
RWTH Aachen
Lehrgebiet Theoretische Informatik
Reidl—Rossmanith—Sanchez—Sikdar

SS 2014
Problem Set 1

14.4.2014

Analysis of Algorithms

Problem 1-1

Let xn, n ≥ 1 be a solution to the recurrence relation xn =
∑

n

k=1
xk/k. Show that all

solutions to this recurrence form a vector subspace of the space of real sequences. What
is the dimension of this subspace and how does a general solution look like?

Problem 1-2

Consider the following algorithm that computes the maximum element in an array of
non-negative integers. We assume that all elements are pairwise different and that each
permutation occurs with equal probability.

1 int maxElem(int a[], int N) {

int i, max;

3 max = -1;

for (i = 0; i < N; ++i){

5 if (a[i] > max)

max = a[i];

7 }

return max;

9 }

a) How often are the instructions a[i] > max and max = a[i] executed in the worst

case and in the best case?

b) What is the probability that this worst case occurs?

c) How often are the two instructions executed in the average case?

Solution:

• The test: if (a[i] > max) is executed N times. Since max is negative at the
beginning, it must be overwritten in the line: max = a[i] at least once. The
best case is when the largest element is at the beginning, and this assignment is
performed exactly once. In the worst case, the array is sorted and increasing, the
condition a[i] > max is always true and the line max = a[i] is executed N times.

• The best case occurs if the first element is the maximum element. The probability
for this event is 1/N . The worst case happens with a probability of only 1/N !, since
among the N ! permutations of the array only one is the increasing sequence.



• Since the line if (a[i] > max) is executed N times, we only have to estimate the
average number of times the line max = a[i] is executed. This line is executed if
and only if a[i] is larger than any of its i − 1 predecessors. The probability that
this happens is:

(

N

i

)

· (i− 1)! · (N − i)!

N !
.

This can be explained as follows: we first select i that constitute our array a[0],

..., a[i-1] in
(

N

i

)

ways; place the maximum in position a[i-1] and permute
the remaining elements in (i − 1)! · (N − i)! ways. Since there are a total of N !
permutations, the expression for the probability is as written. This just simplifies
to 1/i. Therefore the expected number of times this line is executed is:

N−1
∑

i=0

1

i+ 1
=

N
∑

k=1

1

k
= HN ≈ lnN.

Problem 1-3

Let w be a random word in {a, b}n chosen independently and with uniform probability.
What is the expected number of iterations of the while-loop in the following algorithm?
The function is palindrome checks if the given word is a palindrome, i.e., if the word
and its reverse are identical.

1 i = 2;

while (i <= n) {

3 if (is_palindrome(w[1],...,w[i]))

return true;

5 ++i;

}

7 return false;

Solution: We w.l.o.g. assume w starts with a. If w2 = a, too, which happens with a
probability of 1

2
, then we already found a palindrome after one iteration. Otherwise we

obtain the prefix ab. In the following iteration, we get a palindrome if w3 = a, which
again happens with probability 1

2
. Otherwise, we get the prefix abb. This observeration

carried forward, we easily see that we find a palindrome once wi = a is read.

The expected number of iterations therefore is

n
∑

k=2

1

2k−1
(k − 1) +

1

2n−1
(n− 1),

where the last summand stems from the fact, that for w = abn−1 the while-loop is
executed exactly n−1 times. Using the formula for the geometric progression, we therefore
obtain

2−
2(n+ 1)

2n
+

1

2n−1
(n− 1) = 2−

1

2n−2
.



Homework Assignment 1-1 (10 Points)

Let a be an array of length N , whose entries are random numbers chosen from {1, . . . , N}
independently and with uniform probability (i.e., repetitions are possible and likely).
What is the expected number of executions of each line of the following algorithm?

1 count = 0;

i = 1;

3 while (i <= N) {

if (a[i] % 2 == 1)

5 ++count;

++i;

7 }

return count;

Homework Assignment 1-2 (10 Points)

Two natural numbers m 6= n are called amicable, if the sum of all proper factors of m
equals n — and the other way around. A son and a father wrote the following programs
that compute amicable numbers. What is the running time of the son’s program? Find
an exact formula for the number of executions of the instruction if(a % i==0) as a
function of N . Assume that the constant 150000 is replaced by N .

Son

#include <iostream>

2

int e[150000];

4 int realdiv(int a) {

int n=0;

6 for(int i=1; i+i<=a; i++)

if(a%i==0) n+=i;

8 e[a] = n;

return n;

10 }

12 main() {

for(int i=0; i<150000; i++) {

14 int a = realdiv(i);

if(a >= i) continue;

16 if(e[a]==i) std::cout << i

<< " " << a << "\n";

18 }

}

Father

1 #include <stdio.h>

#define N 1000000

3 int factorsum[N];

int main() {

5 int i;

for(i=1; i<N; i++) {

7 int p=i;

while(p<N) {

9 factorsum[p] += i;

p += i;

11 }

}

13 for(i=1; i<N; i++) {

int a = factorsum[i]-i;

15 if(a<i && i==factorsum[a]-a)

printf("%d %d\n", a, i);

17 }

return 0;

19 }


