Analysis of Algorithms — Tutorial

Problem 10-1

Find the generating function for the series given by the following recurrence relation:

$$f_n = f_{n-1} + 2f_{n-2} + 3f_{n-3} + \dots + nf_0$$
 for $n > 0$ and $f_0 = 1$.

Problem 10-2

A software engineer is writing a program that needs at some point a random permutation without fixpoints of the numbers $1, \ldots, n$. A permutation π has a fixpoint k if $\pi(k) = k$. To be more precise: The program has to choose one permutation among all permutations without fixpoints with equal probability.

She wants to reuse as much software as possible and finds a library routine that provides random permutations. Her plan is to call that routine until it delivers a fixpoint free permutation. She worries a bit, however, how many calls she has to make on average.

- a) If $\pi \in S_n$ is a random permutation, what is the expected number of fixpoints? Why is the answer not very helpful to her task?
- b) Let q_n be the number of fixpoint-free permutations in S_n . Find the EGF for q_n . Start with a recurrence and use the algebraic rules for EGFs.
- c) Find the first values of q_n with the help of a computer algebra system.

Homework Assignment 10-1 (10 points)

Expand the generating function from Problem 10-1 in order to find a closed formula for f_n .

Homework Assignment 10-2 (10 Points)

We call a sequence of **push** und **pop** operations $(\uparrow \text{ and } \downarrow)$ valid, if it contains the same number of \uparrow and \downarrow and no prefix of the sequence consists of less \uparrow than \downarrow . For example, $(\uparrow, \uparrow, \downarrow, \downarrow, \uparrow, \downarrow)$ is valid, while $(\downarrow, \downarrow, \uparrow, \uparrow)$ and $(\uparrow, \downarrow, \downarrow, \uparrow)$ are not valid. The number of \uparrow s in a valid sequence is called the *length* of the sequence. How many valid sequences of length *n* do exist?