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Exercise for Analysis of Algorithms

Exercise 1

Consider the following algorithm that computes the maximum element in an array of
positive integers. We assume that all elements are pairwise different and that each per-

mutation occurs with equal probability.

int maxElem(int *a, int N)

{
int i,max;
max = -1; /x 1 %/
for (i=0; i<N; i++) /x 2 %/
if (ali]l > max) /x 3 */
max = alil; /* 4 x/
return max; /*x 5 %/
}
e How often are the lines 3 and 4 executed in the worst case (in the best case)?
e What is the probability that this worst case occurs?
e How often are the lines 3 and 4 executed in the average case?
Solution:

e Line 3 is executed N times. Since max is negative at the beginning, it must be

overwritten in line 4 at least once even in the best case, when the largest element is
at the beginning. In the worst case, the array is sorted and increasing, the condition
in line 3 is always true and line 4 is executed N times.

The best case occurs if the first element is the maximum element. The probability
for this event is 1/N. The worst case happens with a probability of only 1/N!, since
among the N! permutations of the array only one is the increasing sequence.

Line 3 is executed N times. The estimation for line 4 is more complicated, since the
probability that line 4 is executed for a[i] depends on the previous a[j], j < i, and
is thus not independent for all . We can tackle this problem with the linearity of
the expected value.

The probability that the kth element is larger than its k — 1 predecessors is 1/k,
since among the k! permutations of the first & elements there are exactly (k — 1)!,
s.t. the largest element is at position k. The expected number of executions of line
4 is therefore

1 alg|
: ZE:HNzlnN—i—fy—i—o(l),
i=0 k=1
where Hp is the Nth harmonic number and v ~ 0.78.



Exercise 2

Let Sy be the expected number of pushs on the stack in the Quicksort program, where

the input consists of a random permutation of N distinct keys. Analyze Sy for all values
of N and M.

Solution:

We start by giving a recurrence relation for Sy, note that we only push something on the
stack if both halves are larger than M, that is, M +1 <k < N —-1—k.
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This equation is only valid for N > 2M + 2 otherwise Sy = 0.
From the lecture we know that for N > M,

N-1 N

2 N1 kfy — (k= 1 fis
Xy ==Y Xt fy = o Xy + (V41
v N; I = gy e (N )k:ZMH k(k+ 1)

We need to define a function fy that is valid for smaller values of N and get
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Now we can solve Sy. Since Sy = 0 and fr = 0 for £ < 2M +2 the expression simplifies
a lot.
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Alternative Solution: It is also possible to solve Sy directly without using the formula
for Xy
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Exercise 3

As we discussed at the first discussion session, we would assume that ¢’ —the number
of comparisons done in quicksort during partitioning phases on the left side of the array
— should be around half the number of comparions, i.e., around C'/2.

This is as all comparisons are distributed among the following two lines in the program.
We split the number of comparisons into C” for the first line and C” for the second line.

do {i++;} while(al[il<k);
do {j--;} while(k<a[jl);

Can we motivate the recurrence relation for C'y, which shows this?

Solution:
We get the recurrence
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because k+ 1 comparisons take place of left side of the pivot element under the conditions
that the pivot element will be left at position k + 1 in the array (when the positions are
1,...,n). This recurrence is exactly half of the recurrence we had for Cy. Because of
linearity the result is then Cy = Cy/2.

Exercise 4

Two natural numbers m # n are called friendly, if the sum of all factors of m equals n —
or the other way round. A son and a father wrote the following programs, that compute
friendly numbers. What is their running time?

Son }

#tinclude <iostream>

int e[150000] ;

int realdiv(int a) {

int n=0;

for(int i=1; i+i<=a; i++)
if (a%i==0) n+=i;

ela] = n;

return n;

}

main() {

for(int i=0; i<150000; i++) {
int a = realdiv(i);

if(a >= i) continue;
if(elal==1) {

std::cout << 1 <<« " "

<< realdiv(i) << "\n";

}

+



Father p += i;
+
#include <stdio.h> }
#define N 1000000
int factorsum[N];

int main() {

for(i=1; i<N; i++) {
int a = factorsum[i]-i;
if (a<i && i==factorsum[a]-a)

int i; . .
; rintf ("%d %d\n", a, i);
for(i=1; i<N; i++) { E
1n? p=1; return O;
while(p<N) { }

factorsum[p] += i;

Solution:

The son’s program requires O(N?) steps. In the father’s program, the first for-loop domi-
nates the running time. In the following table, lines represent the outer for-loop, columns
represent the inner while-loop, and each 1 represents an execution of the inner loop (for
the ease of presentation we write N instead of N — 1):

N
111111 111 1
11 1 1 1
1 1 1
1 1
1 1
1
We can rewrite this as follows
N
"1 1 1 1 1 1 1 1 1 - 1
1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 - 1/2
1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 --- 1/3
1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 - 1/4
15 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 --- 1/5
1N 1N 1/N 1N 1/N 1/N 1/N 1/N 1/N --- 1/N

It is not hard to see that the sum over all entries of both tables differ by at most N (due
to missing values in the last colums). Since the sum of each column is Hy, it is easy to
see that the sum over the lower table is NHy = O(N log N).



