
RWTH Aachen

Theoretical Computer Science

Rossmanith–Gehnen

WS 2025

Exercise 1
30.10.2025

Exercise for Analysis of Algorithms

Exercise 1

Consider the following algorithm that computes the maximum element in an array of
positive integers. We assume that all elements are pairwise different and that each per-
mutation occurs with equal probability.

int maxElem(int *a, int N)

{

int i,max;

max = -1; /* 1 */

for (i=0; i<N; i++) /* 2 */

if (a[i] > max) /* 3 */

max = a[i]; /* 4 */

return max; /* 5 */

}

• How often are the lines 3 and 4 executed in the worst case (in the best case)?

• What is the probability that this worst case occurs?

• How often are the lines 3 and 4 executed in the average case?

Solution:

• Line 3 is executed N times. Since max is negative at the beginning, it must be
overwritten in line 4 at least once even in the best case, when the largest element is
at the beginning. In the worst case, the array is sorted and increasing, the condition
in line 3 is always true and line 4 is executed N times.

• The best case occurs if the first element is the maximum element. The probability
for this event is 1/N . The worst case happens with a probability of only 1/N !, since
among the N ! permutations of the array only one is the increasing sequence.

• Line 3 is executed N times. The estimation for line 4 is more complicated, since the
probability that line 4 is executed for a[i] depends on the previous a[j], j < i, and
is thus not independent for all i. We can tackle this problem with the linearity of
the expected value.
The probability that the kth element is larger than its k − 1 predecessors is 1/k,
since among the k! permutations of the first k elements there are exactly (k − 1)!,
s.t. the largest element is at position k. The expected number of executions of line
4 is therefore

N−1∑

i=0

1

i+ 1
=

N∑

k=1

1

k
= HN = ln N + γ + o(1),

where HN is the Nth harmonic number and γ ≈ 0.78.

Exercise 2

Let SN be the expected number of pushs on the stack in the Quicksort program, where
the input consists of a random permutation of N distinct keys. Analyze SN for all values
of N and M .

Solution:

We start by giving a recurrence relation for SN , note that we only push something on the
stack if both halves are larger than M , that is, M + 1 ≤ k ≤ N − 1− k.

SN =
1

N

N−1∑

k=0

(
Sk + SN−1−k + (M + 1 ≤ k ≤ N − 1− k)

)

=
2

N

N−1∑

k=0

Sk +
N − 2M − 2

N

This equation is only valid for N ≥ 2M + 2 otherwise SN = 0.

From the lecture we know that for N > M ,

XN =
2

N

N−1∑

k=0

Xk + fN =
N + 1

M + 2
XM+1 + (N + 1)

N∑

k=M+2

kfk − (k − 1)fk−1

k(k + 1)

We need to define a function fN that is valid for smaller values of N and get

fN =

{
N−2M−2

N
N ≥ 2M + 2

0 else

Now we can solve SN . Since SM+1 = 0 and fk = 0 for k ≤ 2M+2 the expression simplifies
a lot.

SN = (N + 1)
N∑

k=2M+3

1

k(k + 1)

= (N + 1)
(1

2M + 3
−

1

N + 1

)

=
N + 1

2M + 3
− 1

Alternative Solution: It is also possible to solve SN directly without using the formula
for XN

NSN − (N − 1)SN−1 = 2SN−1 + 1

NSN = (N + 1)SN−1 + 1

σN :=
SN

N + 1
= σN−1 +

1

N(N + 1)

σN =
N∑

k=2M+4

1

k(k + 1)
+ σ2M+3 =

1

2M + 4
−

1

N + 1
+ σ2M+3

SN =
N + 1

2M + 4
− 1 +

(N + 1)

(2M + 3)(2M + 4)
=

N + 1

2M + 3
− 1

Exercise 3

As we discussed at the first discussion session, we would assume that C ′ —the number
of comparisons done in quicksort during partitioning phases on the left side of the array
— should be around half the number of comparions, i.e., around C/2.

This is as all comparisons are distributed among the following two lines in the program.
We split the number of comparisons into C ′ for the first line and C ′′ for the second line.

do {i++;} while(a[i]<k);

do {j--;} while(k<a[j]);

Can we motivate the recurrence relation for C ′

N
, which shows this?

Solution:

We get the recurrence

C ′

N
=

1

N

N−1∑

k=0

(Ck + CN−1 + k + 1) =
2

N

N−1∑

k=0

Ck +
N + 1

2

because k+1 comparisons take place of left side of the pivot element under the conditions
that the pivot element will be left at position k + 1 in the array (when the positions are
1, . . . , n). This recurrence is exactly half of the recurrence we had for CN . Because of
linearity the result is then C ′

N
= CN/2.

Exercise 4

Two natural numbers m 6= n are called friendly, if the sum of all factors of m equals n —
or the other way round. A son and a father wrote the following programs, that compute
friendly numbers. What is their running time?

Son

#include <iostream>

int e[150000];

int realdiv(int a) {

int n=0;

for(int i=1; i+i<=a; i++)

if(a%i==0) n+=i;

e[a] = n;

return n;

}

main() {

for(int i=0; i<150000; i++) {

int a = realdiv(i);

if(a >= i) continue;

if(e[a]==i) {

std::cout << i << " "

<< realdiv(i) << "\n";

}

}

}

Father

#include <stdio.h>

#define N 1000000

int factorsum[N];

int main() {

int i;

for(i=1; i<N; i++) {

int p=i;

while(p<N) {

factorsum[p] += i;

p += i;

}

}

for(i=1; i<N; i++) {

int a = factorsum[i]-i;

if(a<i && i==factorsum[a]-a)

printf("%d %d\n", a, i);

}

return 0;

}

Solution:

The son’s program requires O(N2) steps. In the father’s program, the first for-loop domi-
nates the running time. In the following table, lines represent the outer for-loop, columns
represent the inner while-loop, and each 1 represents an execution of the inner loop (for
the ease of presentation we write N instead of N − 1):

N
︷ ︸︸ ︷

1 1 1 1 1 1 1 1 1 · · · 1
1 1 1 1 · · · 1

1 1 1 · · ·

1 1 · · ·

1 · · · 1
...

. . . · · ·
...
1

We can rewrite this as follows

N
︷ ︸︸ ︷

1 1 1 1 1 1 1 1 1 · · · 1
1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 · · · 1/2
1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 · · · 1/3
1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 · · · 1/4
1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 · · · 1/5
...

. . . · · ·
...

1/N 1/N 1/N 1/N 1/N 1/N 1/N 1/N 1/N · · · 1/N

It is not hard to see that the sum over all entries of both tables differ by at most N (due
to missing values in the last colums). Since the sum of each column is HN , it is easy to
see that the sum over the lower table is NHN = O(N logN).

