue ;

i++;
re turn f a l s e ;

Solution:

Without loss of generality let w[1] be a. If w[2] also is a, which happens with probability
1

2
, we have found a palindrome after one round, and are done, otherwise, we have the

prefix ab. In the following round we find a palindrome if an a occurs, otherwise, we have
the prefix abb. It follows that we find a palindrome at that moment when a second a

occurs. For 1 ≤ k ≤ n− 2, body is executed k times if and only if w[2], . . . , w[k] = b and
w[k + 1] = a. The body is executed n − 1 times if and only if w[2], . . . , w[n − 1] = b, as
the algorithm terminates after the last round no matter if it found a palindrome or not.

The expected number of iterations therefore is
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We put both summands toghether to get the final result

E =
n− 2

2n−2
+ 2−

1

2n−3
+

n− 1

2n−2
= 2−

1

2n−3
+

1
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= 2−
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Exercise 9

RWTH Aachen University has an exclusive contract with the well-known Uranus Corpo-

ration on the delivery of canal and pump supplies. Unfortunately, the responsible per-
son failed to notice that Uranus sells only the “one-fits-all” product KKuRPSE (Kanal-
kopplungsundregulierungspumpstationeinheit). Such a KKuRPSE is a cylinder with four
connectors placed north, east, south, and west of the cylinder (see the figure).

Now, the Institute for Tunnel and Canal Construction (ITCC) is conducting some rese-
arch: The researchers first place n KKuRPSEs on a big green. Then they start to connect
KKuRPSEs as follows: They digg a new canal between two arbitrary connectors. The new
canal cannot cross another existing canal, of course. They then place a new KKuRPSE
somewhere into this new canal, such that exactly two connectors on opposite sides of the
new KKuRPSE are now attached to the canal.

The question is: How often can this connection procedure be repeated depending on the
number n of initial KKuRPSEs on the green?

Example

Assume the researchers start with two KKuRPSEs, here labeled 0 and 1. Then a couple of
connection steps are executed, where each new KKuRPSE receives consecutive numbers
until no more connections are possible.

0 10 1

2

3

4

5

6

7

8

9

Solution:

First notice the following invariants:

• The number of free connectors at each time is 4n, since each KKuRPSE uses two
connectors, but at the same time introduces two new connectors.



• In each face of the underlying planar graph there is at least one free connector.

Let f be the number of faces, v be the number of vertices, e be the number of edges, and
c be the number of connected components at an arbitrary round of the game. Since the
graph is planar,

v + f = 1 + e+ c

by a theorem of Euler, and since in each round two new edges are introduced,

v = n+
e

2
.

The game ends when in each face only one connector remains, i.e., when f = 4n. At
this time, the graph is connected, i.e., c = 1, due to the outer face. Since in each round
exactly two edges are introduced,

n+
e

2
+ 4n = 1 + e+ 1

yields
e

2
= 5n− 2,

and each game lasts exactly 5n− 2 rounds.


